AKT1 Mutations in Bladder Cancer: Identification of a Novel Oncogenic Mutation That Can Co-Operate with E17K

Total Page:16

File Type:pdf, Size:1020Kb

AKT1 Mutations in Bladder Cancer: Identification of a Novel Oncogenic Mutation That Can Co-Operate with E17K Oncogene (2010) 29, 150–155 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc SHORT COMMUNICATION AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K JM Askham1, F Platt1, PA Chambers2, H Snowden2, CF Taylor2 and MA Knowles1 1Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds, UK and 2Cancer Research UK Genome Variation Laboratory, St James’s University Hospital, Leeds, UK The phosphatidylinositol-3-kinase (PI3 kinase)-AKT (Bozulic et al., 2008). AKT is an evolutionarily conserved pathway is frequently activated in cancer. Recent reports kinase, also known as protein kinase B. There are three have identified a transforming mutation of AKT1 in members of the AKT family (AKT1-3), encoded by breast, colorectal, ovarian and lung cancers. We report separate genes, but with over 80% amino-acid sequence here the occurrence of this mutation in bladder tumours. identity. AKT occupies a key regulatory node in the PI3K The AKT1 G49A (E17K) mutation was found in 2/44 pathway, below which the pathway branches significantly (4.8%) bladder cancer cell lines and 5/184 (2.7%) bladder to influence a wide range of cellular processes that pro- tumours. Cell lines expressing mutant AKT1 show mote cell cycle progression, cell growth, cellular energy constitutive AKT1 activation under conditions of growth metabolism and resistance to apoptosis. factor withdrawal. We also detected a novel AKT1 Genes encoding many of the components of the PI3 mutation G145A (E49K). This mutation also enhances kinase pathway are targeted by germline and somatic AKT activation and shows transforming activity in mutations, amplifications, rearrangements, over-expres- NIH3T3 cells, though activity is weaker than that of sion, methylation and aberrant splicing (Hennessy et al., E17K. Enhanced activation of AKT1 when E17K and E49K 2005; Kumar and Hung, 2005; Manning and Cantley, mutations are in tandem suggests that they can co-operate. 2007), which generally result in increased AKT activity Oncogene (2010) 29, 150–155; doi:10.1038/onc.2009.315; and aberrantly elevated downstream signalling. In published online 5 October 2009 bladder cancer, mutations have been identified in PIK3CA (Lopez-Knowles et al., 2006) and TSC1 (which Keywords: AKT1; mutation; bladder cancer lies downstream of AKT in the PI3 kinase-AKT-mTOR branch of the PI3 kinase pathway) (Knowles et al., 2003; Pymar et al., 2008), and loss of heterozygosity, homo- zygous deletion and inactivating mutations of PTEN Introduction have been found (Cappellen et al., 1997; Cairns et al., 1998; Aveyard et al., 1999; Wang et al., 2000). The phosphatidylinositol-3-kinase (PI3 kinase)-AKT Given the central function of activated AKT1 in pathway promotes cell growth, proliferation and survi- tumorigenesis, it was somewhat surprising that muta- val, and is the most frequently mutated pathway in tions were not detected in this gene until recently. human cancer (Brugge et al., 2007). Activated receptor A single activating point mutation in AKT1 has now tyrosine kinases recruit the p85/p110 PI3 kinase complex been described in breast, colorectal and ovarian cancers to the membrane through the p85 regulatory subunit (Carpten et al., 2007; Bleeker et al., 2008; Kim et al., either directly or through insulin receptor substrate 2008) and squamous cell carcinoma of the lung adapter proteins. The active p110 (catalytic) subunit (Malanga et al., 2008). This mutation, G49A (E17K), then phosphorylates phosphatidylinositol-4,5-bisphos- in the pleckstrin homology (PH) domain of the protein phate (PIP2) to phosphatidylinositol-3,4,5-trisphosphate results in its recruitment to the plasma membrane in the (PIP3). PTEN (phosphatase and tensin homologue dele- absence of PI3 kinase signalling and confers transform- ted on chromosome 10) catalyses the reverse reaction. ing activity in vitro and in vivo (Carpten et al., 2007). PIP3 recruits protein-dependent kinase 1 (PDK1) As mutations in other components of the PI3 kinase and AKT to the plasma membrane where AKT is pathway are found in bladder cancer, we screened phosphorylated at Thr308 by PDK1 and at Ser473 by bladder tumours and cell lines for this mutation. mTORC2 (Sarbassov et al., 2005). AKT1 can also be phosphorylated at Ser473 by DNA-PK in the nucleus Results and discussion Correspondence: Professor MA Knowles, Cancer Research UK Clinical Initially, we screened a panel of 42 bladder cell lines by Centre, Leeds Institute of Molecular Medicine, St James’s University PCR and sequencing of AKT1 exon 4 and found that Hospital, Beckett Street, Leeds LS9 7TF, UK. E-mail: [email protected] 2/42 (4.8%) cell lines (KU19-19 and MGH-U3) contained Received 25 July 2008; revised 24 June 2009; accepted 31 July 2009; the G49A (E17K) mutation (Supplementary Figure 1). published online 5 October 2009 In both cell lines, the mutation was heterozygous. AKT1 mutations in bladder cancer JM Askham et al 151 During sequencing of exon 4, we identified a second heterozygous mutation, G145A (E49K), in KU19-19 (Supplementary Figure 2), suggesting the possibility of other activating mutations in the PH domain. The mutation screen was then extended to a panel of 184 well-characterized bladder tumours. These were ana- lysed by a combination of high-resolution melting curve analysis to screen for mutations in AKT1 exon 4 and pyrosequencing as a specific assay for the E17K mutation (Supplementary Methods). Positive results were confirmed by PCR and sequencing (Supplementary Figure 1). E17K was the only mutation detected (5/184; 2.7%). This frequency is within the range published for breast, ovarian, colorectal and lung cancers (Carpten et al., 2007; Bleeker et al., 2008; Kim et al., 2008; Malanga et al., 2008). The mutation was not detected in DNA extracted from blood samples from the corresponding patients. Four of the five tumours were heterozygous for the mutation and one homo- zygous. Mutant tumours included low-grade, non- invasive (Ta grade 2) and muscle invasive (T2 grade 3) tumours. Mutation and loss of heterozygosity status Figure 1 AKT1 is constitutively active in cells with an AKT1 mutation. (a) Immunoblot analysis of lysates of sub-confluent cells for several genes that are commonly mutated in bladder grown in the presence or absence of growth factors with antibodies cancer is known for this tumour series (Platt et al., to AKT1 and phospho-AKT Thr308. In TERT-NHUC cells, 2009). AKT1 mutation was mutually exclusive with phospho-AKT levels are reduced under conditions of growth factor respect to PIK3CA mutation and PTEN loss of deprivation, but remain elevated in the cell lines with mutant heterozygosity, but not FGFR3 and TSC1 mutation. AKT1. (b) Immunoblot analysis of AKT1 immunoprecipitates from lysates of sub-confluent growth factor-deprived cells with Analysis of a much larger series of tumours will be antibodies to phospho-AKT Ser473 and Thr308. No phospho- needed to allow conclusions to be drawn about these AKT signal was detected after immunoprecipitation with the non- relationships. specific antibody. Phospho-AKT Ser473/Thr308 signals are greatly The E17K substitution in the PH domain of AKT1 elevated in KU19-19 and MGH-U3 cells compared with TERT- NHUC showing increased AKT1 activation in these cell lines in the allows localization of the protein to the plasma absence of growth factors. membrane in the absence of upstream signalling (Carpten et al., 2007). Membrane-associated AKT is activated by phosphorylation at Thr308 by PDK1 and at Ser473 by mTORC2. Consistent with this, while Thr308 (Figures 2a and b). Levels of phosphorylated phospho-AKT levels (Thr308) were markedly reduced Thr308 were modestly increased in cells expressing both by growth factor withdrawal in telomerase-immorta- AKT1-E17K and AKT1-E49K under growth factor- lized normal human urothelial cells (TERT-NHUC), starved conditions. Under the same conditions, cells levels remained the same in KU19-19 and MGH-U3 expressing AKT1-E17K and AKT1-E49K showed (Figure 1a). Specific examination of AKT1 showed that markedly increased levels of phosphorylated Ser473, phosphorylation at both Ser473 and Thr308 was AKT1-E17K having the greatest effect. Growth factor- elevated in growth factor-deprived KU19-19 and starved cells expressing AKT1-E17K þ E49K showed MGH-U3 compared with TERT-NHUC (Figure 1b), increases in phosphorylation of both Thr308 and Ser473 showing complete activation of AKT1. Although this to levels greater than those produced by either AKT1- experiment does not exclude the possibility of AKT1 E17K or AKT1-E49K alone, suggesting possible co- activation through other means in these tumour cell operation or synergy of the two mutations in AKT lines, the results are entirely consistent with the activation. Notably, cells expressing AKT1-E17K þ published effects of the E17K mutation. E49K showed the highest levels of phosphorylated To investigate the possible functional importance of Thr308 and Ser473 on growth factor reintroduction. the novel E49K mutation, AKT1 cDNA was amplified The AKT substrate GSK3b also showed elevated from KU19-19 cells by RT–PCR and cloned. During phosphorylation during starvation in AKT1-E17K and this process, it became apparent that KU19-19 cells AKT1-E17K þ E49K expressing cells compared with express three AKT1 transcripts, one wild type, one controls, although constitutive activation was lower in E17K and one E17K þ E49K (data not shown). Con-
Recommended publications
  • Defining the Akt1 Interactome and Its Role in Regulating the Cell Cycle
    www.nature.com/scientificreports OPEN Defning the Akt1 interactome and its role in regulating the cell cycle Shweta Duggal1,3, Noor Jailkhani2, Mukul Kumar Midha2, Namita Agrawal3, Kanury V. S. Rao1 & Ajay Kumar1 Received: 13 July 2017 Cell growth and proliferation are two diverse processes yet always linked. Akt1, a serine/threonine Accepted: 8 January 2018 kinase, is a multi-functional protein implicated in regulation of cell growth, survival and proliferation. Published: xx xx xxxx Though it has a role in G1/S progression, the manner by which Akt1 controls cell cycle and blends cell growth with proliferation is not well explored. In this study, we characterize the Akt1 interactome as the cell cycle progresses from G0 to G1/S and G2 phase. For this, Akt1-overexpressing HEK293 cells were subjected to AP-MS. To distinguish between individual cell cycle stages, cells were cultured in the light, medium and heavy labelled SILAC media. We obtained 213 interacting partners of Akt1 from these studies. GO classifcation revealed that a signifcant number of proteins fall into functional classes related to cell growth or cell cycle processes. Of these, 32 proteins showed varying association with Akt1 in diferent cell cycle stages. Further analyses uncovered a subset of proteins showing counteracting efects so as to tune stage-specifc progression through the cycle. Thus, our study provides some novel perspectives on Akt1-mediated regulation of the cell cycle and ofers the framework for a detailed resolution of the downstream cellular mechanisms that are mediated by this kinase. Te mammalian cell cycle consists of an ordered series of events and is a highly coordinated and regulated pro- cess1.
    [Show full text]
  • Coordinate Phosphorylation of Multiple Residues on Single AKT1 and AKT2 Molecules
    Oncogene (2014) 33, 3463–3472 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc ORIGINAL ARTICLE Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules H Guo1,6, M Gao1,6,YLu1, J Liang1, PL Lorenzi2, S Bai3, DH Hawke4,JLi1, T Dogruluk5, KL Scott5, E Jonasch3, GB Mills1 and Z Ding1 Aberrant AKT activation is prevalent across multiple human cancer lineages providing an important new target for therapy. Twenty- two independent phosphorylation sites have been identified on specific AKT isoforms likely contributing to differential isoform regulation. However, the mechanisms regulating phosphorylation of individual AKT isoform molecules have not been elucidated because of the lack of robust approaches able to assess phosphorylation of multiple sites on a single AKT molecule. Using a nanofluidic proteomic immunoassay (NIA), consisting of isoelectric focusing followed by sensitive chemiluminescence detection, we demonstrate that under basal and ligand-induced conditions that the pattern of phosphorylation events is markedly different between AKT1 and AKT2. Indeed, there are at least 12 AKT1 peaks and at least 5 AKT2 peaks consistent with complex combinations of phosphorylation of different sites on individual AKT molecules. Following insulin stimulation, AKT1 was phosphorylated at Thr308 in the T-loop and Ser473 in the hydrophobic domain. In contrast, AKT2 was only phosphorylated at the equivalent sites (Thr309 and Ser474) at low levels. Further, Thr308 and Ser473 phosphorylation occurred predominantly on the same AKT1 molecules, whereas Thr309 and Ser474 were phosphorylated primarily on different AKT2 molecules. Although basal AKT2 phosphorylation was sensitive to inhibition of phosphatidylinositol 3-kinase (PI3K), basal AKT1 phosphorylation was essentially resistant.
    [Show full text]
  • Expressed Gene Fusions As Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer
    Published OnlineFirst December 14, 2017; DOI: 10.1158/2159-8290.CD-17-0535 RESEARCH ARTICLE Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer Karina J. Matissek1,2, Maristela L. Onozato3, Sheng Sun1,2, Zongli Zheng2,3,4, Andrew Schultz1, Jesse Lee3, Kristofer Patel1, Piiha-Lotta Jerevall2,3, Srinivas Vinod Saladi1,2, Allison Macleay3, Mehrad Tavallai1,2, Tanja Badovinac-Crnjevic5, Carlos Barrios6, Nuran Beşe7, Arlene Chan8, Yanin Chavarri-Guerra9, Marcio Debiasi6, Elif Demirdögen10, Ünal Egeli10, Sahsuvar Gökgöz10, Henry Gomez11, Pedro Liedke6, Ismet Tasdelen10, Sahsine Tolunay10, Gustavo Werutsky6, Jessica St. Louis1, Nora Horick12, Dianne M. Finkelstein2,12, Long Phi Le2,3, Aditya Bardia1,2, Paul E. Goss1,2, Dennis C. Sgroi2,3, A. John Iafrate2,3, and Leif W. Ellisen1,2 ABSTRACT We sought to uncover genetic drivers of hormone receptor–positive (HR+) breast cancer, using a targeted next-generation sequencing approach for detecting expressed gene rearrangements without prior knowledge of the fusion partners. We identified inter- genic fusions involving driver genes, including PIK3CA, AKT3, RAF1, and ESR1, in 14% (24/173) of unselected patients with advanced HR+ breast cancer. FISH confirmed the corresponding chromo- somal rearrangements in both primary and metastatic tumors. Expression of novel kinase fusions in nontransformed cells deregulates phosphoprotein signaling, cell proliferation, and survival in three- dimensional culture, whereas expression in HR+ breast cancer models modulates estrogen-dependent growth and confers hormonal therapy resistance in vitro and in vivo. Strikingly, shorter overall survival was observed in patients with rearrangement-positive versus rearrangement-negative tumors. Cor- respondingly, fusions were uncommon (<5%) among 300 patients presenting with primary HR+ breast cancer.
    [Show full text]
  • Analysis of 3-Phosphoinositide-Dependent Kinase-1 Signaling and Function in ES Cells
    EXPERIMENTAL CELL RESEARCH 314 (2008) 2299– 2312 available at www.sciencedirect.com www.elsevier.com/locate/yexcr Research Article Analysis of 3-phosphoinositide-dependent kinase-1 signaling and function in ES cells Tanja Tamgüneya,b, Chao Zhangc, Dorothea Fiedlerc, Kevan Shokatc, David Stokoea,⁎ aUCSF Cancer Research Institute, USA bMolecular Medicine Program, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany cDepartment of Cellular and Molecular Pharmacology, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94115, USA ARTICLE INFORMATION ABSTRACT Article Chronology: 3-Phosphoinositide-dependent kinase-1 (PDK1) phosphorylates and activates several Received 5 February 2008 kinases in the cAMP-dependent, cGMP-dependent and protein kinase C (AGC) family. Revised version received Many putative PDK1 substrates have been identified, but have not been analyzed following 15 April 2008 transient and specific inhibition of PDK1 activity. Here, we demonstrate that a previously Accepted 16 April 2008 characterized PDK1 inhibitor, BX-795, shows biological effects that are not consistent with Available online 23 April 2008 PDK1 inhibition. Therefore, we describe the creation and characterization of a PDK1 mutant, L159G, which can bind inhibitor analogues containing bulky groups that hinder access to the − − Keywords: ATP binding pocket of wild type (WT) kinases. When expressed in PDK1 / ES cells, PDK1 PDK1 L159G restored phosphorylation of PDK1 targets known to be hypophosphorylated in these PKB/Akt cells. Screening of multiple inhibitor analogues showed that 1-NM-PP1 and 3,4-DMB-PP1 − − PI3K optimally inhibited the phosphorylation of PDK1 targets in PDK1 / ES cells expressing PDK1 Chemical genetics L159G but not WT PDK1. These compounds confirmed previously assumed PDK1 substrates, AGC kinases but revealed distinct dephosphorylation kinetics.
    [Show full text]
  • Dynamic Modelling of the Mtor Signalling Network Reveals Complex
    www.nature.com/scientificreports OPEN Dynamic modelling of the mTOR signalling network reveals complex emergent behaviours conferred by Received: 24 August 2017 Accepted: 1 December 2017 DEPTOR Published: xx xx xxxx Thawfeek M. Varusai1,4 & Lan K. Nguyen2,3,4 The mechanistic Target of Rapamycin (mTOR) signalling network is an evolutionarily conserved network that controls key cellular processes, including cell growth and metabolism. Consisting of the major kinase complexes mTOR Complex 1 and 2 (mTORC1/2), the mTOR network harbours complex interactions and feedback loops. The DEP domain-containing mTOR-interacting protein (DEPTOR) was recently identifed as an endogenous inhibitor of both mTORC1 and 2 through direct interactions, and is in turn degraded by mTORC1/2, adding an extra layer of complexity to the mTOR network. Yet, the dynamic properties of the DEPTOR-mTOR network and the roles of DEPTOR in coordinating mTORC1/2 activation dynamics have not been characterised. Using computational modelling, systems analysis and dynamic simulations we show that DEPTOR confers remarkably rich and complex dynamic behaviours to mTOR signalling, including abrupt, bistable switches, oscillations and co-existing bistable/oscillatory responses. Transitions between these distinct modes of behaviour are enabled by modulating DEPTOR expression alone. We characterise the governing conditions for the observed dynamics by elucidating the network in its vast multi-dimensional parameter space, and develop strategies to identify core network design motifs underlying these dynamics. Our fndings provide new systems-level insights into the complexity of mTOR signalling contributed by DEPTOR. Discovered in the early 1990s as an anti-fungal agent produced by the soil bacterium Streptomyces hygroscopicus, rapamycin has continually surprised scientists with its diverse clinical efects including potent immunosuppres- sive and anti-tumorigenic properties1–3.
    [Show full text]
  • Mutational Screening of RET, HRAS, KRAS, NRAS, BRAF, AKT1, and CTNNB1 in Medullary Thyroid Carcinoma
    ANTICANCER RESEARCH 31: 4179-4184 (2011) Mutational Screening of RET, HRAS, KRAS, NRAS, BRAF, AKT1, and CTNNB1 in Medullary Thyroid Carcinoma HANS-JUERGEN SCHULTEN1, JAUDAH AL-MAGHRABI2,3, KHALID AL-GHAMDI4, SHERINE SALAMA2, SAAD AL-MUHAYAWI5, ADEEL CHAUDHARY1, OSMAN HAMOUR4, ADEL ABUZENADAH1, MAMDOOH GARI1 and MOHAMMED AL-QAHTANI1 1Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia; 3Department of Pathology and 4Department of Surgery, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 5Department of Ear, Nose and Throat, Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia Abstract. Background: Screening medullary thyroid MTCs were inherited RET-positive cases. Mutational carcinomas (MTCs) for rearranged during transfection screening in HRAS, KRAS, NRAS, BRAF, AKT1, and (RET) mutations becomes increasingly important for clinical CTNNB1 disclosed one sporadic RET-negative MTC (stage assessment of the disease. The role of mutations in other III) with mutation in HRAS codon 13 (G13R). Conclusion: genes including RAS (i.e. HRAS, KRAS, and NRAS), v-raf Our study supports the clinical relevance of screening MTC murine sarcoma viral oncogene homolog B1 (BRAF), v-akt patients for RET mutations. The role of RAS mutations, in murine thymoma viral oncogene homolog 1 (AKT1), and particular HRAS mutations, in sporadic RET-negative MTC CTNNB1 (β-catenin) is unknown or not fully explored yet for has not been fully explored yet. Mutations in BRAF, AKT1, this disease. Materials and Methods: Formalin-fixed and and CTNNB1 are likely not to play a role in MTC.
    [Show full text]
  • Divergent Regulation of Akt1 and Akt2 Isoforms in Insulin Target Tissues of Obese Zucker Rats Young-Bum Kim, Odile D
    Divergent Regulation of Akt1 and Akt2 Isoforms in Insulin Target Tissues of Obese Zucker Rats Young-Bum Kim, Odile D. Peroni, Thomas F. Franke, and Barbara B. Kahn To determine whether impaired Akt (protein kinase B or rac) activation contributes to insulin resistance in vivo, we examined the expression, phosphorylation, he effect of insulin to acutely stimulate glucose and kinase activities of Akt1 and Akt2 isoforms in uptake and metabolism in peripheral tissues is insulin target tissues of insulin-resistant obese Zucker essential for normal glucose homeostasis. Resis- ؋ rats. In lean rats, insulin (10 U/kg i.v. 2.5 min) stim- tance to this effect is a major pathogenic feature ulated Akt1 activity 6.2-, 8.8-, and 4.4-fold and Akt2 T of type 2 diabetes (1,2) and contributes to the morbidity of activity 5.4-, 9.3-, and 1.8-fold in muscle, liver, and adi- pose tissue, respectively. In obese rats, insulin-stimu- obesity as well as type 1 diabetes (3). Whereas many of the lated Akt1 activity decreased 30% in muscle and 21% proximal steps in insulin signaling have been identified, the in adipose tissue but increased 37% in liver compared downstream pathways for insulin action to maintain glucose with lean littermates. Insulin-stimulated Akt2 activity homeostasis are still unknown. Insulin action involves a decreased 29% in muscle and 37% in liver but series of signaling cascades initiated by insulin binding to its increased 24% in adipose tissue. Akt2 protein levels receptor and eliciting receptor autophosphorylation and acti- were reduced 56% in muscle and 35% in liver of obese vation of receptor tyrosine kinases, which result in tyrosine rats, but Akt1 expression was unaltered.
    [Show full text]
  • Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S
    crossmark Research Author’s Choice © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S Rolf Turk‡§¶ʈ**, Jordy J. Hsiao¶, Melinda M. Smits¶, Brandon H. Ng¶, Tyler C. Pospisil‡§¶ʈ**, Kayla S. Jones‡§¶ʈ**, Kevin P. Campbell‡§¶ʈ**, and Michael E. Wright¶‡‡ Mutations in genes encoding components of the sar- The muscular dystrophies are hereditary diseases charac- colemmal dystrophin-glycoprotein complex (DGC) are re- terized primarily by the progressive degeneration and weak- sponsible for a large number of muscular dystrophies. As ness of skeletal muscle. Most are caused by deficiencies in such, molecular dissection of the DGC is expected to both proteins associated with the cell membrane (i.e. the sarco- reveal pathological mechanisms, and provides a biologi- lemma in skeletal muscle), and typical features include insta- cal framework for validating new DGC components. Es- bility of the sarcolemma and consequent death of the myofi- tablishment of the molecular composition of plasma- ber (1). membrane protein complexes has been hampered by a One class of muscular dystrophies is caused by mutations lack of suitable biochemical approaches. Here we present in genes that encode components of the sarcolemmal dys- an analytical workflow based upon the principles of pro- tein correlation profiling that has enabled us to model the trophin-glycoprotein complex (DGC). In differentiated skeletal molecular composition of the DGC in mouse skeletal mus- muscle, this structure links the extracellular matrix to the cle. We also report our analysis of protein complexes in intracellular cytoskeleton.
    [Show full text]
  • Signaling Cascade /Nfatc1 Β Through Regulating the GSK3 Akt Induces
    Akt Induces Osteoclast Differentiation through Regulating the GSK3 β/NFATc1 Signaling Cascade This information is current as Jang Bae Moon, Jung Ha Kim, Kabsun Kim, Bang Ung of September 25, 2021. Youn, Aeran Ko, Soo Young Lee and Nacksung Kim J Immunol 2012; 188:163-169; Prepublished online 30 November 2011; doi: 10.4049/jimmunol.1101254 http://www.jimmunol.org/content/188/1/163 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/11/30/jimmunol.110125 Material 4.DC1 http://www.jimmunol.org/ References This article cites 37 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/188/1/163.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Akt Induces Osteoclast Differentiation through Regulating the GSK3b/NFATc1 Signaling Cascade Jang Bae Moon,* Jung Ha Kim,* Kabsun Kim,* Bang Ung Youn,* Aeran Ko,* Soo Young Lee,† and Nacksung Kim* SHIP is an SH2-containing inositol-5-phosphatase expressed in hematopoietic cells.
    [Show full text]
  • PLK1 Inhibition Exhibits Strong Anti-Tumoral Activity in CCND1-Driven Breast Cancer Metastases with Acquired Palbociclib Resistance
    ARTICLE https://doi.org/10.1038/s41467-020-17697-1 OPEN PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance Elodie Montaudon1, Joanna Nikitorowicz-Buniak2, Laura Sourd1, Ludivine Morisset1, Rania El Botty1, Léa Huguet1, Ahmed Dahmani1, Pierre Painsec1, Fariba Nemati 1,SophieVacher3, Walid Chemlali3, Julien Masliah-Planchon3, Sophie Château-Joubert4, Camilla Rega2, Mariana Ferreira Leal2, Nikiana Simigdala2, Sunil Pancholi 2, Ricardo Ribas2, André Nicolas5, Didier Meseure5, Anne Vincent-Salomon5, Cécile Reyes1, Audrey Rapinat1, David Gentien1, Thibaut Larcher 6, Mylène Bohec7, Sylvain Baulande 7, Virginie Bernard3, Didier Decaudin1,8, 1234567890():,; Florence Coussy1,8, Muriel Le Romancer9, Guillaume Dutertre10, Zakia Tariq3, Paul Cottu 8, Keltouma Driouch3, ✉ Ivan Bièche3, Lesley-Ann Martin2,11 & Elisabetta Marangoni 1,11 A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Here we perform whole exome sequencing and gene expression analysis of matched primary breast tumours and bone metastasis-derived patient-derived xenografts (PDX). Tran- scriptomic analyses reveal enrichment of the G2/M checkpoint and up-regulation of Polo-like kinase 1 (PLK1) in PDX. PLK1 inhibition results in tumour shrinkage in highly proliferating CCND1-driven PDX, including different RB-positive PDX with acquired palbociclib resistance. Mechanistic studies in endocrine resistant cell lines, suggest an ER-independent function of PLK1 in regulating cell proliferation. Finally, in two independent clinical cohorts of ER positive BC, we find a strong association between high expression of PLK1 and a shorter metastases- free survival and poor response to anastrozole.
    [Show full text]
  • Vimentin Is a Novel AKT1 Target Mediating Motility and Invasion
    Oncogene (2011) 30, 457–470 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Vimentin is a novel AKT1 target mediating motility and invasion Q-S Zhu1, K Rosenblatt2, K-L Huang1, G Lahat1, R Brobey2, S Bolshakov1, T Nguyen1, Z Ding3, R Belousov1, K Bill1, X Luo4, A Lazar5, A Dicker6, GB Mills3, M-C Hung7,8 and D Lev9 1Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Center for Proteomics, The University of Texas Brown Foundation Institute of Molecular Medicine, TX, USA; 3Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 4Mass Spectrometry Core Lab, The University of Texas Medical Branch, Galveston, TX, USA; 5Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 6Department of Radiation Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA; 7Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 8Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan and 9Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA The PI3K/AKT signaling pathway is aberrant in a wide Introduction variety of cancers. Downstream effectors of AKT are involved in survival, growth and metabolic-related path- AKT kinase is a convergence point for multiple ways. In contrast, contradictory data relating to AKT extracellular and other upstream signals functioning as effects on cell motility and invasion, crucial prometastatic a master switch to generate a plethora of intracellular processes, have been reported pointing to a potential signals and responses.
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]