Newfoundland and Labrador Section Abstracts: 2019 Spring Technical Meeting

Total Page:16

File Type:pdf, Size:1020Kb

Newfoundland and Labrador Section Abstracts: 2019 Spring Technical Meeting Document generated on 09/28/2021 4:18 p.m. Atlantic Geology Journal of the Atlantic Geoscience Society Revue de la Société Géoscientifique de l'Atlantique GAC - Newfoundland and Labrador Section Abstracts: 2019 Spring Technical Meeting Volume 55, 2019 URI: https://id.erudit.org/iderudit/1060421ar DOI: https://doi.org/10.4138/atlgeol.2019.007 See table of contents Publisher(s) Atlantic Geoscience Society ISSN 0843-5561 (print) 1718-7885 (digital) Explore this journal Cite this document (2019). GAC - Newfoundland and Labrador Section Abstracts: 2019 Spring Technical Meeting. Atlantic Geology, 55, 243–250. https://doi.org/10.4138/atlgeol.2019.007 All Rights Reserved ©, 2019 Atlantic Geology This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research. https://www.erudit.org/en/ Geological Association of Canada, Newfoundland and Labrador Section ABSA TR CTS 2019 Spring Technical Meeting St. John’s, Newfoundland and Labrador The annual Spring Technical Meeting was held on February 18 and 19, 2019, in the Johnson GEO CENTRE on scenic Signal Hill in St. John’s, Newfoundland and Labrador. The meeting kicked-off Monday evening with a Public Lecture entitled “Meteors, Meteorites and Meteorwrongs of NL” by Garry Dymond from the Royal Astronomical Society of Canada. Tuesday featured oral presentations from students and professionals on a wide range of geoscience topics. As always, this meeting was brought to participants by volunteer efforts and would not have been possible without the time and energy of the executive and other members of the section. We are also indebted to our partners in this venture, particularly the Alexander Murray Geology Club, the Johnson GEO CENTRE, Geological Association of Canada, Department of Earth Sciences (Memorial University of Newfoundland), and the Geological Survey of Newfoundland and Labrador, Department of Natural Resources. We are equally pleased to see the abstracts published in Atlantic Geology. Our thanks are extended to all of the speakers and the editorial staff of the journal. JAMES CONLIFFE AND ALEXANDER PEACE TECHNICAL PROGRAM CHAIRS GAC NEWFOUNDLAND AND LABRADOR SECTION ATL ANTIC GEOLOGY 55, 243 - 250 (2019) doi: 10.4138/atlgeol.2019.007 Copyright © Atlantic Geology 2019 0843-5561|19|00243-250 $2.20|0 ATLANTIC GEOLOGY · VOLUME 55 · 2019 244 process results in the production of highly reducing, Automatic microearthquake locating using characteristic ultra-basic fluids that cause a characteristic travertine functions in a source scanning method deposit when these fluids emerge. The fluids at sites of serpentinization are rich in methane and hydrogen gas. The Hilary Chang1, Alison Malcolm1, Frédérick Massin2, methane can be produced biotically or abiotically; therefore, and Francesco Grigoli2 its detection alone is insufficient evidence to indicate the presence of life. Affinity calculations were performed to 1. Department of Earth Sciences, Memorial identify other likely biochemical reactions that could be University of Newfoundland, St. John’s, Newfoundland occurring at these sites to identify alternative products and Labrador A1B 3X5, Canada ¶ indicative of present life at active sites of serpentinization. 2. ETH Zurich, Department of Earth Sciences, Zürich, Switzerland The results from these predictive calculations indicated the Microearthquake locating has broad application oxidation of methane should be favoured at the Tablelands. in monitoring volcanic activities or human-induced This hypothesis was tested through a series of laboratory earthquakes. However, typically large amounts of data experiments using sediment and fluids containing native are involved and those data are quite noisy. Hence, an microbial communities from a spring at the Tablelands. automatic procedure is needed that can accurately locate A microbial observatory was also created in 2017 by these microearthquake events. In this research, we tackle drilling three holes and inserting incubators into the this problem by stacking Characteristic Functions (CFs) subsurface. These incubators were left for a year to collect in the Source Scanning Algorithm (SSA). The CFs allow microbial communities that are representative of life in us to consider waveform characteristics such as amplitude the subsurface. Extractions will be performed on these and polarization in the locating problem; and the SSA incubators to identify lipids that can be used to indicate allows us to search the solution space automatically with the presence of life at these springs. Experiments will minimum computing effort. Furthermore, we use multi- also be performed to better understand how these lipids scaled CFs to accommodate earthquake signals within degrade over time and how they are preserved. Together, a wide frequency band. We successfully locate synthetic these techniques will help identify biosignatures that could events generated at 6km using the SIL Network in Reykjane indicate present and past life at sites of serpentinization. Peninsula, SW Iceland. The SIL Network has a geometry of around 60 x 30 km. We also locate 215 events recorded by the same network with very similar results (less than 5% A paleomagnetic study of ca. 580 Ma volcanic rocks near outliers with 80% of the result within an error of 2.5 km, Grand Bank, Avalon Zone of Newfoundland, Canada, 0.1s) to the manual picking method. In conclusion, stacking and implications for true polar wander in the Ediacaran CFs in SSA is a noise-robust automatic method to locate microearthquakes in a reginal scale. It also avoids the need of manual phase picking and reduces human intervention. Sarah Farrell and Joseph Hodych Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador Identifying past and present life at a terrestrial site of A1B 3X5, Canada serpentinization: the Tablelands, western Newfoundland, Paleomagnetic studies suggest that Laurentia moved Canada from the equator to the pole and then back again within ~60 Ma during the Ediacaran. Since plate tectonic speeds Melissa C. Cook and Penny L. Morrill are not fast enough to allow this to happen, it has been hypothesized that inertial interchange true polar wander Department of Earth Sciences, Memorial University of occurred, causing the Earth to tumble through 90° and then Newfoundland, St. John’s, Newfoundland and Labrador back again. To help test this hypothesis, this study provides A1B 3X5, Canada new paleomagnetic data for ca. 580 Ma volcanic rocks of the Marystown Group collected near Grand Bank in the Avalon Serpentinization, the hydration of ultramafic minerals, is zone of Newfoundland. The volcanic rocks were studied with hypothesized to occur on Mars as well as other planetary alternating field and thermal demagnetization which showed bodies including Jupiter’s moon Europa, and Saturn’s that remanence is carried mostly by magnetite rather than moons Titan and Enceladus. Serpentinization also occurs hematite. Seven sites provide stable remanence directions in terrestrial settings in ophiolites that can be considered with mean tilt-corrected declination and inclination of analogues for these less accessible sites. The Tablelands is 287° and 58° (α95 = 13°). The corresponding paleolatitude an example of a terrestrial analogue. The serpentinization is 39° -12/+16. A positive conglomerate test, using rhyolitic Atlantic Geoscience Society 2019 - ABSTRACTS Copyright © Atlantic Geology 2019 ATLANTIC GEOLOGY · VOLUME 55 · 2019 245 crystal-lithic tuff clasts from an agglomerate, shows that distribution and control of crustal blocks on the evolution the magnetite-bearing clasts carry primary remanence. of sedimentary basins. The preliminary results show an Magnetic polarity reversals are present within the section. increased understanding of crustal block fragmentation The Marystown Group results, along with other stable is important in understanding stress/strain partitioning, paleomagnetic data from Avalonia, suggest that Avalonia basin evolution, and tectonostratigraphy along deformable remained at mid- to low-latitudes during the mid-Ediacaran. continental margins, including Newfoundland and its conjugates. Geophysically constrained microplate fragmentation model and microplate-controlled evolution of Mesozoic Geologizing the East Coast Trail: Could it be a candidate basins – riftedN orth Atlantic borderlands, offshore for a “classic rock tour”? Newfoundland, Canada Andrew Kerr Brant D. Gaetz and J. Kim Welford Department of Earth Sciences, Memorial University of MAGRiT (Memorial Applied Geophysics and Rift Tectonics) Newfoundland, St. John’s, Newfoundland and Labrador Research Group, Department of Earth Sciences, Memorial A1B 3X5, Canada University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 3X5, Canada In 2018, Geoscience Canada initiated a new series of thematic articles entitled Classic Rock Tours. The idea Borderlands of offshore Newfoundland comprise a is to combine technical and historical context for well- deformed collage of fault bound crustal blocks, assembled known and geologically informative areas with practical during the formation of the Pangaean supercontinent
Recommended publications
  • Evolution of the Western Avalon Zone and Related Epithermal Systems
    Open File NFLD/3318 GEOLOGICAL ASSOCIATION OF CANADA NEWFOUNDLAND AND LABRADOR SECTION FALL FIELD TRIP FOR 2013 (September 27 to September 29) EVOLUTION OF THE WESTERN AVALON ZONE AND RELATED EPITHERMAL SYSTEMS Field Trip Guide and Background Material Greg Sparkes Geological Survey of Newfoundland and Labrador Department of Natural Resources PO Box 8700 St. John’s, NL, A1B 4J6 Canada September, 2013 GAC Newfoundland and Labrador Section – 2013 Fall Field Trip 2 Table of Contents SAFETY INFORMATION .......................................................................................................................... 4 General Information .................................................................................................................................. 4 Specific Hazards ....................................................................................................................................... 4 INTRODUCTION ........................................................................................................................................ 6 Regional Geology of the Western Avalon Zone ....................................................................................... 7 Epithermal-Style Mineralization: a summary ........................................................................................... 8 Trip Itinerary ........................................................................................................................................... 10 DAY ONE FIELD TRIP STOPS ...............................................................................................................
    [Show full text]
  • Current Research A
    Document généré le 30 sept. 2021 00:20 Atlantic Geology Current Research A. F. King Volume 6, numéro 1, april 1970 URI : https://id.erudit.org/iderudit/ageo06_1res01 Aller au sommaire du numéro Éditeur(s) Maritime Sediments Editorial Board ISSN 0843-5561 (imprimé) 1718-7885 (numérique) Découvrir la revue Citer ce document King, A. F. (1970). Current Research. Atlantic Geology, 6(1), 37–48. All rights reserved © Maritime Sediments, 1970 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ 37 Current Research Current Research by Department of Geology, Memorial University of Newfoundland^ St. John's Newfoundland compiled by A.F. KING. Newfoundland offers the most complete and superbly exposed cross section through the Appalachian System... Also, Precambrian rocks of the Grenville and Nain Provinces and the Labrador Trough are only a few hours by air from St. John's. As shown in a compilation of research workers elsewhere in this volume, the great variety of geology within this region allows wide scope for research in stratigraphyt sedimentology,. paleontology, mineralogy,, petrology, structure, Quaternary geology, geophysics, economic geology and applied geophysics.
    [Show full text]
  • New Geochronological Constraints on the Timing of Magmatism for the Bull Arm Formation, Musgravetown Group, Avalon Terrane, Northeastern Newfoundland
    Current Research (2017) Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 17-1, pages 1-17 NEW GEOCHRONOLOGICAL CONSTRAINTS ON THE TIMING OF MAGMATISM FOR THE BULL ARM FORMATION, MUSGRAVETOWN GROUP, AVALON TERRANE, NORTHEASTERN NEWFOUNDLAND A.J. Mills, G.R. Dunning1, M. Murphy1 and A. Langille1 Regional Geology Section 1Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, A1B 3X5 ABSTRACT The Bull Arm Formation is one of the most areally extensive volcanic units in the Avalon Terrane of Newfoundland. His- torically, the age has been interpreted from the single previous U–Pb zircon age (570 +5/-3 Ma) obtained from a rhyolite flow on Wolf Island, where no contact relations are exposed. This rhyolite was later re-interpreted as the lower part of the overly- ing Rocky Harbour Formation but the initial interpretation as Bull Arm Formation had by then become entrenched in the lit- erature. New U–Pb zircon (CA-TIMS) geochronology results have been obtained for two rock samples from the volcanic-dom- inated Bull Arm Formation, Musgravetown Group, on the Bonavista Peninsula (Plate Cove volcanic belt) of northeastern Newfoundland, and one sample from the Isthmus that connects the Avalon Peninsula to the rest of the Island. A 40-cm-thick crystal-ash tuff near the base of the Plate Cove volcanic belt, at the roadcut east of Summerville, yielded an age of 592 ± 2.2 Ma. A lapilli tuff, located approximately 1800 m to the east, at the eastern margin of the volcanic belt, yielded an age of 591.3 ± 1.6 Ma.
    [Show full text]
  • GAC - Newfoundland and Labrador Section Abstracts: 2019 Spring Technical Meeting
    Document généré le 29 sept. 2021 11:15 Atlantic Geology Journal of the Atlantic Geoscience Society Revue de la Société Géoscientifique de l'Atlantique GAC - Newfoundland and Labrador Section Abstracts: 2019 Spring Technical Meeting Volume 55, 2019 URI : https://id.erudit.org/iderudit/1060421ar DOI : https://doi.org/10.4138/atlgeol.2019.007 Aller au sommaire du numéro Éditeur(s) Atlantic Geoscience Society ISSN 0843-5561 (imprimé) 1718-7885 (numérique) Découvrir la revue Citer ce document (2019). GAC - Newfoundland and Labrador Section Abstracts: 2019 Spring Technical Meeting. Atlantic Geology, 55, 243–250. https://doi.org/10.4138/atlgeol.2019.007 All Rights Reserved ©, 2019 Atlantic Geology Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ Geological Association of Canada, Newfoundland and Labrador Section ABSA TR CTS 2019 Spring Technical Meeting St. John’s, Newfoundland and Labrador The annual Spring Technical Meeting was held on February 18 and 19, 2019, in the Johnson GEO CENTRE on scenic Signal Hill in St. John’s, Newfoundland and Labrador. The meeting kicked-off Monday evening with a Public Lecture entitled “Meteors, Meteorites and Meteorwrongs of NL” by Garry Dymond from the Royal Astronomical Society of Canada.
    [Show full text]
  • Retallack 2014 Newfoundland Ediacaran
    Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Geological Society of America Bulletin Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J. Retallack Geological Society of America Bulletin 2014;126, no. 5-6;619-638 doi: 10.1130/B30892.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2014 Geological Society of America Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J.
    [Show full text]
  • Limestone Resources of Newfoundland and Labrador
    PROVINCE OF NEWFOUNDLAND AND LABRADOR DEPARTMENT OF MINES AND ENERGY MINERAL DEVELOPMENT DIVISION REPORT 74-2 LIMESTONE RESOURCES OF NEWFOUNDLAND AND LABRADOR by JOHN R. DeGRACE ST. JOHN’S, NEWFOUNDLAND 1974 CLICK HERE TO VIEW THE TABLE OF CONTENTS Accompanying maps Map 1, Map 2 and Map 3 can be viewed by clicking on each map number PUBLISHER'S NOTE Report 74-2, Limestone Resources of Newfoundland and Labrador by John R. DeGrace, being the only comprehensive study of the limestone resources of the province to date, is being reissued to provide the nec- essary background information to facilitate limestone exploration activities in the province. However, the format of the reissue has been changed from the original to conform to the format presently used by the Geological Survey. The report is being reprinted in its entirety without any updating or corrections whatso- ever; and is being made available only digitally, including on the web. Readers should be aware that later reviews of the geology of the areas covered in Report 74-2 are those by Hibbard (1983), King (1988), Knight and James (1988), Smyth and Schillereff (1982), Stouge (1983a,b), and Knight (1983). Details concerning the economic potential of the limestone resources themselves, also have been updated in the interim. The Newfoundland Department of Mines and Energy began a reassess- ment of Newfoundland marble resources in 1985, the objective of which was to determine their industrial potential as filler and dimension stone. Significant reassessments of some of the old deposits were made and new deposits of high-purity, white marble were delineated by diamond drilling.
    [Show full text]
  • Geological Association of Canada Newfoundland and Labrador Section
    Geological Association of Canada Newfoundland and Labrador Section ABSTRACTS 2017 Spring Technical Meeting St. John’s, Newfoundland and Labrador The annual Spring Technical Meeting was held on March 13 and 14, 2017, in the Johnson GEO CENTRE on scenic Signal Hill in St. John’s, Newfoundland and Labrador. This year Monday started with general sessions that included presentations from students and professionals on a wide range of topics. Tuesday featured a special session entitled “Golden Opportunities: Gold Mining and Exploration in Newfoundland and Labrador 2017” sponsored by Altius Minerals Corporation which also included a poster session and prospectors showcase sponsored by Research & Development Corporation of Newfoundland and Labrador. As always, this meeting is brought to you by volunteer efforts and would not be possible without the time and energy of the executive and other members of the section. We are also indebted to our partners in this venture, particularly the Alexander Murray Geology Club, the Johnson GEO CENTRE and the Newfoundland and Labrador Department of Natural Resources. We are equally pleased to see the abstracts published in Atlantic Geology. Our thanks are extended to all of the speakers and the editorial staff of the journal. JAMES CONLIFFE AND HAMISH SANDERMAN TECHNICAL PROGRAM CHAIRS GAC NEWFOUNDLAND AND LABRADOR SECTION ATLANTIC GEOLOGY 53, 241 - 252 (2017) doi: 10.4138/atlgeol.2017.009 Copyright © Atlantic Geology 2017 0843-5561|17|00241-252 $2.80|0 Atlantic Geology Volume 53 .. 2017 242 Strontium isotopes provide evidence for non-catastrophic A geophysical study of the Gullbridge tailings facility, reconnection of the Black Sea to World Ocean during the central Newfoundland, Canada last deglaciation Andrew Blagdon and Alison Leitch Olga Ankindinova, Ali E.
    [Show full text]
  • Precambrian Evolution of the Avalon Terrane in the Northern Appalachians: a Review R
    Document generated on 09/29/2021 9:26 a.m. Atlantic Geology Precambrian Evolution of the Avalon Terrane in the Northern Appalachians: A Review R. Damian Nance Volume 22, Number 3, December 1986 Article abstract The Avalon terrane of the Northern Appalachians forms a distinctive URI: https://id.erudit.org/iderudit/ageo22_3art01 tectonostrati-graphic belt defined primarily by the presence of late Precambrian (circa 600 Ma) volcano-sedimentary and granitoid rocks overlain by Lower See table of contents Paleozoic sequences containing Acado-Baltic fauna. Avalon terrane is exposed in eastern Newfoundland, Cape Breton Island and the northern Nova Scotian mainland, southern New Brunswick, coastal southeastern Maine, and southeastern New England. Publisher(s) The Precambrian evolution of Avalon terrane includes two major tectonothermal Atlantic Geoscience Society events that Involved both continental and oceanic basement. Local oceanic mafic magmatism and regional metamorphism of a ndd-Proterozoic (late Helikian?) ISSN carbonate-clastic platform and its gneissic continental basement may record an early Hadrynian (750-800 Ma) rifting or subduction event and local platform 0843-5561 (print) collapse. Late Hadrynian (580-630 Ma) calc-alkaline granitoid plutonlso and 1718-7885 (digital) widespread volcanism of tboleiltlc, calc-alkaline and occasionally peralkaline affinities record a closure event that is Interpreted to Involve ensialic arc, oceanic Explore this journal interarc, and both eztensional and trans-tensional continental back-arc settings. Closure terminated, perhaps through transform interactions, in the late Hadrynian Avalonian orogeny and was locally heralded by the development of flysch containing evidence of Vendian glaciatlon and followed by molasse-like Cite this article successor basins. Latest Hadrynian volcanogenic redbeds and bimodal volcanism, associated with widespread back-arc transtension, may herald Inception of the Nance, R.
    [Show full text]
  • Geological Association of Canada, Newfoundland and Labrador Section
    Geological Association of Canada, Newfoundland and Labrador Section ABSA TR CTS 2019 Spring Technical Meeting St. John’s, Newfoundland and Labrador The annual Spring Technical Meeting was held on February 18 and 19, 2019, in the Johnson GEO CENTRE on scenic Signal Hill in St. John’s, Newfoundland and Labrador. The meeting kicked-off Monday evening with a Public Lecture entitled “Meteors, Meteorites and Meteorwrongs of NL” by Garry Dymond from the Royal Astronomical Society of Canada. Tuesday featured oral presentations from students and professionals on a wide range of geoscience topics. As always, this meeting was brought to participants by volunteer efforts and would not have been possible without the time and energy of the executive and other members of the section. We are also indebted to our partners in this venture, particularly the Alexander Murray Geology Club, the Johnson GEO CENTRE, Geological Association of Canada, Department of Earth Sciences (Memorial University of Newfoundland), and the Geological Survey of Newfoundland and Labrador, Department of Natural Resources. We are equally pleased to see the abstracts published in Atlantic Geology. Our thanks are extended to all of the speakers and the editorial staff of the journal. JAMES CONLIFFE AND ALEXANDER PEACE TECHNICAL PROGRAM CHAIRS GAC NEWFOUNDLAND AND LABRADOR SECTION ATL ANTIC GEOLOGY 55, 243 - 250 (2019) doi: 10.4138/atlgeol.2019.007 Copyright © Atlantic Geology 2019 0843-5561|19|00243-250 $2.20|0 ATLANTIC GEOLOGY · VOLUME 55 · 2019 244 process results in the production of highly reducing, Automatic microearthquake locating using characteristic ultra-basic fluids that cause a characteristic travertine functions in a source scanning method deposit when these fluids emerge.
    [Show full text]
  • Summary of Glacial Deposits in Terra Nova National Park and Vicinity
    CENTRE FOR NEWFOUNDLAND STUDIES TOTAL OF 10 PAGES ONLY MAY BE XEROXED (Without Author' s Permission) INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough. substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & HowelliDformation Company 300 North Zceb Road, Aml.Axbor MI 48106-1346 USA 313/761-4700 800/521~ THE LATE QUATERNARY HISTORY OF TERRA NOVA NATIONAL PARK AND VICINITY, NORTHEAST NEWFOUNDLAND BY ANNE A.
    [Show full text]
  • "F. TAL of 10 PAGES ONLY . AY BE XEROXED
    CENTRE FOR NEWFOUNDLAND STUDIES "f. TAL OF 10 PAGES ONLY . AY BE XEROXED rJ• .II ~ CJ '~ 0 ' JL~t;.,~ ,_, __ ... STRATIGRAPHIC POSITION AND PETROCHEMISTRY OF THE LOVE COVE GROUP, GLOVERTOWN-TRAYTOWN MAP AREA, BONAVISTA BAY, NEWFOUNDLAND, CANADA A Thesis Presented to Department of Geology Memorial University of Newfoundland In Partial Fulfillment of the Requirements for the Degree Master of Science by Anthony Eugene Dal Bello, B.Sc. April, 1977 ii ABSTRACT The geology of the Glovertown-Traytown area, Bonavista Bay, Newfoundland, is dominated by the late Precambrian rocks of the Love Cove, the Musgravetown and the Connecting Point Groups. The Love Cove Group, in the map area, is made up of tuffs of acidic, intermediate and basic composition. These rocks are fault bounded and are considered to be the oldest rock in the Bonavista Bay region. Chemically, the Love Cove volcanics display a continental calc-alkaline affinity, similar to that of the Cascades and the Andes. The Connecting Point Group consists of shales and greywackes with bands of interbedded basic volcanics. No contact relationships are visible between the Connecting Point and either the Musgravetown or the Love Cove Groups. However, at localities outside the map area, it is seen to lie with angular unconformity beneath the Musgravetown Group. The Musgravetown Group is composed predominatly of clastic sediments with a major unit of extrusive volcanic rocks occurring at or near the base. These volcanics, the Bull Arm Formation, are mainly flow-banded rhyolites. Unlike the Love Cove rocks, they display a more alkaline trend in their chemistry. The sediments are mainly terrestrial, formed in fluvial, lacustrine and aeolian environments.
    [Show full text]
  • Preliminary Findings on the Geology of the Trinity Map Area (Nts 2C/06), Newfoundland
    Current Research (2011) Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 11-1, pages 273-293 PRELIMINARY FINDINGS ON THE GEOLOGY OF THE TRINITY MAP AREA (NTS 2C/06), NEWFOUNDLAND L.S. Normore Regional Geology Section ABSTRACT Completion of the second year (NTS 2C/06) of a two-year program to map the Bonavista Peninsula at a 1:50 000 scale has confirmed the juxtaposition of the Bonavista and St. John’s basins along the Spillars Cove–English Harbour Fault. The Big Head and Rocky Harbour formations occupy most of the Trinity map area to the west of the basin-bounding fault, while the uppermost Conception and lowermost Signal Hill groups are found to the east of the fault. A revision of the stratigraphy of the Rocky Harbour Formation, Musgravetown Group, includes the addition of two new facies; the volcaniclastic Herring Cove facies and a new Neoproterozoic glacial event on the Avalon Peninsula, the Trinity facies. The truncation of the thick succession of St. John’s and Conception Group sedimentary rocks found in the Bonavista (map) area by the Spillars Cove–English Harbour Fault in the Trinity (map) area, effectively removes the fossiliferous Conception Group and confirms the division of the Bonavista Peninsula into two unique Neoproterozoic depositional basins. The current understanding of the Rocky Harbour Formation stratigraphy on the Bonavista Peninsula indicates a com- plex interfingering and lateral variation of facies, further complicated by northeast-directed thrusting and a transgressive gla- cial deposit, prograding across multiple facies in the upper Rocky Harbour Formation. In ascending order, the general facies succession of the Rocky Harbour Formation in the Trinity (map) area is Plate Cove, Monk Bay, Cape Bonavista, Kings Cove Lighthouse, Trinity (new), Herring Cove (new) and Kings Cove North facies.
    [Show full text]