Fast and Live Hypervisor Replacement Spoorti Doddamani Piush Sinha Hui Lu Binghamton University Binghamton University Binghamton University New York, USA New York, USA New York, USA
[email protected] [email protected] [email protected] Tsu-Hsiang K. Cheng Hardik H. Bagdi Kartik Gopalan Binghamton University Binghamton University Binghamton University New York, USA New York, USA New York, USA
[email protected] [email protected] [email protected] Abstract International Conference on Virtual Execution Environments (VEE Hypervisors are increasingly complex and must be often ’19), April 14, 2019, Providence, RI, USA. ACM, New York, NY, USA, updated for applying security patches, bug fixes, and feature 14 pages. https://doi.org/10.1145/3313808.3313821 upgrades. However, in a virtualized cloud infrastructure, up- 1 Introduction dates to an operational hypervisor can be highly disruptive. Before being updated, virtual machines (VMs) running on Virtualization-based server consolidation is a common prac- a hypervisor must be either migrated away or shut down, tice in today’s cloud data centers [2, 24, 43]. Hypervisors host resulting in downtime, performance loss, and network over- multiple virtual machines (VMs), or guests, on a single phys- head. We present a new technique, called HyperFresh, to ical host to improve resource utilization and achieve agility transparently replace a hypervisor with a new updated in- in resource provisioning for cloud applications [3, 5–7, 50]. stance without disrupting any running VMs. A thin shim Hypervisors must be often updated or replaced for various layer, called the hyperplexor, performs live hypervisor re- purposes, such as for applying security/bug fixes [23, 41] placement by remapping guest memory to a new updated adding new features [15, 25], or simply for software reju- hypervisor on the same machine.