Squeezing the Fossil Record
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Post-Paleozoic Crinoid Radiation in Response to Benthic Predation Preceded the Mesozoic Marine Revolution
Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution Tomasz K. Baumillera,1, Mariusz A. Salamonb, Przemysław Gorzelakc, Rich Mooid, Charles G. Messinge, and Forest J. Gahnf aMuseum of Paleontology and Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48105; bFaculty of Earth Sciences, University of Silesia, PL-41-200 Sosnowiec, Poland; cInstitute of Paleobiology, Polish Academy of Sciences, PL 00-818 Warsaw, Poland; dDepartment of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA 94118; eOceanographic Center, Nova Southeastern University, Dania Beach, FL 33004; and fDepartment of Geology, Brigham Young University–Idaho, Rexburg, ID 83460 Edited by David J. Bottjer, University of Southern California, Los Angeles, CA, and accepted by the Editorial Board February 16, 2010 (received for review December 10, 2009) It has been argued that increases in predation over geological time To further explore the interaction between extant cidaroids and should result in increases in defensive adaptations in prey taxa. Recent crinoids, to test for evidence of the interaction in the geologic past, in situ and laboratory observations indicate that cidaroid sea urchins and to identify its evolutionary consequences, we conducted aquar- feed on live stalked crinoids, leaving distinct bite marks on their skeletal ium experiments, analyzed samples of Triassic fossil crinoids, and elements. Similar bite marks on fossil crinoids from Poland strongly examined -
Early Stalked Stages in Ontogeny of the Living Isocrinid Sea Lily Metacrinus Rotundus
Published for The Royal Swedish Academy of Sciences and The Royal Danish Academy of Sciences and Letters Acta Zoologica (Stockholm) 97: 102–116 (January 2016) doi: 10.1111/azo.12109 Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus Shonan Amemiya,1,2,3 Akihito Omori,4 Toko Tsurugaya,4 Taku Hibino,5 Masaaki Yamaguchi,6 Ritsu Kuraishi,3 Masato Kiyomoto2 and Takuya Minokawa7 Abstract 1Department of Integrated Biosciences, Amemiya,S.,Omori,A.,Tsurugaya,T.,Hibino,T.,Yamaguchi,M.,Kuraishi,R., Graduate School of Frontier Sciences, The Kiyomoto,M.andMinokawa,T.2016.Earlystalkedstagesinontogenyoftheliving University of Tokyo, Kashiwa, Chiba, isocrinid sea lily Metacrinus rotundus. — Acta Zoologica (Stockholm) 97: 102–116. 277-8526, Japan; 2Marine and Coastal Research Center, Ochanomizu University, The early stalked stages of an isocrinid sea lily, Metacrinus rotundus,wereexam- Ko-yatsu, Tateyama, Chiba, 294-0301, ined up to the early pentacrinoid stage. Larvae induced to settle on bivalve shells 3 Japan; Research and Education Center of and cultured in the laboratory developed into late cystideans. Three-dimensional Natural Sciences, Keio University, Yoko- (3D) images reconstructed from very early to middle cystideans indicated that hama, 223-8521, Japan; 4Misaki Marine 15 radial podia composed of five triplets form synchronously from the crescent- Biological Station, Graduate School of Sci- ence, The University of Tokyo, Misaki, shaped hydrocoel. The orientation of the hydrocoel indicated that the settled Kanagawa, 238-0225, Japan; 5Faculty of postlarvae lean posteriorly. In very early cystideans, the orals, radials, basals and Education, Saitama University, 255 Shim- infrabasals, with five plates each in the crown, about five columnals in the stalk, o-Okubo, Sakura-ku, Saitama City, 338- and five terminal stem plates in the attachment disc, had already formed. -
Isocrinid Crinoids from the Late Cenozoic of Jamaica
A tlantic G eology 195 Isocrinid crinoids from the late Cenozoic of Jamaica Stephen K. Donovan Department of Geology, University of the West Indies, Mona, Kingston 7, Jamaica Date Received April 8, 1994 Date A ccepted A ugust 26, 1994 Eight species of isocrinines have been documented from the Lower Cretaceous to Pleistocene of Jamaica. New finds include a second specimen of a Miocene species from central north Jamaica, previously regarded as Diplocrinus sp. but reclassified as Teliocrinus? sp. herein. Extant Teliocrinus is limited to the Indian Ocean, although Miocene specimens have been recorded from Japan, indicating a wider distribution during the Neogene. One locality in the early Pleistocene Manchioneal Formation of eastern Jamaica has yielded three species of isocrinine, Cenocrirtus asterius (Linne), Diplocrinus maclearanus (Thomson) and Neocrinus decorus Thomson. These occur in association with the bourgueticrinine Democrinus sp. or Monachocrinus sp. These taxa are all extant and suggest a minimum depositional depth for the Manchioneal Formation at this locality of about 180 m. This early Pleistocene fauna represents the most diverse assemblage of fossil crinoids docu mented from the Antillean region. Huit especes d’isocrinines de la periode du Cretace inferieur au Pleistocene de la Jamai'que ont ete documentees. Les nouvelles decouvertes comprennent un deuxieme specimen d’une espece du Miocene du nord central de la Jamai'que, auparavant consideree comme l’espece Diplocrinus, mais reclassifiee en tant que Teliocrinus? aux presentes. Le Teliocrinus existant est limite a l’ocean Indien, meme si on a releve des specimens du Miocene au Japon, ce qui est revelateur d’une distribution plus repandue au cours du Neogene. -
THE ECHINODERM NEWSLETTER Number 22. 1997 Editor: Cynthia Ahearn Smithsonian Institution National Museum of Natural History Room
•...~ ..~ THE ECHINODERM NEWSLETTER Number 22. 1997 Editor: Cynthia Ahearn Smithsonian Institution National Museum of Natural History Room W-31S, Mail Stop 163 Washington D.C. 20560, U.S.A. NEW E-MAIL: [email protected] Distributed by: David Pawson Smithsonian Institution National Museum of Natural History Room W-321, Mail Stop 163 Washington D.C. 20560, U.S.A. The newsletter contains information concerning meetings and conferences, publications of interest to echinoderm biologists, titles of theses on echinoderms, and research interests, and addresses of echinoderm biologists. Individuals who desire to receive the newsletter should send their name, address and research interests to the editor. The newsletter is not intended to be a part of the scientific literature and should not be cited, abstracted, or reprinted as a published document. A. Agassiz, 1872-73 ., TABLE OF CONTENTS Echinoderm Specialists Addresses Phone (p-) ; Fax (f-) ; e-mail numbers . ........................ .1 Current Research ........•... .34 Information Requests .. .55 Announcements, Suggestions .. • .56 Items of Interest 'Creeping Comatulid' by William Allison .. .57 Obituary - Franklin Boone Hartsock .. • .58 Echinoderms in Literature. 59 Theses and Dissertations ... 60 Recent Echinoderm Publications and Papers in Press. ...................... • .66 New Book Announcements Life and Death of Coral Reefs ......•....... .84 Before the Backbone . ........................ .84 Illustrated Encyclopedia of Fauna & Flora of Korea . • •• 84 Echinoderms: San Francisco. Proceedings of the Ninth IEC. • .85 Papers Presented at Meetings (by country or region) Africa. • .96 Asia . ....96 Austral ia .. ...96 Canada..... • .97 Caribbean •. .97 Europe. .... .97 Guam ••• .98 Israel. 99 Japan .. • •.••. 99 Mexico. .99 Philippines .• . .•.•.• 99 South America .. .99 united States .•. .100 Papers Presented at Meetings (by conference) Fourth Temperate Reef Symposium................................•...... -
Predation, Resistance, and Escalation in Sessile Crinoids
Predation, resistance, and escalation in sessile crinoids by Valerie J. Syverson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in the University of Michigan 2014 Doctoral Committee: Professor Tomasz K. Baumiller, Chair Professor Daniel C. Fisher Research Scientist Janice L. Pappas Professor Emeritus Gerald R. Smith Research Scientist Miriam L. Zelditch © Valerie J. Syverson, 2014 Dedication To Mark. “We shall swim out to that brooding reef in the sea and dive down through black abysses to Cyclopean and many-columned Y'ha-nthlei, and in that lair of the Deep Ones we shall dwell amidst wonder and glory for ever.” ii Acknowledgments I wish to thank my advisor and committee chair, Tom Baumiller, for his guidance in helping me to complete this work and develop a mature scientific perspective and for giving me the academic freedom to explore several fruitless ideas along the way. Many thanks are also due to my past and present labmates Alex Janevski and Kris Purens for their friendship, moral support, frequent and productive arguments, and shared efforts to understand the world. And to Meg Veitch, here’s hoping we have a chance to work together hereafter. My committee members Miriam Zelditch, Janice Pappas, Jerry Smith, and Dan Fisher have provided much useful feedback on how to improve both the research herein and my writing about it. Daniel Miller has been both a great supervisor and mentor and an inspiration to good scholarship. And to the other paleontology grad students and the rest of the department faculty, thank you for many interesting discussions and much enjoyable socializing over the last five years. -
Age of Crinoids”: a Mississippian Biodiversity Spike Coincident with Widespread Carbonate Ramps
THE “AGE OF CRINOIDS”: A MISSISSIPPIAN BIODIVERSITY SPIKE COINCIDENT WITH WIDESPREAD CARBONATE RAMPS Thomas W. Kammer Department of Geology and Geography West Virginia University www.geo.wvu.edu Palaios, June 2006 Kammer, T.W. and Ausich, W.I. 2006. The “Age of Crinoids”: A Mississippian Biodiversity Spike Coincident with Widespread Carbonate Ramps. Palaios, v. 21, p. 238-248. Key Points of this Talk • Key Point 1 – Crinoids reached their maximum generic richness during the Mississippian. • Key Point 2 – During the Mississippian the transition between the Middle Paleozoic and Late Paleozoic macroevolutionary faunas occurred. • Key Point 3 – The evolutionary replacement of the camerates by the advanced cladids. One pinnulate clade replaces another. • Key Point 4 – Crinoids were abundant as evidenced by widespread global encrinites. • Key Point 5 – The Late Devonian (F-F) extinction event wiped out reef ecosystems. • Key Point 6 – Carbonate ramps replaced carbonate platforms, increasing habitat space for stenohaline crinoids. Echinoderms: 21 classes (16 extinct) including: • Crinoids •Blastoids • Cystoids • Edrioasteroids •Asteroids • Ophiuroids • Echinoids • Holothurians Crinoid Blastoid Cystoid Edrioasteroid Asteroid Ophiuroid Echinoids: sand dollar (left) sea biscuit (below) Holothurian: sea cucumber Diversity of crinoid genera over geologic time. High modern diversity is a taphonomic artifact (Broadhead and Waters, 1980). Classification of Crinoids • Paleozoic Crinoids – Subclass Camerata: pinnulate arms – Subclass Disparida: nonpinnulate arms – Subclass Cladida: nonpinnulate and pinnulate – Subclass Flexibilia: nonpinnulate arms • Mesozoic and Cenozoic Crinoids – Subclass Articulata: pinnulate arms • Isocrinids - stalked • Comatulids - free living Encrinus, the survivor of the Permian extinction event, founder of the Articulata Endoxocrinus at a depth of 692 m, Bahamas Photo by Chuck Messing Endoxocrinus, 430 m, Bahamas Photo by Chuck Messing Neocrinus, 424 m, Bahamas Photo by Chuck Messing Neocrinus, 424 m, Bahamas. -
The First Record of an Isocrinid Crinoid from the Tertiary of Australia
Rec. Wes/. AWl. Mw 1989 14(Jj J85-J89 The first record of an isocrinid crinoid from the Tertiary of Australia Gregory J. Milner* Abstract An isocrinid crinoid. tcntatively assigned to :'Nielsenicrinus sp., from the Paleogcne Cardabia Calcarenite, Carnarvon Basin, Western Australia is the first record of the group in the Australian lertiary. Foraminiferal evidencc dates the cnnoid as latc Paleocene (mid Thanetian, planktonic foraminiferal Planorotalites pseudomenardii Zone 1'4). The crinoid lived in an open shelf sea at SOm to lOOm depth. Introduction Within Australia articulate crinoids of the Isocrinidae have previously been described only from Cretaceous deposits in Queensland and New South Wales (eg: Moore 1870; Jack and Etheridge 1892, Etheridge 190 I, 1902). During recent stratigraphic fieldwork in Toothawarra Creek, northern Carnarvon Basin, Western Australia (latitude 220 49' 45" S and longitude 1140 08' 30" E, Fig. I) crinoidal remains were collected from a homogenous, soft, white, bryozoal calcarenite bed ofthe Wadera Member type-section, Cardabia Calcarenite (Condon et al. 1956; Hocking et al. 1987) near the contact with the underlying Boongerooda Greensand Member. Indian 30' OCean 40 km 30' x Figure I Locality map showing collection location as denoted by X. *Department of Geology, the University of Western Australia, Nedlands, 6009 3~5 F'irst record of isocrinid crinoid Many isocrinids have been assigned generic names on the basis of stem elements (Rasmussen 1961). Although reservations concerning this practice were expressed by Moore as early as 1939, and later Donovan (1984), it has continued, mainly because of the lack of diagnostic calyx or cup elements in recovered material. -
Paleontological Contributions
THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS February 10, 1975 Paper 74 THE MICROSTRUCTURE OF THE CRINOID ENDOSKELETON' DONALD B. MACURDA, JR. AND DAVID L. MEYER The University of Michigan, Ann Arbor; Smithsonian Tropical Research Institute, Balboa, Panama ABSTRACT The microstructure of the crinoid endoskeleton is highly differentiated in Recent crinoids, reflecting types of tissue, the functions of the plates, and the autecology of the animals. Stem plates are interconnected by long ligament fibers that penetrate into the skeleton, producing a galleried structure. Both movable and immovable articulations exist; specialized projections stabilize the plates along a fulcral ridge in some synarthries. The cirri, attached to a nodal stem plate or a centrodorsal, have differentiated articular surfaces in which the greater development of ligaments in a dorsal (lower) position enhances their clasping power. Accessory nerve canals are present in some stem plates and penetrate the basais into the region of the axial organ. The basais and radials are pierced by intricate nerve canals that give rise to branches enclosed within the brachials. Several types of articulations are found within the arms. The muscular articulation, divided into three parts, has galleried microstructure in two of these for the long ligament fibers that penetrate the skeleton, whereas muscle tissue does not and is reflected in a more disordered or labyrinthic microstructure. Many fulcral ridges show wear. Other arm articulations such as syzygies, synarthries, and symplexies have highly differentiated, three-dimensional surfaces. A pinnule articulates with the brachial on an asymmetrical muscular articulation. By having subsequent pinnular articulations articulate in a differ- ent plane and also modifying the fulcral ridges, great flexibility can be achieved in some pinnules. -
Artificial Keys to the Genera of Living Stalked Crinoids (Echinodermata) Michel Roux Universite De Reims - France
Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences 5-1-2002 Artificial Keys to the Genera of Living Stalked Crinoids (Echinodermata) Michel Roux Universite de Reims - France Charles G. Messing Nova Southeastern University, [email protected] Nadia Améziane Muséum national d'Histoire naturelle - Paris, France Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Roux, Michel, Charles G. Messing, and Nadia Ameziane. "Artificial keys to the genera of living stalked crinoids (Echinodermata)." Bulletin of Marine Science 70, no. 3 (2002): 799-830. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. BULLETIN OF MARINE SCIENCE, 70(3): 799–830, 2002 ARTIFICIAL KEYS TO THE GENERA OF LIVING STALKED CRINOIDS (ECHINODERMATA) Michel Roux, Charles G. Messing and Nadia Améziane ABSTRACT Two practical, illustrated, dichotomous keys to the 29 genera of living stalked crinoids are provided: one for entire animals and one for stalk ossicles and fragments. These are accompanied by (1) an overview of taxonomically important morphology, and (2) an alphabetical list by family and genus of the ~95 nominal living species and their distribu- tion by region. This is the first compilation of such data for all living stalked crinoids since Carpenter (1884) recognized 27 species in six genera in his monograph based on the H.M.S. -
Towards a Systematic Standard Approach to Describing Fossil Crinoids, Illustrated by the Redescription of a Scott Ish Silurian Pisocrinus De Koninck
Towards a systematic standard approach to describing fossil crinoids, illustrated by the redescription of a Scott ish Silurian Pisocrinus de Koninck F.E. Fearnhead Fearnhead, F.E. Towards a systematic standard approach to describing fossil crinoids, illustrated by the redescription of a Scott ish Silurian Pisocrinus de Koninck. Scripta Geologica, 136: 39-61, 2 pls., 4 fi gs., 2 tables, Leiden, March 2008. Fiona E. Fearnhead, School of Earth Sciences, Birkbeck College, University of London, Malet Street, Bloomsbury, London, WC1E 7HX, England, and Department of Geology, Nationaal Natuurhistorisch Museum, Naturalis. Postbus 9517, NL-2300 RA Leiden, The Netherlands ([email protected]). Key words – Crinoidea, descriptions, Scotland, systematics, Pisocrinus. Systematic taxonomy requires thoughtful, detailed and structured descriptions of species characters, and essential additional data for eff ective comparison with other specimens. Crinoid terminology is commonly misused or at best confused. The purpose of this paper is to facilitate this process by encour- aging a standard methodology which would make comparisons of fossil crinoid taxa easier for all. An ordered tabulation of those characters that should be considered in any description of a fossil crinoid is provided and implemented in describing a Scott ish Llandovery (Lower Silurian) disparid crinoid Piso- crinus cf. campana S.A. Miller. Contents Introduction ............................................................................................................................................................. -
Palaeoenvironmental Control on Distribution of Crinoids in the Bathonian (Middle Jurassic) of England and France
Palaeoenvironmental control on distribution of crinoids in the Bathonian (Middle Jurassic) of England and France AARON W. HUNTER and CHARLIE J. UNDERWOOD Hunter A.W. and Underwood C.J. 2009. Palaeoenvironmental control on distribution of crinoids in the Bathonian (Mid− dle Jurassic) of England and France. Acta Palaeontologica Polonica 54 (1): 77–98. Bulk sampling of a number of different marine and marginal marine lithofacies in the British Bathonian has allowed us to as− sess the palaeoenvironmental distribution of crinoids for the first time. Although remains are largely fragmentary, many spe− cies have been identified by comparison with articulated specimens from elsewhere, whilst the large and unbiased sample sizes allowed assessment of relative proportions of different taxa. Results indicate that distribution of crinoids well corre− sponds to particular facies. Ossicles of Chariocrinus and Balanocrinus dominate in deeper−water and lower−energy facies, with the former extending further into shallower−water facies than the latter. Isocrinus dominates in shallower water carbon− ate facies, accompanied by rarer comatulids, and was also present in the more marine parts of lagoons. Pentacrinites remains are abundant in very high−energy oolite shoal lithofacies. The presence of millericrinids within one, partly allochthonous lithofacies suggests the presence of an otherwise unknown hard substrate from which they have been transported. These re− sults are compared to crinoid assemblages from other Mesozoic localities, and it is evident that the same morphological ad− aptations are present within crinoids from similar lithofacies throughout the Jurassic and Early Cretaceous. Key words: Echinodermata, Crinoidea, lithofacies, palaeoecology, Jurassic, Bathonian, England, France. Aaron W. Hunter [[email protected]] and Charlie J. -
Crinoids (E.G., Refs
Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification Klaus Wolkenstein1 Department of Geobiology, Geoscience Centre, University of Göttingen, 37077 Göttingen, Germany Edited by Tomasz K. Baumiller, University of Michigan, Ann Arbor, MI, and accepted by the Editorial Board January 20, 2015 (received for review September 9, 2014) Secondary metabolites often play an important role in the adapta- (14, 15), closely related to the gymnochromes, suggesting that the tion of organisms to their environment. However, little is known fossil pigments may be only slightly changed during diagenesis. about the secondary metabolites of ancient organisms and their Although violet coloration has been occasionally observed in fossil evolutionary history. Chemical analysis of exceptionally well-pre- crinoids (e.g., refs. 16 and 17), until now, only very few chemical served colored fossil crinoids and modern crinoids from the deep sea proofs of quinone pigments have been found for crinoids other than suggests that bioactive polycyclic quinones related to hypericin Liliocrinus (14, 15, 18, 19). Recent measurements suggested the were, and still are, globally widespread in post-Paleozoic crinoids. presence of quinone-like compounds in Paleozoic (Mississippian) The discovery of hypericinoid pigments both in fossil and in present- crinoids (20), but the identity of these compounds has been ques- day representatives of the order Isocrinida indicates that the pig- tioned on methodological grounds (21). ments remained almost unchanged since the Mesozoic, also suggest- To investigate the general occurrence of polycyclic quinone ing that the original color of hypericinoid-containing ancient crinoids pigments in the Crinoidea, the coloration of numerous fossil may have been analogous to that of their modern relatives.