Received: 19 December 2017 Revised: 9 February 2018 Accepted: 9 February 2018 DOI: 10.1002/yea.3311 ECOYEAST REVIEW Nectar yeasts: a natural microcosm for ecology Callie R. Chappell | Tadashi Fukami Department of Biology, Stanford University, Stanford, CA 94305, USA Abstract Correspondence The species of yeasts that colonize floral nectar can modify the mutualistic relationships between Tadashi Fukami, Department of Biology, plants and pollinators by changing the chemical properties of nectar. Recent evidence supporting Stanford University, Stanford, CA 94305, USA. this possibility has led to increased interest among ecologists in studying these fungi as well as Email:
[email protected] the bacteria that interact with them in nectar. Although not fully explored, nectar yeasts also con- stitute a promising natural microcosm that can be used to facilitate development of general eco- Funding information logical theory. We discuss the methodological and conceptual advantages of using nectar yeasts National Science Foundation, Grant/Award Number: DEB 1149600, DEB 1737758, DGE from this perspective, including simplicity of communities, tractability of dispersal, replicability of 1656518; Stanford Graduate Fellowship community assembly, and the ease with which the mechanisms of species interactions can be studied in complementary experiments conducted in the field and the laboratory. To illustrate the power of nectar yeasts as a study system, we discuss several topics in community ecology, including environmental filtering, priority effects, and metacommunity dynamics. An exciting new direction is to integrate metagenomics and comparative genomics into nectar yeast research to address these fundamental ecological topics. KEYWORDS alternative stable states, metacommunity, nectar bacteria, nectar yeasts, pollination, priority effects 1 | INTRODUCTION a natural microcosm.