Towards an Efficient Distributed Cloud

Total Page:16

File Type:pdf, Size:1020Kb

Towards an Efficient Distributed Cloud TOWARDS AN EFFICIENT DISTRIBUTED CLOUD ARCHITECTURE BY PRAVEEN KHETHAVATH Bachelor of Engineering in Electronics and Communication Engineering Osmania University Hyderabad, AP, INDIA 2006 Master of Science in Computer Science University of Northern Virginia Annandale, VA 2008 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2014 TOWARDS AN EFFICIENT DISTRIBUTED CLOUD ARCHITECTURE Dissertation Approved: Johnson P Thomas Dissertation Adviser Eric Chan-tin Dissertation Co-Adviser Subhash Kak Mary Gade ii LIST THE PUBLICATIONS YOU HAVE FROM THIS WORK Praveen Khethavath, Johnson Thomas. “Game Theoretic approach to Resource provisioning in a Distributed Cloud”, submitted at 28th IEEE International Conference on. Advanced Information Networking and Applications Workshops WAINA 2014(Accepted) Praveen Khethavath, Johnson Thomas, Eric Chan-Tin, and Hong Liu. "Introducing a Distributed Cloud Architecture with Efficient Resource Discovery and Optimal Resource Allocation". In Proceedings of 3rd IEEE SERVICES CloudPerf Workshop 2013 Praveen Khethavath, Nhat, Prof. Johnson P Thomas. “A Virtual Robot Sensor Network (VRSN)”. In Proceedings of 2nd International Workshop on Networks of Cooperating Objects CONET 2011 Praveen Khethavath, Johnson Thomas. “Distributed Cloud Architecture: Resource Modelling and Security Concerns”. In Proceedings of 3rd Annual conference on Theoretical and Applied Computer Science (TACS 2012) iii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my advisor, Dr. Johnson Thomas for his excellent guidance, patience, and providing me with an excellent atmosphere for doing research and throughout my thesis. His guidance helped me to successfully complete my research. For me, he was not only a respectable professor who led me on the way to do research, but also an attentive tutor who trained me to be a good teacher in my future career. I really appreciate everything he has done in the past years. Besides my advisor, I would like to thank Dr. Eric Chan-Tin my co-advisor, for his support and guidance in my research. I greatly thank him for all the kindness, support and encouragement. I would also like to thank Dr. Subhash Kak and Dr. Mary Gade for their encouragement and insightful comments. I would like to also thank Dr. Tingting Chen for providing opportunity to work on her research. I would like to thank all my committee members for being a support and guiding me to advance in my future goals. I would like to thank my family for supporting me throughout my life and it is they who have made me who I am now. iv Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. NAME: PRAVEEN KHETHAVATH DATE OF DEGREE: MAY, 2014 TITLE OF STUDY: Towards an Efficient Distributed Cloud Architecture MAJOR FIELD: COMPUTER SCIENCE Abstract: Cloud computing is an emerging field in computer science. Users are utilizing less of their own existing resources, while increasing usage of cloud resources. There are many advantages of distributed computing over centralized architecture. With increase in number of unused storage and computing resources and advantages of distributed computing resulted in distributed cloud computing. In the distributed cloud environment that we propose, resource providers (RP) compete to provide resources to the users. In the distributed cloud all the cloud computing and storage services are offered by distributed resources. In this architecture resources are used and provided by the users in a peer to peer fashion. We propose using multi- valued distributed hash tables for efficient resource discovery. Leveraging the fact that there are many users providing resources such as CPU and memory, we define these resources under one key to easily locate devices with equivalent resources. We then propose a new auction mechanism, using a reserve bid formulated rationally by each user for the optimal allocation of discovered resources. We have evaluated the performance of resource discovery mechanisms for the distributed cloud and distributed cloud storage and compared the results with existing DHTs, peer to peer clients such as VUZE and explored the feasibility and efficiency of the proposed schemes in terms of resource/service discovery and allocation. We use a simultaneous Auction mechanism and select a set of winners once we receive all contributions or bids. In a real world scenario, users request resources with multiple capabilities, and in order to find such resources we use a contribution mechanism where service providers will provide a contribution price to users for providing a resource. Users use our proposed auction mechanism to select the resources from the set of resource providers. We show that Nash equilibrium can be achieved and how we can avoid the problem of free riders in the distributed cloud. Network latency is an important factor when deciding which resource provider to select. We used treeple a secure latency estimation scheme to obtain network measurements in distributed systems. We developed a mobile application using distributed cloud which preserves privacy and provides security for a user. Distributed cloud is used for developing such an application where all the data needs to be close to the users and avoids single point of failure, which is the problem with existing cloud. v TABLE OF CONTENTS Chapter Page I. INTRODUCTION .............................................................................................................. 1 1.1 RESEARCH BACKGROUND ................................................................................................................ 1 1.2 MOTIVATION .................................................................................................................................... 2 1.3 OBJECTIVES ...................................................................................................................................... 3 1.4 CONTRIBUTIONS .............................................................................................................................. 4 1.5 DISSERTATION OUTLINE ................................................................................................................... 6 II. CLOUD COMPUTING OVERVIEW ................................................................................ 8 2.1 INTRODUCTION ............................................................................................................................... 8 2.2 CLOUD DEPLOYMENT MODELS ....................................................................................................... 9 2.3 CLOUD SERVICE MODELS .............................................................................................................. 10 2.4 BASIC CLOUD ARCHITECTURE ....................................................................................................... 12 2.5 SUMMARY ..................................................................................................................................... 14 III. DISTRIBUTED CLOUD ARCHITECTURE .................................................................. 16 3.1 PROBLEM STATEMENT .................................................................................................................. 17 3.2 LITERATURE REVIEW ..................................................................................................................... 19 3.3 RESOURCE DESCRIPTION FRAMEWORK ........................................................................................ 21 3.4 HIERARCHIAL MODEL OF DISTRIBUTED CLOUD ............................................................................ 24 3.5 DISTRIBUTED CLOUD ARCHITECTURE ........................................................................................... 25 vi IV. RESOURCE DISCOVERY MECHANISM IN DISTRIBUTED CLOUD ..................... 29 4.1 PROBLEM STATEMENT .................................................................................................................. 29 4.2 LITERATURE REVIEW ..................................................................................................................... 30 4.3 RESOURCE DISCOVERY IN DISTRIBUTED CLOUD ........................................................................... 33 4.3.1 NAÏVE SOLUTION FOR RESOURCE DISCOVERY .................................................................... 33 4.3.2 RESOURCE DISCOVERY USING MULTI-VALUED HASHTABLE SCHEME ................................. 35 4.4 EXPERIMENTAL ANALYSIS ............................................................................................................. 39 4.4.1 DISTRIBUTED CLOUD COMPUTING ...................................................................................... 39 4.4.2 DISTRIBUTED CLOUD STORAGE ........................................................................................... 43 4.5 CONCLUSIONS .............................................................................................................................. 46 V. GAME THEORETIC APPROACHES FOR RESOURCE ALLOCATION ................... 47 5.1 PROBLEM STATEMENT ................................................................................................................ 47 5.2 LITERATURE REVIEW .................................................................................................................... 48 5.3 A GAME THEORETIC APPROACH
Recommended publications
  • Cloud Interoperability with the Opennebula Toolkit
    Cloud Computing: Interoperability and Data Portability Issues Microsoft, Brussels st 1 December 2009 Cloud Interoperability with the OpenNebula Toolkit Distributed Systems Architecture Research Group Universidad Complutense de Madrid 1/11 Cloud Computing in a Nutshell Cloud Interoperability with the OpenNebula Toolkit What Who Software as a Service On-demand End-user access to any (does not care about hw or sw) application Platform as a Service Platform for Developer building and (no managing of the delivering web underlying hw & swlayers) applications Infrastructure as a Raw computer System Administrator Serviceᄎ infrastructure (complete management of the computer infrastructure) Innovative open, flexible and scalable technology to build IaaS clouds Physical Infrastructure 2/11 What is OpenNebula? Cloud Interoperability with the OpenNebula Toolkit Innovations Designed to address the technology challenges in cloud computing management Open-source Toolkit OpenNebula v1.4 • Support to build new cloud interfaces • Open and flexible tool to fit into any datacenter and VM integrate with any ecosystem component VM • Private, public and hybrid clouds VM • Based on standards • Support federation of infrastructures • Efficient and scalable management of the cloud 3/11 A Toolkit for System Integrators Cloud Interoperability with the OpenNebula Toolkit One Size does not Fit All: Tailoring the Tool to Fit your Needs • Open, modular and extensible architecture • Easy to enhance and embed • Minimal installation requirements (distributed in Ubuntu) • Open Source – Apache 2 Virt. Virt. InterfacesVirt. SchedulersVirt. OpenNebula API Virtual and Physical Resource Management Driver API Virt. Virt. Virt. Virt. ComputeVirt. StorageVirt. NetworkVirt. CloudVirt. 4/11 Interoperability in the OpenNebula Toolkit Cloud Interoperability with the OpenNebula Toolkit Interoperation from Different Perspectives 1.
    [Show full text]
  • Python for Bioinformatics, Second Edition
    PYTHON FOR BIOINFORMATICS SECOND EDITION CHAPMAN & HALL/CRC Mathematical and Computational Biology Series Aims and scope: This series aims to capture new developments and summarize what is known over the entire spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical, and computational methods into biology by publishing a broad range of textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to students, researchers, and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged. Series Editors N. F. Britton Department of Mathematical Sciences University of Bath Xihong Lin Department of Biostatistics Harvard University Nicola Mulder University of Cape Town South Africa Maria Victoria Schneider European Bioinformatics Institute Mona Singh Department of Computer Science Princeton University Anna Tramontano Department of Physics University of Rome La Sapienza Proposals for the series should be submitted to one of the series editors above or directly to: CRC Press, Taylor & Francis Group 3 Park Square, Milton Park Abingdon, Oxfordshire OX14 4RN UK Published Titles An Introduction to Systems Biology: Statistical Methods for QTL Mapping Design Principles of Biological Circuits Zehua Chen Uri Alon
    [Show full text]
  • Cloud Computing and Enterprise Data Reliability Luan Gashi University for Business and Technology, [email protected]
    University of Business and Technology in Kosovo UBT Knowledge Center UBT International Conference 2016 UBT International Conference Oct 28th, 9:00 AM - Oct 30th, 5:00 PM Cloud Computing and Enterprise Data Reliability Luan Gashi University for Business and Technology, [email protected] Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference Part of the Communication Commons, and the Computer Sciences Commons Recommended Citation Gashi, Luan, "Cloud Computing and Enterprise Data Reliability" (2016). UBT International Conference. 56. https://knowledgecenter.ubt-uni.net/conference/2016/all-events/56 This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It has been accepted for inclusion in UBT International Conference by an authorized administrator of UBT Knowledge Center. For more information, please contact [email protected]. Cloud Computing and Enterprise Data Reliability Cloud Computing and Enterprise Data Reliability Luan Gashi UBT – Higher Education Institution, Lagjja Kalabria, 10000 p.n., Prishtine, Kosovo [email protected] Abstract. Cloud services offer many benefits from information and communication technology that to be credible must first be secured. To use the potential of cloud computing, data is transferred, processed and stored in the infrastructures of these service providers. This indicates that the owners of data, particularly enterprises, have puzzled when storing their data is done outside the scope of their control. Research conducted on this topic show how this should be addressed unequivocally. The provided information on the organization of cloud computing models, services and standards, with a focus on security aspects in protecting enterprise data where emphasis shows how data access is treated with reliability from providers of these services.
    [Show full text]
  • The Opennebula Standard-Based Open-Source Toolkit to Build Cloud Infrastructures
    Jornadas Técnicas de RedIRIS 2009 Santiago de Compostela 27th November 2009 The OpenNebula Standard-based Open -source Toolkit to Build Cloud Infrastructures Distributed Systems Architecture Research Group Universidad Complutense de Madrid 1/20 Cloud Computing in a Nutshell The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures What Who Software as a Service On-demand End-user access to any (does not care about hw or sw) application Platform as a Service Platform for Developer building and (no managing of the delivering web underlying hw & swlayers) applications Infrastructure as a Raw computer System Administrator Serviceᄎ infrastructure (complete management of the computer infrastructure) Innovative open, flexible and scalable technology to build IaaS clouds Physical Infrastructure 2/20 From Public to Private Cloud Computing The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures Public Cloud • Flexible and elastic capacity • Ubiquitous network access • On-demand access • Pay per use Service Cloud User/Service Provider User (Cloud Interface) Private Cloud • Centralized management VM • VM placement optimization VM • Dynamic resizing and partitioning VM of the infrastructure • Support for heterogeneous workloads 3/20 Contents The OpenNebula Standard-based Open-source Toolkit to Build Cloud Infrastructures Innovations Designed to address the technology challenges in cloud computing management Toolkit OpenNebula v1.4 Community Users, projects and ecosystem Open-source and Standardization
    [Show full text]
  • Geospatial Data AS a Service: Use Cases
    GEOSPATIAL DATA AS A SERVICE USE CASES A Report of the National Geospatial Advisory Committee December 2018 Geospatial Data as a Service – Use Cases December 2018 Introduction This document was developed to complement the material in the NGAC report on Geospatial Data as a Service: A vital investment in American Enterprise and to provide real-world use cases of Data as a Service (DaaS) in action. DaaS opens new possibilities and innovation by improving access to and use of data. Users and producers across government, industry, open source, education, and the sciences are turning to DaaS to meet their huge appetite for information, exponential storage needs, data archiving and to minimize data duplication and reduce costs. To illustrate these points, we examined four case studies that provide more in-depth use cases from across Federal and local agencies and the private sector. These case studies showcase real world scenarios with large, distributed data sources to support a broad range of end user needs. The case studies presented are not intended to be an exhaustive list of examples of DaaS in use; there are many other relevant examples and programs of DaaS across the stakeholder community. To demonstrate use of DaaS for local governments and emergency response, we highlight the work of the Missouri Task Force One (MO-TF1) and Boone County Fire Protection District (BCFPD). MO-TF1 and BCFPD are using public cloud for basemap creation, data access, and delivery to enable a common operating picture of critical data during deployments. (Appendix 1 - Data as a Service & Cloud Computing: Disaster Response Just-in-Time Basemap Creation for Deployments).
    [Show full text]
  • Developing Cloud Computing Infrastructures in Developing Countries in Asia
    Walden University ScholarWorks Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies Collection 2020 Developing Cloud Computing Infrastructures in Developing Countries in Asia Daryoush Charmsaz Moghaddam Walden University Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations Part of the Databases and Information Systems Commons This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please contact [email protected]. Walden University College of Management and Technology This is to certify that the doctoral study by Daryoush Charmsaz Moghaddam has been found to be complete and satisfactory in all respects, and that any and all revisions required by the review committee have been made. Review Committee Dr. Steven Case, Committee Chairperson, Information Technology Faculty Dr. Gail Miles, Committee Member, Information Technology Faculty Dr. Bob Duhainy, University Reviewer, Information Technology Faculty Chief Academic Officer and Provost Sue Subocz, Ph.D. Walden University 2020 Abstract Developing Cloud Computing Infrastructures in Developing Countries in Asia by Daryoush Charmsaz Moghaddam MS, Sharif University, 2005 BS, Civil Aviation Higher Education Complex, 1985 Doctoral Study Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Information Technology Walden University March 2020 Abstract Adoption and development of cloud computing in developing countries can be different from other countries, but it can provide more benefits. The purpose of this multiple case study, guided by diffusion of innovations theory, was to explore strategies that IT directors use to develop cloud computing infrastructures in Iran.
    [Show full text]
  • Cloud Computing and Big Data Is There a Relation Between the Two: a Study
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 17 (2017) pp. 6970-6982 © Research India Publications. http://www.ripublication.com Cloud Computing and Big Data is there a Relation between the Two: A Study Nabeel Zanoon1, Abdullah Al-Haj2, Sufian M Khwaldeh3 1 Department of Applied science, Al- Balqa Applied University/Aqaba, Jordan. 2 Faculty of Information Technology, University of Jordan/Aqaba, Jordan. 3Business Information Technology (BIT) Department, The University of Jordan/Aqaba, Jordan. 1Orcid ID: 0000-0003-0581-206X Abstract and combinations of each. Such data can be directly or indirectly related to geospatial information [3]. Communicating by using information technology in various ways produces big amounts of data. Such data requires Cloud computing refers to on-demand computer resources and processing and storage. The cloud is an online storage model systems available across the network that can provide a where data is stored on multiple virtual servers. Big data number of integrated computing services without local processing represents a new challenge in computing, resources to facilitate user access. These resources include especially in cloud computing. Data processing involves data data storage capacity, backup and self-synchronization [4]. acquisition, storage and analysis. In this respect, there are Most IT Infrastructure computing consist of services that are many questions including, what is the relationship between provided and delivered through public centers and servers big data and cloud computing? And how is big data processed based on them. Here, clouds appear as individual access in cloud computing? The answer to these questions will be points for the computing needs of the consumer.
    [Show full text]
  • Evolution of As-A-Service Era in Cloud
    Evolution of as-a-Service Era in Cloud Sugam Sharma Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa, USA Email: [email protected] Abstract. Today, a paradigm shift is being observed in science, where the focus is gradually shifting toward the cloud environments to obtain appropriate, robust and affordable services to deal with Big Data challenges (Sharma et al. 2014, 2015a, 2015b). Cloud computing avoids any need to locally maintain the overly scaled computing infrastructure that include not only dedicated space, but the expensive hardware and software also. In this paper, we study the evolution of as-a-Service modalities, stimulated by cloud computing, and explore the most complete inventory of new members beyond traditional cloud computing stack. Keywords. Cloud, as-a-Service 1. Introduction Today, the cloud computing also has emerged as one of the major shifts in recent information and communication age that promises an affordable and robust computational architecture for large-scale and even for overly complex enterprise applications (Fenn et al. 2008). It is a powerful and revolutionary paradigm that offers service-oriented computing and abstracts the software-equipped hardware infrastructure from the clients or users. Although, the concept of cloud computing is mainly popular in three praxises- 1) IaaS (Infrastructure-as-a-Service ), 2) PaaS (Platform-as-a-Service ), and 3) SaaS (Software-as-a-Service ), but in this data science age, should be equally expandable to DBaaS (Database- as-a-Service ) (Curino, et al., 2011; Seibold et al., 2012). Over the last few year, the cloud computing has evolved as scalable, secure and cost-effective solutions to an overwhelming number of applications from diversified areas.
    [Show full text]
  • Accelerate Delivery of Your Modern Data Analytics Platform with the Adatis Framework
    Accelerate delivery of your Modern Data Analytics Platform with the Adatis Framework Data analytics is more relevant in today’s business than ever but traditional data warehouse platforms are evolving. The demands placed on analytics platforms are to provide both the traditional, structured, standardised BI and to support new ways of analysing data based on agility, supporting rapid change and semi/unstructured data. To support this new form of advanced analytics, including machine learning, predictive and artificial intelligence, a new flexible, cloud-based platform is required. Adatis ’ Microsoft Azure based Data Platform Framework is used extensively on client “With Adatis’ projects to under-pin and fast track the development of enterprise data platforms that satisfy their clients data analytics requirements. The Adatis Framework has knowledge of Microsoft been developed over may years based on industry best practice and is constantly Azure Data Analytics, updated and enhanced to make the most of technology enhancements released by Microsoft. for the first time we are able to instantly The Adatis Framework uses the advanced data transformation capabilities of the Microsoft Azure stack, including Azure Data Factory, Azure ML Services, Azure monitor, predict, Databricks, and Azure Data Lake Store, to: troubleshoot Measurement and ▪ Ingest data from multiple sources and file types analyse inand ways review we ▪ Cleanse data and handle errors ▪ Track lineage and log activity would not believe ▪ Automate processes and generate code possible before.” ▪ Manage costs and resource use How it works The Adatis framework takes feeds from multiple source systems and, provides a technical framework and reference architecture for ingesting, preparing, shaping, integrating, and storing the data in a data lake Adatis Modern Data Platform | adatis.co.uk The Adatis framework brings many benefits to your team and your projects: Proven: We’ve built and refined the framework over years of working with companies on their transformation initiatives.
    [Show full text]
  • Cloud Computing and Mobile Application Development
    Cloud Computing And Mobile Application Development Personal and hippopotamic Simone often derange some triploidy concertedly or empanels unceremoniously. By-past and waist-deep Georgy readjusts her neurectomy asperses individually or deactivated knee-deep, is Dennis shaping? Bacillary and undealt Pace cutinized her springtide confusing while Saw trammel some polemic insignificantly. What occurs automatically reduces additional challenges Also has the cost as much in mobile application, it means network connection to services depending on a golden software development lets you with mobile application. Advantages and Disadvantages of Cloud Computing. Blueberry considers response to cloud development environment with common, place on servers and collaboration, and get losses when you need to learn how could be. Build a Firebase Android Application by Coursera Project Network. Mobile computing uses the concept in cloud computing. Compatible available whether a music of mobile and standalone devices Changes in Approaching Cloud Software Development Cloud computing has shifted. What these Cloud-Native since It Hype or The Future these Software. We scope the sun cloud based application development company across USA India. Mobile cloud computing refers to execute same technology used to deploy. Mobile App Development merges the alternate-developing Cloud Computing Applications trends with the omnipresent smartphone One member the most. How mobile computing will continually evolving research issues and testing, in regards to the cloud application and cloud computing development is. Cloud Computing Services Cloud-Based Solutions for Future-Ready Businesses With cash-to-cash support from Rishabh Software inventory can realize flexible. That the application developer is programming such powerful device without. Learn Mobile Cloud Computing With Android online with courses like Build a Persistent Storage App in.
    [Show full text]
  • Lenovo Big Data Validated Design for Cazena Saas Using Cloudera on Thinkagile HX
    Lenovo Big Data Validated Design for Cazena SaaS using Cloudera on ThinkAgile HX Last update: 27 June 2019 Version 1.0 Configuration Reference Number: BGDCL03XX91 Reference architecture for Solution based on the Cloudera Enterprise with Cazena ThinkSystem HX platform running SaaS Data Lakes VMware vSphere virtualization Deployment considerations for Solution based on Cazena’s Fully scalable racks including detailed Managed SaaS Data Lake running validated bills of material on the ThinkAgile HX platform Dan Kangas (Lenovo) Venkat Chandra (Cazena) John Piekos (Cazena) Keith Adams (Lenovo) Ajay Dholokia (Lenovo) Gary Cudak (Lenovo) 1 Lenovo Big Data Validated Design for Cazena SaaS using Cloudera on ThinkAgile HX Table of Contents 1 Introduction .............................................................................................. 4 2 Business problem and business value .................................................. 5 Business Problem .................................................................................................... 5 Business Value ........................................................................................................ 5 2.2.1 Time to Production....................................................................................................................... 5 2.2.2 Deploy ML & Analytics Quickly with the AppCloud ..................................................................... 6 2.2.3 Plug & Play Enterprise Deployment: ..........................................................................................
    [Show full text]
  • A STUDY of CLOUD COMPUTING TECHNOLOGY ADOPTION by SMALL and MEDIUM ENTERPRISES (Smes) in GAUTENG PROVINCE
    UNIVERSITY OF KWAZULU-NATAL A STUDY OF CLOUD COMPUTING TECHNOLOGY ADOPTION BY SMALL AND MEDIUM ENTERPRISES (SMEs) IN GAUTENG PROVINCE BY LUFUNGULA OSEMBE (Student Number: 207517802) A Thesis / Dissertation submitted in fulfilment of the academic requirements for the degree of Master of Commerce in Information Systems and Technology School of Management, IT & Governance College of Law and Management Studies Supervisor: Dr. Indira Padayachee 2015 DECLARATION I, Lufungula Osembe, declare that The research reported in this dissertation, except where otherwise indicated, is my original research. This dissertation has not been submitted for any degree or examination at any other university. This dissertation does not contain other persons’ text, data, pictures, graphics or other information, unless specifically acknowledged as being sourced from relevant sources. This dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other sources. Where other written sources have been quoted, then: a. their words have been re-written but the general information attributed to authors has been sourced. b. where their exact words have been used, their writing has been placed inside quotation marks and clearly referenced. Where I have reproduced a publication of which I am author, co-author or editor, I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications. This dissertation does not contain data, text, graphics or tables copied and pasted from Internet, unless acknowledged, and the source being detailed in the dissertation and in the references sections. ----------------------------------------------------- Date: L. Osembe (207517802) i ACKNOWLEDGMENTS I wish to make special mention of some people who have significantly contributed in many ways in me achieving this Masters project.
    [Show full text]