Study of Mathematically Precocious Youth After 35 Years Uncovering Antecedents for the Development of Math-Science Expertise David Lubinski and Camilla Persson Benbow

Total Page:16

File Type:pdf, Size:1020Kb

Study of Mathematically Precocious Youth After 35 Years Uncovering Antecedents for the Development of Math-Science Expertise David Lubinski and Camilla Persson Benbow PERSPECTIVES ON PSYCHOLOGICAL SCIENCE Special Section: Doing Psychological Science Study of Mathematically Precocious Youth After 35 Years Uncovering Antecedents for the Development of Math-Science Expertise David Lubinski and Camilla Persson Benbow Vanderbilt University ABSTRACT—This review provides an account of the Study (e.g., administration, law, medicine, and the social sci- of Mathematically Precocious Youth (SMPY) after 35 ences). By their mid-30s, the men and women appeared to years of longitudinal research. Findings from recent be happy with their life choices and viewed themselves as 20-year follow-ups from three cohorts, plus 5- or 10-year equally successful (and objective measures support these findings from all five SMPY cohorts (totaling more than subjective impressions). Given the ever-increasing im- 5,000 participants), are presented. SMPY has devoted portance of quantitative and scientific reasoning skills in particular attention to uncovering personal antecedents modern cultures, when mathematically gifted individuals necessary for the development of exceptional math-science choose to pursue careers outside engineering and the careers and to developing educational interventions to physical sciences, it should be seen as a contribution to facilitate learning among intellectually precocious youth. society, not a loss of talent. Along with mathematical gifts, high levels of spatial ability, investigative interests, and theoretical values form a par- Society is becoming more knowledge based, technological, and ticularly promising aptitude complex indicative of poten- tial for developing scientific expertise and of sustained international (Friedman, 2005); the physical and social systems commitment to scientific pursuits. Special educational within which people operate are increasingly complex and dy- opportunities, however, can markedly enhance the devel- namic, and economies are built upon ideas. Those countries that opment of talent. Moreover, extraordinary scientific ac- flourish will be the ones most effective in developing their human complishments require extraordinary commitment both in capital and in nurturing individuals who will come up with the best and outside of school. The theory of work adjustment ideas and innovations of tomorrow. A recent report issued by the (TWA) is useful in conceptualizing talent identification and National Academy of Sciences (2005), Rising Above the Gathering development and bridging interconnections among edu- Storm,highlightstheimportanceofthesetrendsforallcountries cational, counseling, and industrial psychology. The lens concerned about their future prosperity and speaks to the im- of TWA can clarify how some sex differences emerge in portance of developing intellectual talent. Indeed, identifying and educational settings and the world of work. For example, developing talent for science, technology, engineering, and math- in the SMPY cohorts, although more mathematically pre- ematics (STEM) was the dominant reason that Julian C. Stanley cocious males than females entered math-science careers, founded the Study of Mathematically Precocious Youth (SMPY) in this does not necessarily imply a loss of talent because the 1971. Longitudinal findings emerging out of SMPY have special women secured similar proportions of advanced degrees relevance today as the United States considers, for example, and high-level careers in areas more correspondent with launching an American Competitiveness Initiative (2006). the multidimensionality of their ability-preference pattern The purpose of this article is twofold. First, we outline the SMPY longitudinal study and how its findings over the past 35 years have informed both basic and applied psychological Address correspondence to David Lubinski or Camilla Benbow, science on identifying and nurturing intellectual talent. Much Department of Psychology and Human Development, Peabody 512, Vanderbilt University, Nashville, TN 37203, e-mail: david.lubinski@ has been learned about effective ways to identify potential vanderbilt.edu or [email protected]. for and to facilitate the development of scientific expertise. 316 Copyright r 2006 Association for Psychological Science Volume 1—Number 4 David Lubinski and Camilla Persson Benbow Because the work on educational facilitation has been sum- Gross, 2004). In the words of Stanley (2000), the idea is to teach marized elsewhere (Benbow & Lubinski, 1996; Benbow & students ‘‘only what they don’t already know’’ (p. 216). Stanley, 1996; Stanley, 2000),1 our second purpose is to focus From the beginning, SMPY focused as much on serving the attention on the critical personal antecedents for developing social and emotional well-being of intellectually precocious outstanding scientific careers. Which individuals are most youth as on experimenting with differential opportunities for likely to become exceptional STEM professionals? We say less promoting intellectual development (Benbow, Lubinski, & here on how to facilitate the educational development of such Suchy, 1996). To inform these two agendas, Stanley planned an individuals. after-high-school follow-up that ultimately evolved into a SMPY was not designed for, nor is this article about, enhancing 50-year longitudinal study, which currently includes more than the scientific literacy of the general population. Enhancing sci- 5,000 intellectually talented individuals identified over a 25- entific literacy is clearly important. The public needs to make year period (1972–1997). The aim of this research is to develop a informed decisions on topics ranging from whether evolution better understanding of the unique needs of intellectually pre- should be taught in the schools to whether tax dollars should be cocious youth, the determinants of the varying developmental used to fund stem cell research. Fostering scientific literacy, trajectories they display, and the role of education in talent however, is different from identifying future scientific leaders and development. ‘‘Study of Mathematically Precocious Youth’’ has creating supportive environments for them. Although the two become a bit of a misnomer, however, because many of our certainly have common components, the talent and commitment participants are more verbally than mathematically talented, necessary to develop as a scientific leader require both personal and the participants are now all adults. Nevertheless, to main- attributes and learning environments that are truly beyond the tain consistency, we have chosen not to rename the study. norm. The intellectual abilities, personal commitment, and edu- cational experiences needed to ameliorate global warming or to Above-Level Testing and Criteria Used to Identify SMPY create an environmentally safe, oil-independent energy source are Participants of a much different order of magnitude than those required for The members of four of SMPY’s five cohorts were selected developing scientific literacy (Simonton, 1994; Zuckerman, 1977). (primarily) at around age 12 or 13, when they were in the seventh An overabundance of STEM leaders has emerged from SMPY. or eighth grade (a fifth cohort of top math-science graduate Their distinguishing psychological characteristics and the devel- students was identified for longitudinal study as well). The se- opmental choices structuring the paths they traversed from age 12 lection process was tiered: Almost all students were first re- have become evident from experiential and personal data collected quired to earn scores within the top 3% on a conventional at earlier time points. Not surprisingly, the personal attributes of achievement test routinely administered in their schools (e.g., future STEM leaders reveal that it takes much more than excep- the Iowa Test of Basic Skills). This select group was then given tional abilities to develop truly exceptional scientific expertise. the opportunity to take the SAT through a talent search (TS; Benbow & Stanley, 1996; Colangelo et al., 2004; Keating & SMPY Stanley, 1972; Stanley, 1996). The SATwas designed for college- bound high school juniors and seniors, to assess mathematical SMPY was founded by Stanley on September 1, 1971, at Johns (SAT-M) and verbal (SAT-V) reasoning abilities critical for Hopkins University (Keating & Stanley, 1972; Stanley, 1996). college work (Donlon, 1984). Because few of the potential cohort The study moved to Iowa State University in 1986, and was members had received formal training in algebra or more ad- directed by Camilla P. Benbow from 1986 to 1990; from 1991 vanced mathematics, and because they were 4 to 5 years through 1998, we co-directed SMPY at Iowa State, and then in younger than the population for whom the SAT was designed, 1998, we moved it to Peabody College of Vanderbilt University. this assessment falls into the category of above-level testing. The initial idea motivating SMPY was to conduct research while SAT-M and SAT-V score distributions among seventh and eighth providing services to intellectually talented adolescents, par- graders in the top 3% are indistinguishable from the score dis- ticularly those with mathematical talent. The underlying phi- tributions observed among high school students (Benbow, 1988). losophy driving this study is based on the best educational This finding is especially noteworthy for SAT-M, because despite a practices for all students, namely, ‘‘appropriate developmental lack of formal training in algebra, geometry, and other areas of placement’’ (Lubinski & Benbow, 2000, p. 138)—providing math
Recommended publications
  • Intellectual Precocity: What Have We Learned Since Terman?
    Article Gifted Child Quarterly 0(0) 1–26 Intellectual Precocity: What Have ! 2020 National Association for Gifted Children We Learned Since Terman? Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0016986220925447 journals.sagepub.com/home/gcq David Lubinski1 and Camilla P. Benbow1 Abstract Over the past 50 years, eight robust generalizations about intellectual precocity have emerged, been empirically docu- mented, and replicated through longitudinal research. Within the top 1% of general and specific abilities (mathematical, spatial, and verbal) over one third of the range of individual differences are to be found, and they are meaningful. These individual differences in ability level and in pattern of specific abilities, which are uncovered by the use of above-level assessments, structure consequential quantitative and qualitative differences in educational, occupational, and creative out- comes. There is no threshold effect for abilities in predicting future accomplishments; and the concept of multipotentiality evaporates when assessments cover the full range of all three primary abilities. Beyond abilities, educational/occupational interests add value in identifying optimal learning environments for precocious youth and, with the addition of conative variables, for modeling subsequent life span development. While overall professional outcomes of exceptionally precocious youth are as exceptional as their abilities, educational interventions of sufficient dosage enhance the probability of them leading exceptionally
    [Show full text]
  • Here Stanley Taught
    NEWS FEATURE How to raise a genius A long-running study of exceptional children reveals what it takes to produce the scientists who will lead the twenty-first century. BY TOM CLYNES 152 | NATURE | VOL 537 | 8 SEPTEMBER 2016 ǟ ƐƎƏƖ !,(++- 4 +(2'#12 (,(3#"Ʀ /13 .$ /1(-%#1 341#ƥ ++ 1(%'32 1#2#15#"ƥ ǟ ƐƎƏƖ !,(++- 4 +(2'#12 (,(3#"Ʀ /13 .$ /1(-%#1 341#ƥ ++ 1(%'32 1#2#15#"ƥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ ɥ FEATURE NEWS n a summer day in 1968, professor Julian Stanley met and academics, our Fortune 500 CEOs and federal judges, senators and a brilliant but bored 12-year-old named Joseph Bates. billionaires,” he says. The Baltimore student was so far ahead of his class- Such results contradict long-established ideas suggesting that expert mates in mathematics that his parents had arranged performance is built mainly through practice — that anyone can get for him to take a computer-science course at Johns to the top with enough focused effort of the right kind. SMPY, by con- Hopkins University, where Stanley taught. Even that trast, suggests that early cognitive ability has more effect on achievement wasn’t enough. Having leapfrogged ahead of the adults in the class, than either deliberate practice or environmental factors such as socio- Othe child kept himself busy by teaching the FORTRAN programming economic status. The research emphasizes the importance of nurturing language to graduate students. precocious children, at a time when the prevailing focus in the United Unsure of what to do with Bates, his computer instructor introduced States and other countries is on improving the performance of strug- him to Stanley, a researcher well known for his work in psycho metrics gling students (see ‘Nurturing a talented child’).
    [Show full text]
  • Camilla Persson Benbow
    CAMILLA PERSSON BENBOW March 2019 Patricia and Rodes Hart Dean of Education and Human Development Peabody College MSC 329, Peabody Station Office: (615) 322-8407 Vanderbilt University Fax: (615) 322-8501 Nashville, TN 37203 [email protected] Educational Background BA (1977-Psychology), MA (1978-Psychology), MS (1980-Education), and EdD (1981-Gifted), Johns Hopkins University Dissertation Development of Mathematical Talent Academic Background Dean, Peabody College of Education and Human Development, 7/98-present Professor, Department of Psychology and Human Development, Vanderbilt University, 7/98-present Interim Dean, College of Education, Iowa State University, 7/96-6/98 Chair, Department of Psychology, Iowa State University, 7/92-6/98 Distinguished Professor, Department of Psychology, Iowa State University, 7/95-6/98 Professor, Department of Psychology, Iowa State University, 8/90-6/95 Associate Professor, Department of Psychology, Iowa State University, 7/85-8/90 Assistant Professor, Department of Sociology (part-time), Johns Hopkins University, 7/83-4/86 Associate Research Scientist, Department of Psychology, Johns Hopkins University, 5/81-4/86 Administrative Positions (Not Listed Above) Director, Iowa Talent Search Program, Iowa State University, 8/89-6/98 Director, Office of Precollegiate Programs for Talented and Gifted, Iowa State University, 9/87-6/98 Director, CY-TAG (Challenges for Youth - Talented and Gifted), Iowa State University, 9/86-6/98 Co-Director, Iowa Governor's Institute for the Gifted and Talented, Iowa State University, 10/89-91 Co-Director, Study of Mathematically Precocious Youth (SMPY), 7/91-present Director, Study of Mathematically Precocious Youth (SMPY), Iowa State University, 5/86-6/91 Co-Director of Study of Mathematically Precocious Youth (SMPY), Johns Hopkins University, 7/85-4/86 Associate Director, Study of Mathematically Precocious Youth (SMPY), Johns Hopkins University, 5/81- 7/85 Assistant Director, Study of Mathematically Precocious Youth, Johns Hopkins University, 6/79-6/81 Benbow 2 Books Benbow, C.
    [Show full text]
  • Developing Critical Thinking Through the Arts
    Developing Critical Thinking Through The Arts DEVELOPING CRITICAL THINKING THROUGH THE ARTS by MARK L. EUTSLER A thesis for the degree of DOCTOR OF EDUCATION at NEWBURGH THEOLOGICAL SEMINARY Newburgh, IN USA Submitted to Newburgh Theological Seminary Faculty for Approval 10 October 2017 (33,210) i Developing Critical Thinking Through The Arts Declaration Concerning Thesis Presented for the Degree of DOCTOR OF EDUCATION I, Mark L. Eutsler, of 215 N. Main St., P.O. Box 61, Linden, IN USA Solemnly and sincerely declare, in relation to the Ph.D. thesis entitled: DEVELOPING CRITICAL THINKING THROUGH THE ARTS (a) That work was done by me, personally (b) The material has not previously been accepted for any other degree or diploma Signature:__________________________________________ Date:_10 October 2017 2013 Copyright © 2017 Mark L. Eutsler ii Developing Critical Thinking Through The Arts ACKNOWLEDGMENTS It’s a great privilege to have conducted this research and prepare this dissertation involving a triune of topics—God, the arts, and critical thinking. Knowing that we are created in God’s image and, as followers of Jesus, have the mind of Christ and are part of the priesthood of all believers, it is excited to tout the benefits of honing critical thinking. Linking critical thinking with the arts broaches a unique relationship, symbiotic in essence. When one considers to what degrees the arts drive critical thinking and vice versus one is instantly transported to a realm where the interrelatedness of all genres and subject areas come forth in intradisciplinary, interdisciplinary, multidisciplinary, and transdisciplinary ways. Thanks to those mentors in my life (known and unknown—in the spirit realm—to me) who have helped me achieve a way of thinking that has caused me to explore Developing Critical Thinking Through The Arts.
    [Show full text]
  • Study of Mathematically Precocious Youth After 35 Years Uncovering Antecedents for the Development of Math-Science Expertise David Lubinski and Camilla Persson Benbow
    PERSPECTIVES ON PSYCHOLOGICAL SCIENCE Special Section: Doing Psychological Science Study of Mathematically Precocious Youth After 35 Years Uncovering Antecedents for the Development of Math-Science Expertise David Lubinski and Camilla Persson Benbow Vanderbilt University ABSTRACT—This review provides an account of the Study (e.g., administration, law, medicine, and the social sci- of Mathematically Precocious Youth (SMPY) after 35 ences). By their mid-30s, the men and women appeared to years of longitudinal research. Findings from recent be happy with their life choices and viewed themselves as 20-year follow-ups from three cohorts, plus 5- or 10-year equally successful (and objective measures support these findings from all five SMPY cohorts (totaling more than subjective impressions). Given the ever-increasing im- 5,000 participants), are presented. SMPY has devoted portance of quantitative and scientific reasoning skills in particular attention to uncovering personal antecedents modern cultures, when mathematically gifted individuals necessary for the development of exceptional math-science choose to pursue careers outside engineering and the careers and to developing educational interventions to physical sciences, it should be seen as a contribution to facilitate learning among intellectually precocious youth. society, not a loss of talent. Along with mathematical gifts, high levels of spatial ability, investigative interests, and theoretical values form a par- ticularly promising aptitude complex indicative of poten- Society is becoming more knowledge based, technological, and tial for developing scientific expertise and of sustained international (Friedman, 2005); the physical and social systems commitment to scientific pursuits. Special educational within which people operate are increasingly complex and dy- opportunities, however, can markedly enhance the devel- namic, and economies are built upon ideas.
    [Show full text]
  • How to Raise a Genius: Lessons from a 45-Year Study of Super-Smart Children
    1 ﻋ ر ﺑ ﻲ How to raise a genius: lessons from a 45-year study of super-smart children A long-running investigation of exceptional children reveals what it takes to produce the scientists who will lead the twenty-first century. • Tom Clynes 07 September 2016 NATURE, 537 Issue 7619 On a summer day in 1968, professor Julian Stanley met a brilliant but bored 12-year-old named Joseph Bates. The Baltimore student was so far ahead of his classmates in mathematics that his parents had arranged for him to take a computer-science course at Johns Hopkins University, where Stanley taught. Even that wasn't enough. Having leapfrogged ahead of the adults in the class, the child kept himself busy by teaching the FORTRAN programming language to graduate students. Unsure of what to do with Bates, his computer instructor introduced him to Stanley, a researcher well known for his work in psychometrics — the study of cognitive performance. To discover more about the young prodigy's talent, Stanley gave Bates a battery of tests that included the SAT college-admissions exam, normally taken by university-bound 16- to 18-year-olds in the United States. Early child development: Body of knowledge Bates's score was well above the threshold for admission to Johns Hopkins, and prompted Stanley to search for a local high school that would let the child take advanced mathematics and science classes. When that plan failed, Stanley convinced a dean at Johns Hopkins to let Bates, then 13, enrol as an undergraduate. Stanley would affectionately refer to Bates as “student zero” of his Study of Mathematically Precocious Youth (SMPY), which would transform how gifted children are identified and supported by the US education system.
    [Show full text]
  • Developing E V I S N E H E R P M
    NoN-Profit U.S. PoStage PAID NaShville tN Permit No. 293 Office of the Dean Vanderbilt University, Peabody College Peabody #620 230 Appleton Place Nashville, Tennessee 37203-5721 Behavior Programs c o Developing mprehensive f A ll 2009 Contents Are you seeing “green shoots”? 2 Peabody Columns > Peabody College Ranked No. 1 in Nation At Vanderbilt’s Peabody College, as with other institutions, we see them all the time. > New Pre-Doctoral Fellows Program to Assist With Shifting Job Market Paradoxically, they seem to be most visible in the fall. > Peabody Hosts National Conference on Teacher Retirement Benefit Systems > Peabody Research Institute to Conduct First Assessment of Tennessee's We see them, for example, in the nine new faculty members who have joined our Pre-K Program Dean’s ranks, including two new endowed chair holders. This year’s hires underline existing > Peabody Welcomes New Faculty for 2009–2010 strengths in such areas as educational neuroscience, math and science education, > Peabody Receives Funding for Two New International Programs From Message and visual impairments. U.S. State Department > Vanderbilt Serving as Research Partner to New Tennessee Education Initiative Students are perennial green shoots. This year we have welcomed a bumper crop of > Notes and Honors new master’s students along with another class of truly outstanding doctoral students. Peabody’s population of graduate and professional students is at a modern high. 6 Findings > Cognitive Behavioral Program May Help Teens At Risk for Depression Our garden of research initiatives is also looking strong. Having weathered a great > Early Assessment of NYC's School-Wide Performance Bonus Program Released deal of climate change at the federal level, we were pleased to learn that external > Down Syndrome and Ethnicity funding for research in fiscal 2009 was six percent higher than the prior year.
    [Show full text]
  • Gender, Nature, and Nurture
    Gender, Nature, and Nurture Gender, Nature, and Nurture Richard A.Lippa California State University, Fullerton LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS Mahwah, New Jersey London Senior Editor: Debra Riegert Textbook Marketing Manager: Marisol Kozlovski Editorial Assistant: Jason Planer Cover Design: Kathryn Houghtaling Lacey Textbook Production Manager: Paul Smolenski Full-Service & Composition: Pre-Press Company, Inc. Text and Cover Printer: Hamilton Printing Company This edition published in the Taylor & Francis e-Library, 2008. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to http://www.ebookstore.tandf.co.uk/.” Copyright © 2002 by Lawrence Erlbaum Associates, Inc. All rights reserved. No part of this book may be reproduced in any form, by photostat, microfilm, retrieval system, or any other means, without prior written permission of the publisher. Lawrence Erlbaum Associates, Inc., Publishers 10 Industrial Avenue Mahwah, New Jersey 07430 Library of Congress Cataloging-in-Publication Data Lippa, Richard A. Gender, nature, and nurture/Richard A.Lippa p. cm. Includes bibliographical references and index. ISBN 0-8058-3605-5 (alk. paper) ISBN 0-8058-3606-3 1. Sex differences (Psychology) 2. Gender identity. 3. Nature and nurture. I. Title. BF692.2 .L555 2001 155.3′3–dc21 2001033505 ISBN 1-4106-0279-6 Master e-book ISBN In loving memory of my aunt and uncle, Mitzi and Ed Levy, who lived their lives to the fullest and who faced illness with dignity and courage. Contents
    [Show full text]
  • Gender Issues in Science/Math Education (GISME): Over 700 Annotated References & 1000 URL’S – Part 1: All References in Alphabetical Order * † § 
    Gender Issues in Science/Math Education (GISME): Over 700 Annotated References & 1000 URL’s – Part 1: All References in Alphabetical Order * † § Richard R. Hake, Physics Department (Emeritus), Indiana University, 24245 Hatteras Street, Woodland Hills, CA 91367 Jeffry V. Mallow, Physics Department (Emeritus), Loyola University of Chicago, Chicago, Illinois 60626 Abstract This 12.8 MB compilation of over 700 annotated references and 1000 hot-linked URL’s provides a window into the vast literature on Gender Issues in Science/Math Education (GISME). The present listing is an update, expansion, and generalization of the earlier 0.23 MB Gender Issues in Physics/Science Education (GIPSE) by Mallow & Hake (2002). Included in references on general gender issues in science and math, are sub-topics that include: (a) Affirmative Action; (b) Constructivism: Educational and Social; (c) Drivers of Education Reform and Gender Equity: Economic Competitiveness and Preservation of Life on Planet Earth; (d) Education and the Brain; (e) Gender & Spatial Visualization; (f) Harvard President Summers’ Speculation on Innate Gender Differences in Science and Math Ability; (g) Hollywood Actress Danica McKellar’s book Math Doesn’t Suck; (h) Interactive Engagement; (i) International Comparisons; (j) Introductory Physics Curriculum S (for Synthesis); (k) Is There a Female Science? – Pro & Con; (l) Schools Shortchange Girls (or is it Boys)?; (m) Sex Differences in Mathematical Ability: Fact or Artifact?; (n) Status of Women Faculty at MIT. In this Part 1 (8.2 MB), all references are in listed in alphabetical order on pages 3-178. In Part 2 (4.6 MB) references related to sub-topics “a” through “n” are listed in subject order as indicated above.
    [Show full text]
  • Benbow and Lubinski
    PSSXXX10.1177/0956797612457784Kell et al.Who Rises to the Top? 457784research-article2013 Research Article Psychological Science 24(5) 648 –659 Who Rises to the Top? Early Indicators © The Author(s) 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/0956797612457784 pss.sagepub.com Harrison J. Kell, David Lubinski, and Camilla P. Benbow Vanderbilt University Abstract Youth identified before age 13 (N = 320) as having profound mathematical or verbal reasoning abilities (top 1 in 10,000) were tracked for nearly three decades. Their awards and creative accomplishments by age 38, in combination with specific details about their occupational responsibilities, illuminate the magnitude of their contribution and professional stature. Many have been entrusted with obligations and resources for making critical decisions about individual and organizational well-being. Their leadership positions in business, health care, law, the professoriate, and STEM (science, technology, engineering, and mathematics) suggest that many are outstanding creators of modern culture, constituting a precious human-capital resource. Identifying truly profound human potential, and forecasting differential development within such populations, requires assessing multiple cognitive abilities and using atypical measurement procedures. This study illustrates how ultimate criteria may be aggregated and longitudinally sequenced to validate such measures. Keywords cognitive abilities, creativity, human capital, intelligence, profoundly gifted, STEM
    [Show full text]
  • A Nation Deceived: How Schools Hold Back America’S Brightest Students
    DeceivedA Nation How Schools Hold Back : A NationAmerica’s Brightest Students V O L U M E I The Templeton National Report on Acceleration DeceivedA Nation : How Schools Hold Back America’s Brightest Students V O L U M E I Nicholas Colangelo Susan G. Assouline Miraca U. M. Gross The Templeton National Report on Acceleration Endorsed by the National Association for Gifted Children © 2004 The Connie Belin & Jacqueline N. Blank International Center for Gifted Education and Talent Development Designed by Benson and Hepker Design, Iowa City, Iowa Cover art by Joan Benson Published at The University of Iowa, Iowa City, Iowa October 2004 The Connie Belin & Jacqueline N. Blank International Center for Gifted Education and Talent Development College of Education The University of Iowa 600 Blank Honors Center Iowa City, Iowa 52242-0454 800.336.6463 http://www.education.uiowa.edu/belinblank Gifted Education Research, Resource and Information Centre (GERRIC) The University of New South Wales, UNSW Sydney, New South Wales, Australia 2052 http://gerric.arts.unsw.edu.au/ http://nationdeceived.org A Nation Deceived: How Schools Hold Back America’s Brightest Students Acknowledgments.......................................................................................................................... vii Guest Foreword.............................................................................................................................. ix Message to Schools........................................................................................................................
    [Show full text]
  • 6 Talent Search Book Chapter
    Talent Search Paula Olszewski-Kubilius and Dana Thomson Abstract This chapter discuss the practices of, research in, and important issues regarding talent search, a well-established and researched model of identification and programming for gifted learners. This chapter consists of five main sections. First, it describes three defining features of the the talent search model, which includes (a) an emphasis of domain-specific assessments over general cognitive ability testing (e.g., IQ testing) and highlight above-grade level or off-level assessments (e.g., tests designed for older students) over grade-level tests; (b) providing a variety of outside-of-school programming matched to students’ domain and level of talent as shown in the above-grade level tests; and (c) offering parents many academic advising and counseling resources, such as future course taking and education programs for their children, parenting, and academic and career planning. Second, this chapter briefly discusses the prevalence of talent search practices in the United States. Third, It presents some existing data concerning the performance of talent search students on above-grade level tests compared with the performance of average older students on grade-level tests. Fourth, it summarizes some empirical research that investigated whether talent search scores predict long-term outcomes such as achievement in higher education or early career success. In particular, it elaborates on some existing research on the Study of Mathematically Precocious Youth (SMPY), a talent search program that has been extensively study. Lastly, this chapter discusses the implications of talent search programs and research as well as the limitations of talent search models.
    [Show full text]