Habitat Use and Home Range of Long-Nosed Leopard Lizards (Gambelia Wislizenii) in Canyons of the Ancients National Monument, Colorado

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Use and Home Range of Long-Nosed Leopard Lizards (Gambelia Wislizenii) in Canyons of the Ancients National Monument, Colorado Herpetological Conservation and Biology 6(2):312–323. Submitted: 2 March 2011; Accepted: 14 July 2011. HABITAT USE AND HOME RANGE OF LONG-NOSED LEOPARD LIZARDS (GAMBELIA WISLIZENII) IN CANYONS OF THE ANCIENTS NATIONAL MONUMENT, COLORADO 1,3 1 2 ROBERT A. SCHORR , BRAD A. LAMBERT , AND ERIC FREELS 1Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado 80523, USA 2Dolores Public Lands Office, San Juan Public Lands, 100 North Sixth Street, Box 210, Dolores, Colorado 81323, USA 3Corresponding author, e-mail: [email protected] Abstract.—An understanding of species’ habitat requirements is needed for effective land management decisions, but for many North American reptiles, habitat use information is lacking. Gambelia wislizenii (Long-nosed Leopard Lizard) is a predatory lizard of most North American deserts, and, although common in the interior of its range, appears to be declining at some peripheral populations. To understand habitat use and movement patterns, we used telemetry and two habitat comparison methods to study a G. wislizenii population at the eastern boundary of the range. Gambelia wislizenii home ranges at Canyons of the Ancients National Monument, Colorado, are the largest recorded. Habitat analysis using microsite-attribute comparisons and compositional analysis documented second-order habitat preference for Big Sagebrush- or Utah Juniper-dominated landscapes. Gambelia wislizenii were found in areas with moderate shrub and forb cover with much bare ground, but were not found in areas dominated with grass cover. Incorporating management strategies that limit grass encroachment and maintain bare ground cover with moderate tree and shrub cover may help sustain G. wislizenii populations. Key Words.—bare ground; Colorado; Gambelia wislizenii; grass cover; habitat use; home range; Long-nosed Leopard Lizard; shrub cover INTRODUCTION some time actively hunting (Pietruszka 1986) and may subdue active prey, such as small rodents (Pietruszka et Gambelia wislizenii (Long-nosed Leopard Lizard) is a al. 1980). medium-sized, carnivorous lizard that occurs in the In Colorado, G. wislizenii is restricted to the western Chihuahuan, Great Basin, Mojave, and Sonoran deserts border of the state (Hammerson 1999). Surveys in (Stebbins 2003) and ranges from southern Idaho and Colorado have produced several dozen records from the southeastern Oregon to northern Mexico, and east to west-central part of the state (McCoy 1967), but efforts Colorado and Texas (McGuire 1996; Orange et al. to locate G. wislizenii in previously occupied areas of 1999). Gambelia wislizenii inhabit Greasewood southwest Colorado have been less successful (Sarcobatus vermiculatus), sagebrush (Artemisia spp.), (Hammerson 1999). In Canyons of the Ancients saltbush (Atriplex spp.), and rabbitbrush (Chrysothamnus National Monument (Monument), Montezuma County, spp.) shrublands, seeming to prefer areas where there is the few G. wislizenii records are from the mesa tops of little or no grass cover (McCoy 1967; Baltosser and Best Cannonball Mesa and the surrounding areas (R. Bruce 1990; Steffen and Anderson 2006). Because of its broad Bury, unpubl. report; Brad Lambert, unpubl. report). range in North American deserts and its affinity for areas Because G. wislizenii is found in shrubland habitats devoid of grass cover (Stebbins 2003), G. wislizenii is a with minimal grass cover, and these habitat types are model species for understanding the impacts of invasive declining throughout its range (West 1999), we initiated grasses on habitat use. a habitat use study. The objectives were to understand Habitat changes that limit G. wislizenii abundance or G. wislizenii ecology, movement patterns, and habitat distribution may have consequences for other desert use, and provide management guidance for maintaining species. Gambelia wislizenii are higher-order carnivores habitats for a species that may be declining in abundance in southern deserts where they feed primarily on lizards, and distribution (Nussbaum et al. 1983; Hammerson and have been known to ingest prey nearly as large as 1999). Such information can be invaluable for themselves (Gracie and Murphy 1986). In northern addressing leopard lizard conservation prior to legally- desert systems, G. wislizenii diet consists of more mandated management (U. S. Fish and Wildlife Service invertebrate prey, including grasshoppers, beetles, and 1998). flies (McCoy 1967; Tanner and Krogh 1974; Mitchell 1984). They are sit-and-wait predators that will spend 312 Herpetological Conservation and Biology FIGURE 1. Map of Cannonball and Risley mesas on Canyons of the Ancients National Monument in southwestern Colorado, USA. Inset is the State of Colorado and Canyons of the Ancients National Monument in the southwest corner. MATERIALS AND METHODS wislizenii. Biologists searched between 0800 and 1200 to match lizard activity patterns (McCoy 1967; Parker Study site.—We studied G. wislizenii on Cannonball and Pianka 1976). After capture, we recorded sex and and Risley mesas within the Monument (Fig. 1), which took measurements of snout-to-vent length (SVL), tail is managed by the Bureau of Land Management (BLM). length, and mass. We placed a 1.1-g transmitter with a Declared a national monument in 2000, the 66,370 ha battery life of approximately 4–5 weeks (Holohil area provides habitat for much herpetofaunal diversity, Limited Ltd., Carp, Ontario, Canada) over the pelvic and this diversity motivated the BLM to establish the girdle of the lizard and attached the transmitter using McElmo Rare Snake and Lizard Area in Bridge Canyon elastic cord (Knapp and Owens 2005). Transmitter of the Monument in 1976. Pinyon Pine (Pinus edulis) masses ranged from 1.8–6.5% of the lizards’ body with intermixed Big Sagebrush (Artemisia tridentata), masses and fell within the tested weight loads of other saltbush, Skunkbush (Rhus trilobata), and Utah Juniper lizards (Knapp and Owens 2005; Knapp and Abarca (Sabina osteosperma) dominate the mesas on the 2009). Individuals > 90 mm SVL and showing orange Monument (Fig. 2). Vegetation along the lowland coloration on the sides and under the tail were drainages is a complex of Greasewood, saltbush, considered females. Individuals > 80 mm SVL, not Skunkbush, and rabbitbrush, with mesic areas supporting showing orange coloration, and having enlarged postanal Cottonwood (Populus angustifolia), willow (Salix spp.), scales were categorized as males (Parker and Pianka and Tamarisk (Tamarix ramosissima). 1976; Mitchell 1984; Hammerson 1999). We located lizards 2–5 times a week (mean = 3.2 locations/7 d) from Telemetry and home range estimation.—In late June 19 June to 1 August 2006, and 23 June to 30 July 2008 of 2006 and 2008, a crew of 4–9 biologists walked the to match peak G. wislizenii seasonal activity (McCoy mesas to locate, capture, and attach transmitters to G. 1967) and increase capture success. Gambelia wislizenii 313 Schorr et al.—Habitat and Home Range of Long-nosed Leopard Lizards. FIGURE 2. Gambelia wislizenii habitat (foreground) on Cannonball Mesa (left) and the area adjacent to and north of Gambelia wislizenii habitat on Cannonball Mesa (right). (Photographed by Robert Schorr). emerge from hibernation as early as April and May in asymptote is reached for KHR estimation have not been the southern regions of their range (Baltosser and Best established (Laver and Kelly 2008). 1990), but in Colorado do not emerge until mid-May (McCoy 1967; Hammerson 1999). Habitat use.—We assessed habitat use at various We estimated individual home ranges and an scales using a hierarchical approach of habitat selection aggregated (all individuals) home range using minimum (Johnson 1980). We compared second-order selection convex polygons (MCP) and kernel estimators (KHR; (home range within study area) and third-order selection Seaman and Powell 1996). We used HRT: Home Range (habitat patches within home range) using compositional Tools for ArcGIS (Rodgers et al. 2007) in a geographic analysis outlined by Aebischer et al. (1993). The information system (ArcGIS 9.3.1, Environmental sampling units for compositional analysis were the Systems Research Institute, Redlands, California, USA) individuals’ MCPs. We based habitat types on the for estimation and visualization of home range and dominant vegetation groupings (DOM_VEG_1) in the movement patterns. For individual lizard KHR Canyons of the Ancients National Monument Vegetation estimates, we used fixed kernels with least squares cross Database (2003; Dolores Public Lands Office, Dolores, validation. Kernel home range estimators can be Colorado, USA). Range ecologists at the Dolores Public advantageous because they are probability-based and Lands Office interpreted vegetation types using 1:24,000 give information about the relative use of an area stereographic true-color aerial photograph pairs, then (Seaman and Powell 1996). However, kernel estimators verified vegetation types by assessing ground cover and have undergone much criticism because of the shrub cover along 30-m transects. For assessment of subjectivity of smoothing parameter choice and its landscape vegetation cover in second-order habitat use, impact on estimates and the decreased accuracy with we defined the study area as the area encompassed by a small number of observations per individual (Seaman et 100-m buffer around the aggregated MCP. The study al. 1999; Laver and Kelly 2008). Seaman et al. (1999) area on Cannonball Mesa has five habitat types: recommended obtaining ≥
Recommended publications
  • Viewed 100,000 of the Images for Content Before Uploading Them to Gigadb to Ensure Image Quality, Presence of Animals, Date and Temperature Stamp, and Data Integrity
    Noble et al. GigaScience (2016) 5:40 DOI 10.1186/s13742-016-0145-2 DATA NOTE Open Access A picture is worth a thousand data points: an imagery dataset of paired shrub-open microsites within the Carrizo Plain National Monument Taylor J. Noble1*, Christopher J. Lortie1, Michael Westphal2 and H. Scott Butterfield3 Abstract Background: Carrizo Plain National Monument (San Joaquin Desert, California, USA) is home to many threatened and endangered species including the blunt-nosed leopard lizard (Gambelia sila). Vegetation is dominated by annual grasses, and shrubs such as Mormon tea (Ephedra californica), which is of relevance to our target species, the federally listed blunt-nosed leopard lizard, and likely also provides key ecosystem services. We used relatively nonintrusive camera traps, or trail cameras, to capture interactions between animals and these shrubs using a paired shrub-open deployment. Cameras were placed within the shrub understory and in open microhabitats at ground level to estimate animal activity and determine species presence. Findings: Twenty cameras were deployed from April 1st, 2015 to July 5th, 2015 at paired shrub-open microsites at three locations. Over 425,000 pictures were taken during this time, of which 0.4 % detected mammals, birds, insects, and reptiles including the blunt-nosed leopard lizard. Trigger rate was very high on the medium sensitivity camera setting in this desert ecosystem, and rates did not differ between microsites. Conclusions: Camera traps are an effective, less invasive survey method for collecting data on the presence or absence of desert animals in shrub and open microhabitats. A more extensive array of cameras within an arid region would thus be an effective tool to estimate the presence of desert animals and potentially detect habitat use patterns.
    [Show full text]
  • Mckittrick Elementary School Relocation
    Reconnaissance Level Biological Evaluation For APN 497-010-94 Section 20, T30S, R27E, MDB&M Bakersfield, California October 2019 Prepared for: The Nicholson Group 2101 San Gabriel Avenue Clovis, California 93611 Prepared by: _________________________________ Steven P. Pruett, Senior Biologist McCormick Biological, Inc. P.O. Box 80983 Bakersfield, California 93380 Table of Contents EXECUTIVE SUMMARY ............................................................................................................. 4 1.0 INTRODUCTION ..................................................................................................................... 4 1.1 Purpose and Background ................................................................................................... 4 1.2 Project Site and Surrounding Area Descriptions............................................................... 5 1.3.2 Migratory Bird Treaty Act ......................................................................................... 6 1.3.3 California Fish and Game Code (C.F.G.C. § 1580 et seq.) ....................................... 6 2.0 METHODS .............................................................................................................................. 12 3.0 RESULTS ................................................................................................................................ 14 3.1 General Conditions .......................................................................................................... 14 3.2 Special-status
    [Show full text]
  • PREDATION of the ENDANGERED BLUNT-NOSED LEOPARD LIZARD (GAMBELIA SILA) in the SAN JOAQUIN DESERT of CALIFORNIA Author: David J
    PREDATION OF THE ENDANGERED BLUNT-NOSED LEOPARD LIZARD (GAMBELIA SILA) IN THE SAN JOAQUIN DESERT OF CALIFORNIA Author: David J. Germano Source: The Southwestern Naturalist, 63(4) : 276-280 Published By: Southwestern Association of Naturalists URL: https://doi.org/10.1894/0038-4909-63-4-276 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/The-Southwestern-Naturalist on 22 Oct 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Southwestern Association of Naturalists THE SOUTHWESTERN NATURALIST 63(4): 276–280 PREDATION OF THE ENDANGERED BLUNT-NOSED LEOPARD LIZARD (GAMBELIA SILA) IN THE SAN JOAQUIN DESERT OF CALIFORNIA DAVID J. GERMANO Department of Biology, California State University, Bakersfield, CA 93311-1099 Correspondent: [email protected] ABSTRACT—Predation can significantly affect prey populations, which could be significant for recovering species threatened with extinction.
    [Show full text]
  • Gambelia Sila) Including Another by the Long-Nosed Snake (Rhinocheilus Lecontei)
    Western Wildlife 2:44–45 • 2015 Submitted: 20 November 2015; Accepted 22 November 2015. Peer Edited Notes Predation Events on the Endangered Blunt-nosed Leopard Lizard (Gambelia sila) Including Another by the Long-nosed Snake (Rhinocheilus lecontei) David J. Germano1,4, Erin N. Tennant2, and Lawrence R. Saslaw3 1Department of Biology, California State University, Bakersfield, California 93311-1022 2California Department of Fish and Wildlife, 1234 E. Shaw Avenue, Fresno, CA 93710 314700 Orchard Crest Avenue, Bakersfield, California 93314 4Corresponding author, e-mail: [email protected] Abstract.—In our initial report of predation of a Blunt-nosed Leopard lizard (Gambelia sila) by a Long-nosed Snake (Rhi- nocheilus lecontei), we speculated that the snake was not an important source of predation on this endangered lizard. Here we report a second instance of predation by the Long-nosed Snake and reassess its impact on Blunt-nosed Leopard Lizards. We also report other suspected predation events on Blunt-nosed Leopard Lizards by other predators that we found during radio-telemetry studies on the Lokern Natural Area, Semitropic Natural Area, and at Pixley National Wildlife Refuge in the San Joaquin Desert of California in 2015. Key Words.—birds; California; lizards; predators; Red-tailed Hawk; San Joaquin Desert; snakes Snakes are known predators of Blunt-nosed Leopard lizards (Gambelia sila) and recently we reported on an act of predation by a Long-nosed Snake (Rhinocheilus lecontei) at the Lokern Natural Area in Kern County, California (Germano and Saslaw 2015). Because of the small size of Long-nosed Snakes compared to leopard lizard adults and the relative scarcity of the snake in the San Joaquin Desert, we speculated that this snake likely was not an important source of predation on the endan- gered leopard lizard (Germano and Saslaw 2015).
    [Show full text]
  • Crotaphytus Collaris
    NEIGHBOR ASSESSME TAD THE DEAR E EMY PHENOMENON IN COLLARED LIZARDS, CROTAPHYTUS COLLARIS By JERRY F. HUSAK Bachelor of Science Angelo State University San Angelo, Texas 1998 Submitted to the Faculty of the Graduate College ofthe Oklahoma State Univer ity in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 2001 T SIS d: II ACKNOWLEDGMENTS I would like to thank many people for help during all stages of this project. I extend a great debt of gratitude to OG & E Electric Services, especially Mr. Bill Greene, for access to Sooner Lake Dam, especially on such short notice when this project began. I would like to thank the Rob and Bessie Welder Wildlife Foundation for partially funding this research. The Department ofZoology at Oklahoma State University has been very supportive, and I especially want to thank my committee members Dr. David Duvall and Dr. Charles Peterson for all oftheir ideas and comments. Dr. Troy Baird at the University of Central Oklahoma provided very helpful discussions about this project and helped iron out some of the wrinkles. I would like to thank Daren Riedle for helping me with fieldwork and making office time a little more entertaining. lowe a great deal to my advisor Dr. Stanley Fox, whose knowledge of lizard social behavior and behavioral ecology in general have been an inspiration to me. A special thanks goes to my mom and dad for being extremely supportive throughout my college years. Thanks to my sister Melissa for keeping me down to earth and to my brother Michael for inspiration and discussions about things biological.
    [Show full text]
  • Life History Account for Long-Nosed Leopard Lizard
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group LONG-NOSED LEOPARD LIZARD Gambelia wislizenii Family: CROTAPHYTIDAE Order: SQUAMATA Class: REPTILIA R018 Written by: R. Marlow Reviewed by: T. Papenfuss Edited by: S. Granholm Updated by: CWHR Program Staff, March 2000 DISTRIBUTION, ABUNDANCE, AND SEASONALITY The long-nosed leopard lizard is widely distributed in the Southeastern Great Basin, Mojave, Sonoran and Colorado deserts of California and at the southern end of the Central Valley in Santa Barbara and eastern Kern cos. Frequents a variety of desert woodland and scrub habitats up to 1830 m (6000 ft) (Stebbins 1985). Prefers sandy or gravelly flats and plains, and is less common in rocky areas. The greatest densities have been observed in creosote flats. Becomes active later in the spring than do other lizards, usually not until mid-April, and is not found after mid-August (Stebbins 1954, McCoy 1967, Montanucci 1967, Parker and Pianka 1976, Tollestrup 1979, 1983). SPECIFIC HABITAT REQUIREMENTS Feeding: This lizard eats insects (grasshoppers, beetles, etc.), lizards (Callisaurus, Cnemidophorus, Phrynosoma, etc.) and occasionally some plant material (Stebbins 1954, Dixon 1967, Tollestrup 1979). Cover: This species excavates its own burrows in sandy and friable soils and probably uses rodent burrows. Reproduction: This lizard requires adequate food supplies for reproduction. Water: Not required. Pattern: This lizard occupies desert flats and woodlands with sandy or gravelly substrates. SPECIES LIFE HISTORY Activity Patterns: Adults are active from mid-April to mid-August. This lizard is diurnal and can be active all day when the weather is mild to warm.
    [Show full text]
  • Here Describe This Pattern of Absence and Lay out a Plan for Restoring the Species to Areas Where the Species Has Recently Gone Extinct
    San Joaquin Valley Natural Communities Conference March 25, 2021 Virtual Meeting via WHOVA Video Conferencing Program and Abstracts San Joaquin Valley Natural Communities Conference March 25, 2021 8:30 - 8:50 Brian Cypher Welcome to the Conference, Moderator 8:50 - 9:10 Xerónimo Castañeda Six years of Tricolored Blackbird Conservation in the San Joaquin Valley: Challenges and opportunities to save this imperiled species 9:10 - 9:30 Petros Chrysafis Scent deterrent as an applicable predator deterrent 9:30 -9:50 Mike Westphal Blunt-nosed Leopard Lizard occupancy in the Northern Clade: How do we reverse the recent pattern of extinction? 9:50 - 10:10 Deborah Woollett Guidelines, applications, and caveats to using detection dogs to find Blunt-nosed Leopard Lizard scat 10:10 – 10:30 BREAK 10:30 - 10:50 Erica Kelly Impact of a Sarcoptic Mange Epidemic on a Population of Endangered San Joaquin Kit Foxes 10:50 – 11:30 Nicole Deatherage Urban Landscape Attributes and Competition Affect San Joaquin Kit Fox Occupancy and Spatiotemporal Activity 11:30 – 12:00 LUNCH BREAK 12:00 – 12:30 Quick Talk Presentations Anna Doty Effects of fire on summer roost selection and torpor expression of bats in Sequoia and Kings Canyon National Parks: a planned project Patrick Walker Central Valley California tiger salamander behavior within vernal pool grassland complex in Madera County Christopher Lortie Too much of a good thing: richness and restoration in drylands Petros Chrysafis Contribution to eMammal’s Snapshot USA Project Kristie Stein Tricolored Blackbird
    [Show full text]
  • Habitat Restoration Opportunities, Climatic Niche Contraction, and Conservation Biogeography in California's San Joaquin Desert
    Habitat restoration opportunities, climatic niche contraction, and conservation biogeography in California's San Joaquin Desert Running head: Habitat restoration opportunities and climatic niche contraction in California's San Joaquin Desert Joseph A E Stewart1,2*, H Scott Butterfield3, Jonathan Q Richmond4, David J Germano5, Michael F Westphal6, Erin N Tennant7, Barry Sinervo1,2 1 Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA. 2 Institute for the Study of Ecological and Evolutionary Climate Impacts, University of California, 100 Shaffer Road, Santa Cruz, CA 95060, USA. 3 The Nature Conservancy, 201 Mission St, San Francisco, CA, 94105, USA. 4 U.S. Geological Survey, 4165 Spruance Rd., Suite 200, San Diego, CA, 92101, USA. 5 Department of Biology, California State University Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA, 93311, USA. 6 U.S. Bureau of Land Management, 940 2nd Ave., Marina, CA, 93933, USA. 7 Lands Unit, Central Region, California Department of Fish and Wildlife, 1234 E. Shaw Ave., Fresno, CA, 93710, USA. * To whom correspondence may be addressed. E-mail: [email protected] 1 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26758v2 | CC0 Open Access | rec: 10 Jan 2019, publ: 10 Jan 2019 Abstract A recent global trend toward retirement of farmland presents opportunities to reclaim habitat for threatened and endangered species. We examine habitat restoration opportunities in one of the world’s most converted landscapes, California’s San Joaquin Desert (SJD). Despite the presence of 35 threatened and endangered species, agricultural expansion continues to drive habitat loss in the SJD, even as marginal farmland is retired.
    [Show full text]
  • California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group BAJA CALIFORNIA COLLARED LIZARD Crotaphytus vestigium Family: CROTAPHYTIDAE Order: SQUAMATA Class: REPTILIA R093 Written by: T. Kucera, 1998 Updated by: CWHR Staff, February 2008 DISTRIBUTION, ABUNDANCE, AND SEASONALITY The Baja California collared lizard inhabits the eastern face of the peninsular ranges and adjacent rocky slopes from the northern slope of the San Jacinto mountains to the Mexican border and south into Baja California, Mexico (Sanborn and Loomis 1979, McGuire 1996). It is generally restricted to rocky outcroppings on more rugged portions of alluvial fans, desert hillsides, canyons, and lava flows. It is most common in xeric, rocky areas with little vegetation, including desert succulent shrub, desert scrub, and desert wash habitats. Little has been written about its natural history. The Baja California collared lizard is active in the spring and summer and to a lesser extent in the fall. SPECIFIC HABITAT REQUIREMENTS Feeding: Little is known of the diet of this species. The diet of the closely related Mojave black- collared lizard (C. bicinctores) consists largely of arthropods and small vertebrates (Stebbins 1985, McGuire 1996). Plant material is also occasionally consumed. Cover: This species prefers rocky areas and seeks cover under rocks and in cracks and crevices and rodent holes (Stebbins 1985), occasionally bounding bipedally from stone to stone when disturbed (McGuire 1996). Reproduction: Little is known about the reproductive requirements of this species. The closely related Mojave black-collared lizard lays eggs and presumably constructs its own nest but there are no reports.
    [Show full text]
  • 1 2 Habitat Restoration Opportunities, Climatic Niche Contraction, and Conservation Biog
    1 Supplementary online information for: 2 3 Habitat restoration opportunities, climatic niche contraction, and conservation biogeography 4 in California's San Joaquin Desert 5 6 Joseph A E Stewart, H Scott Butterfield, Jonathan Q Richmond, David J Germano, Michael F 7 Westphal, Erin N Tennant, Barry Sinervo 8 9 Appendix S1. Discussion of potential impact of climate change. 10 Much uncertainty remains in how blunt-nosed leopard lizards (Gambelia sila) will 11 respond to climate change. Given uncertainty in the impacts of climate change, the ideal 12 conservation strategy may be functionally equivalent to the ideal conservation strategy in the 13 absence of climate change: managers should maintain a diverse portfolio of genetic lineages on 14 environmentally diverse habitats (Lawler, 2009). 15 On the mesic margin of the species’ distribution, historical and modern distributional 16 limits appear to be governed by herbaceous vegetation productivity (i.e. AET, Figure S2). This 17 limit to the species’ climatic niche is supported by multiple lines of evidence: demographic 18 decline in response to high precipitation years with high herbaceous biomass (Germano & 19 Williams, 2005), observations of G. sila having difficulty moving through dense thatch, the 20 apparent invasive-species-mediated climatic niche contraction we document in this paper 21 (Section 3.3) , and geographic patterns in occurrence data. Accordingly, our distribution models 22 are sensitive to changes in precipitation and evapotranspiration, with scenarios of decreased 23 future precipitation resulting in projections of peripheral range expansion and scenarios of 24 increased future precipitation resulting in projections of peripheral range contraction (Figure S4). 25 While the current distribution of G.
    [Show full text]
  • Impacts of Off-Highway Motorized Vehicles on Sensitive Reptile Species in Owyhee County, Idaho
    Impacts of Off-Highway Motorized Vehicles on Sensitive Reptile Species in Owyhee County, Idaho by James C. Munger and Aaron A. Ames Department of Biology Boise State University, Boise, ID 83725 Final Report of Research Funded by a Cost-share Agreement between Boise State University and the Bureau of Land Management June 1998 INTRODUCTION As the population of southwestern Idaho grows, there is a corresponding increase in the number of recreational users of off-highway motorized vehicles (OHMVs). An extensive trail system has evolved in the Owyhee Front, and several off-highway motorized vehicle races are proposed for any given year. Management decisions by the Bureau of Land Management (BLM) regarding the use of public lands for OHMV activity should take account of the impact of OHMV activity on wildlife habitat and populations. However, our knowledge of the impact of this increased activity on many species of native wildlife is minimal. Of particular interest is the herpetofauna of the area: the Owyhee Front includes the greatest diversity of reptile species of any place in Idaho, and includes nine lizard species and ten snake species (Table 1). Three of these species are considered to be "sensitive" by BLM and Idaho Department of Fish and Game (IDFG): Sonora semiannulata (western ground snake), Rhinocheilus lecontei (long-nosed snake), and Crotaphytus bicinctores (Mojave black-collared lizard). One species, Hypsiglena torquata (night snake), was recently removed from the sensitive list, but will be regarded as "sensitive" for the purposes of this report. Off-highway motorized vehicles could impact reptiles in several ways. First, they may run over and kill individuals.
    [Show full text]
  • Reptiles Squamata/Charinidae [ ] Lichanura Trivirgata Rosy Boa
    National Park Service U.S. Department of the Interior Species Checklist for Mojave National Preserve (MOJA) This species list is a work in progress. It represents information currently in the NPSpecies data system and records are continually being added or updated by National Park Service staff. To report an error or make a suggestion, go to https://irma.nps.gov/npspecies/suggest. Scientific Name Common Name Reptiles Squamata/Charinidae [ ] Lichanura trivirgata rosy boa Squamata/Colubridae [ ] Arizona elegans glossy snake [ ] Chionactis occipitalis western shovel-nosed snake [ ] Coluber flagellum coachwhip [ ] Coluber taeniatus striped whipsnake [ ] Diadophis punctatus ring-necked snake [ ] Hypsiglena chlorophaea desert nightsnake [ ] Lampropeltis californiae California kingsnake [ ] Phyllorhynchus decurtatus spotted leaf-nosed snake [ ] Pituophis catenifer gopher snake [ ] Rhinocheilus lecontei long-nosed snake [ ] Salvadora hexalepis western patch-nosed snake [ ] Sonora semiannulata western groundsnake [ ] Tantilla hobartsmithi Smith's black-headed snake [ ] Trimorphodon biscutatus California lyresnake Squamata/Crotaphytidae [ ] Crotaphytus bicinctores Great Basin collared lizard [ ] Gambelia wislizenii long-nosed leopard lizard Squamata/Eublepharidae [ ] Coleonyx variegatus western banded gecko Squamata/Helodermatidae [ ] Heloderma suspectum gila monster Squamata/Iguanidae [ ] Dipsosaurus dorsalis desert iguana [ ] Sauromalus ater common chuckwalla [ ] Sceloporus occidentalis western fence lizard [ ] Sceloporus uniformis yellow-backed
    [Show full text]