Stressing out Over Long Noncoding RNA☆

Total Page:16

File Type:pdf, Size:1020Kb

Stressing out Over Long Noncoding RNA☆ Biochimica et Biophysica Acta 1859 (2016) 184–191 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbagrm Review Stressing out over long noncoding RNA☆ Timothy E. Audas, Stephen Lee ⁎ Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA article info abstract Article history: Genomic studies have revealed that humans possess far fewer protein-encoding genes than originally predicted. Received 2 April 2015 These over-estimates were drawn from the inherent developmental and stimuli-responsive complexity found in Received in revised form 17 June 2015 humans and other mammals, when compared to lower eukaryotic organisms. This left a conceptual void in many Accepted 19 June 2015 cellular networks, as a new class of functional molecules was necessary for “fine-tuning” the basic proteomic Available online 2 July 2015 machinery. Transcriptomics analyses have determined that the vast majority of the genetic material is tran- Keywords: scribed as noncoding RNA, suggesting that these molecules could provide the functional diversity initially sought Long noncoding RNA from proteins. Indeed, as discussed in this review, long noncoding RNAs (lncRNAs), the largest family of noncod- Stress Response ing transcripts, have emerged as common regulators of many cellular stressors; including heat shock, metabolic Cancer deprivation and DNA damage. These stimuli, while divergent in nature, share some common stress-responsive pathways, notably inhibition of cell proliferation. This role intrinsically makes stress-responsive lncRNA regula- tors potential tumor suppressor or proto-oncogenic genes. As the list of functional RNA molecules continues to rapidly expand it is becoming increasingly clear that the significance and functionality of this family may someday rival that of proteins. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxon- omy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. © 2015 Elsevier B.V. All rights reserved. 1. Introduction have revealed that only 2% of the genetic material contains protein- encoding sequences [5,6]. Additionally, humans, chickens, pufferfish and It is a mystery why it has taken so long for the scientific community to worms share a similar number of protein-encoding genes [7–12], leaving embrace the concept of functional RNA molecules. The existence of these a conceptual void in the increased developmental complexity and envi- transcripts was proposed by Francis Crick in the 1950s, when he hypoth- ronmental adaptability found in the higher organisms [13,14]. This sug- esized about “metabolic RNA”,despite“meager” evidence at the time to gests that the capacity to regulate organismal complexity may fall to support his notion [1]. The proof he sought arrived only a few years another class of molecules. The RNA transcriptome appears to be a later with the identification of the first noncoding RNAs: transfer RNA prime candidate to accomplish this task, as studies have shown that the (tRNA), ribosomal RNA (rRNA) and small nuclear RNA (snRNA) [2,3]. vast majority of the genome is actively transcribed [15].Longnoncoding These transcripts were shown to be prominent and indispensable factors RNAs (lncRNAs) represent the single largest family of non-protein- in their ribonucleoprotein complexes. Unfortunately, their discoveries did coding transcripts in mammals (70–90% of the human genome) [16]. not usher in an era of acceptance of RNA as functional ribozymes; instead This enormous group of molecules has been arbitrarily lumped together the central dogma of gene expression [4] remained for many decades, (lengths greater than 200 nucleotides), with some sub-categories emerg- with every basic biology class teaching that DNA codes for RNA that ing based on the location of the gene with respect to protein-encoding codes for proteins. This ensured that for several generations, scientists loci. However, this system appears to be insufficient as more transcripts would view RNA as a mere messenger for the genetic material. are identified and characterized, revealing a diversity for this group that Today noncoding RNAs are emerging as important biological mole- may eventually rival or surpass the proteome. Given their novelty, func- cules, outside of the context of protein synthesis. The classic proteo- tionality and sheer abundance, it is clear that lncRNAs are destined to centric view of polypeptides as the predominant functional and regulatory have a tremendous impact on many areas of cell biology. factors within the cell may in fact be faulty. Genome sequencing results 2. The cellular response to stress ☆ This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. One emerging field in lncRNA biology is deciphering the role these ⁎ Corresponding author at: Department of Biochemistry & Molecular Biology, Sylvester transcripts play in the cellular response to stress. Higher eukaryotes Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33101-6129, USA. possess extremely sophisticated molecular networks to monitor intra- E-mail address: [email protected] (S. Lee). and extra-cellular conditions and allow cells to maintain homeostasis http://dx.doi.org/10.1016/j.bbagrm.2015.06.010 1874-9399/© 2015 Elsevier B.V. All rights reserved. T.E. Audas, S. Lee / Biochimica et Biophysica Acta 1859 (2016) 184–191 185 in suboptimal growth environments. Perturbation activates these path- pathwaysareactivatedbythepresenceofdamaged,unfoldedoraggre- ways, as the cell attempts to mitigate the strain and repair any gated proteins, which is a major consequence of elevated temperatures. associated damages. However, if these conditions are too harsh for To alleviate this form of proteotoxic stress cells: 1) induce the expression recovery to occur apoptotic programs are induced, eliminating dam- of heat shock proteins (hsp), a family of proteases and chaperones, 2) aged cells and ensuring organismal viability. The pro-survival or pro- inhibit the transcription/translation of proteins, thus reducing the burden apoptotic fate of a cell is entirely dependent upon its ability to elicit on the folding machinery and 3) impair major metabolic activities includ- the appropriate response to the specific stimuli. Recent evidence ing; RNA splicing, nucleo-cytoplasmic transport and DNA synthesis to suggests that lncRNAs are key factors in these pathways, allowing for focus the cellular energy/resources on stress recovery [19–21]. All of greater diversity and “fine tuning” of the cellular stress response. these pathways utilize lncRNA to elicit the appropriate response. Within an organism, individual cells can be exposed to numerous adverse conditions including: high temperatures (proteotoxic stress), metabolite deprivation (nutrient deficiency and hypoxia) and DNA 3.1. Induction of heat shock proteins damaging agents. Regardless of the detrimental stimulus, the cellular response follows a basic three step process: sense the insult, transduce The lncRNA molecule heat shock RNA-1 (HSR-1) has been suggested a signal to the site of action and effect the appropriate adjustments to to be an important factor in the ribonucleoprotein complex that acti- cellular metabolism [17]. Here, we will review these environmental vates the hsp family in response to heat shock [22]. In cooperation stimuli and highlight the essential roles lncRNAs play in regulating the with three molecules of heat shock transcription factor-1 (HSF-1) and cellular stress response (Table 1). For the sake of space we will limit the translation elongation factor eEF1A, the HSR-1 complex binds DNA our review primarily to mammalian lncRNAs and analyzing the effects responsive elements to activate gene expression [22]. The authors pro- of these transcripts in human cancers. posed that this lncRNA may act as a mammalian RNA thermosensor, regulating the activity of the complex. While the work on HSR-1 has 3. The lncRNA-mediated heat shock response been called into question (some suggest this lncRNA is the product of bacterial contamination [23]), the concept of RNA thermosensors is in- Many consider high temperature exposure, termed heat shock, to be triguing. Bacterial and drosophila mRNAs have been shown to possess the founding and preeminent cellular stress [18]. Not surprisingly, the thermo-sensitive base-pairing in the untranscribed regions of some cell does not appear to possess a simple thermostat, detecting unaccept- mRNA, which regulate the rate of translation of these molecules able temperature and eliciting a cellular response. Instead, heat shock [24–31]. As the secondary structure of noncoding RNA molecules is Table 1 Examples of long noncoding RNAs associated with stress and cancer. Stimulus lncRNA lncRNA response to stress Function Linked to References cancer HSR-1 No change in RNA levels Complex with HSF-1 and eEF1A to activate hsp genes No [22] (acts as a thermosensor?) – Heat shock Alu Up-regulation Inhibit global RNA Pol II transcription No [34 40] Sat III Up-regulation Inhibition of global RNA processing by sequestration No [50–58] of RNA splicing components into nuclear stress bodies IGSRNA Up-regulation (stress-specific Protein immobilization in the nucleolar detention center No [62–67] IGSRNAs are
Recommended publications
  • 1 the Developmentally Active and Stress-Inducible Non-Coding Hsrω
    Genetics: Published Articles Ahead of Print, published on September 7, 2009 as 10.1534/genetics.109.108571 The developmentally active and stress-inducible non-coding hsrω gene is a novel regulator of apoptosis in Drosophila Moushami Mallik and Subhash C. Lakhotia* Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India 1 Running Title: hsrω RNAi suppresses induced apoptosis Key words: non-coding RNA, DIAP1, hnRNP, JNK, caspase-mediated apoptosis *Corresponding author: Subhash C. Lakhotia, Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India Tel, 91 542 2368145, 91 542 6701827 Fax, 91 542 2368457 Email, [email protected]; [email protected] 2 ABSTRACT The large nucleus limited non-coding hsrω-n RNA of Drosophila melanogaster is known to associate with a variety of hnRNPs and certain other RNA-binding proteins to assemble the nucleoplasmic omega speckles. In this paper, we show that RNAi-mediated depletion of this non-coding RNA dominantly suppresses apoptosis in eye and other imaginal discs triggered by induced expression of Rpr, Grim or caspases (initiator as well as effector), all of which are key regulators/effectors of the canonical caspase-mediated cell death pathway. We also show, for the first time, a genetic interaction between the non-coding hsrω transcripts and the JNK signaling pathway since down regulation of hsrω transcripts suppressed JNK activation. In addition, hsrω-RNAi also augmented the levels of Drosophila Inhibitor of Apoptosis Protein 1 (DIAP1) when apoptosis was activated. Suppression of induced cell death following depletion of hsrω transcripts was abrogated when the DIAP1-RNAi transgene was co-expressed.
    [Show full text]
  • Forty Years of the 93D Puff of Drosophila Melanogaster
    Forty years of the 93D puff of Drosophila melanogaster SUBHASH CLAKHOTIA Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India (Fax, +91-542-2368457; Email, [email protected]) The 93D puff of Drosophila melanogaster became attractive in 1970 because of its singular inducibility by benzamide and has since then remained a major point of focus in my laboratory. Studies on this locus in my and several other laboratories during the past four decades have revealed that (i) this locus is developmentally active, (ii) it is a member of the heat shock gene family but selectively inducible by amides, (iii) the 93D or heat shock RNA omega (hsrω) gene produces multiple nuclear and cytoplasmic large non-coding RNAs (hsrω-n, hsrω-pre-c and hsrω-c), (iv) a variety of RNA-processing proteins, especially the hnRNPs, associate with its >10 kb nuclear (hsrω-n) transcript to form the nucleoplasmic omega speckles, (v) its genomic architecture and hnRNP-binding properties with the nuclear transcript are conserved in different species although the primary base sequence has diverged rapidly, (vi) heat shock causes the omega speckles to disappear and all the omega speckle associated proteins and the hsrω-n transcript to accumulate at the 93D locus, (vii) the hsrω-n transcript directly or indirectly affects the localization/ stability/activity of a variety of proteins including hnRNPs, Sxl, Hsp83, CBP, DIAP1, JNK-signalling members, proteasome constituents, lamin C, ISWI, HP1 and poly(ADP)-ribose polymerase and (viii) a balanced level of its transcripts is essential for the orderly relocation of various proteins, including hnRNPs, RNA pol II and HP1, to developmentally active chromosome regions during recovery from heat stress.
    [Show full text]
  • Stress-Responsive Long Non-Coding RNA, Hsrω, Is a Genetic Modifier Of
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441543; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Stress-responsive Long Non-coding RNA, hsr, is a genetic modifier of JNK-dependent 3 Intrinsic Tumor Suppression in Drosophila 4 5 6 Anjali Bajpai1*, Sushmita Kundu1,2, Ravi Kant Pandey1,3, Bushra Ateeq1,2, Subhash C. 7 Lakhotia4, Pradip Sinha1,2 8 9 10 1Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 11 208016, India. 12 2Biological Sciences and Bioengineering and The Mehta Family Centre for Engineering in 13 Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India. 14 3 Current Address: PierianDx India Pvt Ltd, Chattushringi, Gokhalenagar, Pune411016, 15 Maharashtra, India 16 4Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 17 221005, India. 18 19 * Corresponding author: Anjali Bajpai, [email protected] 20 21 ORCIDID: 22 23 A. Bajpai: 0000-0002-5645-2466 24 B. Ateeq: 0000-0003-4682-9773 25 S. C. Lakhotia: 0000-0003-1842-8411 26 P. Sinha: 0000-0002-9202-6050 27 28 Running title: Perturbations in hsr cooperate for epithelial tumor progression 29 30 Key words: Tumorigenesis, lncRNA, hsrω, stress response, intrinsic tumor suppression, 31 Drosophila 32 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441543; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Altered Levels of Hsromega Lncrnas Further Enhance Ras Signaling During Ectopically Activated Ras Induced R7 Differentiation in Drosophila
    bioRxiv preprint doi: https://doi.org/10.1101/224543; this version posted April 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Altered levels of hsromega lncRNAs further enhance Ras signaling during ectopically activated Ras induced R7 differentiation in Drosophila Mukulika Ray1,2, Gunjan Singh1 and Subhash C. Lakhotia1* 1Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 2 Current Address: Molecular and Cell Biology and Biochemistry, Sidney Frank Hall, Brown University, Providence, RI. * Corresponding author (email: [email protected]) ORCID & email ID: Mukulika Ray: 0000-0002-9064-818X; [email protected] Gunjan Singh: 0000-0002-4458-180X; [email protected] S. C. Lakhotia: 0000-0003-1842-8411; [email protected] Running Title: hsrω lncRNA & Ras activity in fly eyes Keywords: Raf; p-MAPK; Ras-signaling; JNK, photoreceptor hnRNP 1 bioRxiv preprint doi: https://doi.org/10.1101/224543; this version posted April 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract We exploited the high Ras activity induced differentiation of supernumerary R7 cells in Drosophila eyes to examine if hsrω lncRNAs influence active Ras signaling. Surprisingly, either down- or up-regulation of hsrω lncRNAs in sev-GAL4>RasV12 expressing eye discs resulted in complete pupal lethality and substantially greater increase in R7 photoreceptor number at the expense of cone cells.
    [Show full text]
  • Molecular Biology of Long Non-Coding Rnas Molecular Biology of Long Non-Coding Rnas Ahmad M
    Ahmad M. Khalil · Jeff Coller Editors Molecular Biology of Long Non-coding RNAs Molecular Biology of Long Non-coding RNAs Ahmad M. Khalil • Jeff Coller Editors Molecular Biology of Long Non-coding RNAs 123 Editors Ahmad M. Khalil Jeff Coller School of Medicine Case Western Reserve University Cleveland, OH USA ISBN 978-1-4614-8620-6 ISBN 978-1-4614-8621-3 (eBook) DOI 10.1007/978-1-4614-8621-3 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013948744 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Genome-Wide Identification of Long Non-Coding RNA Genes and Their
    www.nature.com/scientificreports OPEN Genome-wide identifcation of long non-coding RNA genes and their association with insecticide Received: 14 August 2017 Accepted: 6 November 2017 resistance and metamorphosis Published: xx xx xxxx in diamondback moth, Plutella xylostella Feiling Liu1, Dianhao Guo2, Zhuting Yuan2, Chen Chen1 & Huamei Xiao1,3 Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identifed from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and diferent developmental stages. The identifed P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specifc RT-PCR. In total, 54–172 lncRNAs were specifcally expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63–135 lncRNAs were specifcally expressed in diferent developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co- expressed with their overlapping or neighboring mRNA genes. In summary, we identifed thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella. Given that the cost of whole-genome sequencing has decreased dramatically, numerous genome and transcriptome-sequencing projects in insects have been initiated in recent years, leading to the rapid accumu- lation of insect gene data.
    [Show full text]
  • Functions of Long Non-Coding Rnas in Human Disease and Their Conservation in 2 Drosophila Development
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online 1 Functions of long non-coding RNAs in human disease and their conservation in 2 Drosophila development. 3 4 Oliver M. Rogoyski1, Jose Ignacio Pueyo1, Juan Pablo Couso1,2 and Sarah F. Newbury1* 5 6 7 1 Brighton and Sussex Medical School, Medical Research building, University of Sussex, Falmer, Brighton, 8 BN1 9PS, U.K. 9 10 2 Centro Andaluz de Biología de Desarrollo, CSIC-Universidad Pablo de Olavide, Ctra. de Utrera, Km.1, 11 Sevilla, 41013, Spain 12 13 *Corresponding author: [email protected] +44 (0)1273 877874 14 15 Abstract 16 17 Genomic analysis has found that the transcriptome in both humans and Drosophila melanogaster features 18 large numbers of long non-coding RNA transcripts (lncRNAs). This recently discovered class of RNAs 19 regulates gene expression in diverse ways, and has been involved in a large variety of important biological 20 functions. Importantly, an increasing number of lncRNAs have also been associated with a range of human 21 diseases, including cancer. Comparative analyses of their functions among these organisms suggest that 22 some of their modes of action appear to be conserved. This highlights the importance of model organisms 23 such as Drosophila, which shares many gene regulatory networks with humans, in understanding lncRNA 24 function and its possible impact in human health. This review discusses some known functions and 25 mechanisms of action of lncRNAs and their implication in human diseases, together with their functional 26 conservation and relevance in Drosophila development.
    [Show full text]
  • The Lncrna MIR31HG Regulates the Senescence Associated Secretory Phenotype
    The lncRNA MIR31HG regulates the senescence associated secretory phenotype Marta Montes ( [email protected] ) Biotech Research and Innovation Centre, University of Copenhagen Michael Lubas Biotech Research and Innovation Centre, University of Copenhagen Frederic S Arendrup Biotech Research and Innovation Centre, University of Copenhagen Bettina Mentz Biotech Research and Innovation Centre, University of Copenhagen Neha Rohatgi Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Sarunas Tumas Biotech Research and Innovation Centre, University of Copenhagen Lea M Harder Department of Biochemistry and Molecular Biology, University of Southern Denmark Anders J Skanderup Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Jens S Andersen Department of Biochemistry and Molecular Biology, University of Southern Denmark Anders H Lund ( [email protected] ) University of Copenhagen https://orcid.org/0000-0002-7407-3398 Research Article Keywords: Senescence, SASP, BRAF Posted Date: August 18th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-57840/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/38 Abstract Senescent cells secrete cytokines, chemokines and growth factors collectively known as the senescence- associated secretory phenotype (SASP) which can reinforce senescence and activate the immune response. However, it can also negatively impact neighbouring tissues facilitating tumor progression. We have previously shown that in proliferating cells the nuclear long non-coding RNA (lncRNA) MIR31HG inhibits p16/CDKN2A expression through interaction with polycomb repressor complexes (PRC1/2) and that during BRAF-induced senescence MIR31HG is overexpressed and translocates to the cytoplasm.
    [Show full text]
  • Altered Levels of Hsromega Lncrnas Further Enhance Ras Signaling During Ectopically Activated Ras Induced R7 Differentiation in Drosophila
    bioRxiv preprint doi: https://doi.org/10.1101/224543; this version posted April 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Altered levels of hsromega lncRNAs further enhance Ras signaling during ectopically activated Ras induced R7 differentiation in Drosophila Mukulika Ray1,2, Gunjan Singh1 and Subhash C. Lakhotia1* 1Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 2 Current Address: Molecular and Cell Biology and Biochemistry, Sidney Frank Hall, Brown University, Providence, RI. * Corresponding author (email: [email protected]) ORCID & email ID: Mukulika Ray: 0000-0002-9064-818X; [email protected] Gunjan Singh: 0000-0002-4458-180X; [email protected] S. C. Lakhotia: 0000-0003-1842-8411; [email protected] Running Title: hsrω lncRNA & Ras activity in fly eyes Keywords: Raf; p-MAPK; Ras-signaling; JNK, photoreceptor hnRNP 1 bioRxiv preprint doi: https://doi.org/10.1101/224543; this version posted April 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract We exploited the high Ras activity induced differentiation of supernumerary R7 cells in Drosophila eyes to examine if hsrω lncRNAs influence active Ras signaling. Surprisingly, either down- or up-regulation of hsrω lncRNAs in sev-GAL4>RasV12 expressing eye discs resulted in complete pupal lethality and substantially greater increase in R7 photoreceptor number at the expense of cone cells.
    [Show full text]
  • Functions of Long Non-Coding Rnas in Human Disease and Their Conservation in 2 Drosophila Development
    1 Functions of long non-coding RNAs in human disease and their conservation in 2 Drosophila development. 3 4 Oliver M. Rogoyski1, Jose Ignacio Pueyo1, Juan Pablo Couso1,2 and Sarah F. Newbury1* 5 6 7 1 Brighton and Sussex Medical School, Medical Research building, University of Sussex, Falmer, Brighton, 8 BN1 9PS, U.K. 9 10 2 Centro Andaluz de Biología de Desarrollo, CSIC-Universidad Pablo de Olavide, Ctra. de Utrera, Km.1, 11 Sevilla, 41013, Spain 12 13 *Corresponding author: [email protected] +44 (0)1273 877874 14 15 Abstract 16 17 Genomic analysis has found that the transcriptome in both humans and Drosophila melanogaster features 18 large numbers of long non-coding RNA transcripts (lncRNAs). This recently discovered class of RNAs 19 regulates gene expression in diverse ways, and has been involved in a large variety of important biological 20 functions. Importantly, an increasing number of lncRNAs have also been associated with a range of human 21 diseases, including cancer. Comparative analyses of their functions among these organisms suggest that 22 some of their modes of action appear to be conserved. This highlights the importance of model organisms 23 such as Drosophila, which shares many gene regulatory networks with humans, in understanding lncRNA 24 function and its possible impact in human health. This review discusses some known functions and 25 mechanisms of action of lncRNAs and their implication in human diseases, together with their functional 26 conservation and relevance in Drosophila development. 27 28 Introduction 29 30 The central dogma of molecular biology as proposed by Crick in 1958, often paraphrased as “DNA encodes 31 RNA, RNA encodes protein”, implicates RNA as a molecular intermediate in the process of protein synthesis 32 from the relevant encoding gene.
    [Show full text]
  • Genome-Wide Identification and Functional Prediction of Long Non
    Dou et al. BMC Genomics (2021) 22:122 https://doi.org/10.1186/s12864-021-07421-8 RESEARCH ARTICLE Open Access Genome-wide identification and functional prediction of long non-coding RNAs in Sprague-Dawley rats during heat stress Jinhuan Dou1, Flavio Schenkel2, Lirong Hu1, Adnan Khan1, Muhammad Zahoor Khan1, Ying Yu1, Yajing Wang3 and Yachun Wang1* Abstract Background: Heat stress (HS) is a major stress event in the life of an animal, with detrimental upshots in production and health. Long-non-coding RNAs (lncRNAs) play an important role in many biological processes by transcriptional regulation. However, no research has been reported on the characterization and functionality of lncRNAs in heat-stressed rats. Results: We studied expression levels of lncRNAs in rats during HS, using strand-specific RNA sequencing. Six rats, three in each of Control (22 ± 1 °C) and H120 (42 °C for 120 min) experimental groups, were used to screen for lncRNAs in their liver and adrenal glands. Totally, 4498 and 7627 putative lncRNAs were identified in liver and adrenal glands of the Control and H120 groups, respectively. The majority of lncRNAs were relatively shorter and contained fewer exons than protein-coding transcripts. In total, 482 (174 up-regulated and 308 down-regulated) and 271 (126 up-regulated and 145 down-regulated) differentially-expressed lncRNAs (DElncRNAs, P < 0.05) were identified in the liver and adrenal glands of the Control and H120 groups, respectively. Furthermore, 1274, 121, and 73 target differentially-expressed genes (DEGs) in the liver were predicted to interact with DElncRNAs based on trans−/cis- and sequence similarity regulatory modes.
    [Show full text]
  • Structure-Based Whole Genome Realignment Reveals Many Novel
    Structure-based Whole Genome Realignment Reveals Many Novel Non-coding RNAs Sebastian Will,1;2;4;6 Michael Yu,1;2;5;6 and Bonnie Berger1;2;3;7 1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech- nology (MIT), Cambridge, MA 02139, USA 2 Department of Mathematics, MIT, Cambridge, MA 02139, USA 3 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 4 Present Address: Department of Computer Science, University of Leipzig, 04107 Leipzig, Germany 5 Present Address: Bioinformatics and Systems Biology Graduate Program, University of Californa San Diego, La Jolla, CA 92093, USA 6 These authors contributed equally to this work. 7 Corresponding author; e-mail: [email protected] Keywords: structural non-coding RNAs, whole genome alignments, de novo prediction of non-coding RNAs 1 Will, et al. Abstract Recent genome-wide computational screens that search for conservation of RNA secondary structure in whole genome alignments (WGAs) have predicted thousands of structural non- coding RNAs (ncRNAs). The sensitivity of such approaches, however, is limited due to their reliance on sequence-based whole-genome aligners, which regularly misalign structural ncR- NAs. This suggests that many more structural ncRNAs may remain undetected. Structure- based alignment, which could increase the sensitivity, has been prohibitive for genome-wide screens due to its extreme computational costs. Breaking this barrier, we present the pipeline REAPR (RE-Alignment for Prediction of structural ncRNA), which efficiently realigns whole genomes based on RNA sequence and structure, thus allowing us to boost the performance of de novo ncRNA predictors, such as RNAz. Key to the pipeline's efficiency is the development of a novel banding technique for multiple RNA alignment.
    [Show full text]