Edges and Binary Image Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scale Invariant Interest Points with Shearlets
Scale Invariant Interest Points with Shearlets Miguel A. Duval-Poo1, Nicoletta Noceti1, Francesca Odone1, and Ernesto De Vito2 1Dipartimento di Informatica Bioingegneria Robotica e Ingegneria dei Sistemi (DIBRIS), Universit`adegli Studi di Genova, Italy 2Dipartimento di Matematica (DIMA), Universit`adegli Studi di Genova, Italy Abstract Shearlets are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal discon- tinuities such as edges and corners at multiple scales. In this work we address the problem of detecting and describing blob-like features in the shearlets framework. We derive a measure which is very effective for blob detection and closely related to the Laplacian of Gaussian. We demon- strate the measure satisfies the perfect scale invariance property in the continuous case. In the discrete setting, we derive algorithms for blob detection and keypoint description. Finally, we provide qualitative justifi- cations of our findings as well as a quantitative evaluation on benchmark data. We also report an experimental evidence that our method is very suitable to deal with compressed and noisy images, thanks to the sparsity property of shearlets. 1 Introduction Feature detection consists in the extraction of perceptually interesting low-level features over an image, in preparation of higher level processing tasks. In the last decade a considerable amount of work has been devoted to the design of effective and efficient local feature detectors able to associate with a given interesting point also scale and orientation information. Scale-space theory has been one of the main sources of inspiration for this line of research, providing an effective framework for detecting features at multiple scales and, to some extent, to devise scale invariant image descriptors. -
Snakes, Shapes, and Gradient Vector Flow
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 3, MARCH 1998 359 Snakes, Shapes, and Gradient Vector Flow Chenyang Xu, Student Member, IEEE, and Jerry L. Prince, Senior Member, IEEE Abstract—Snakes, or active contours, are used extensively in There are two key difficulties with parametric active contour computer vision and image processing applications, particularly algorithms. First, the initial contour must, in general, be to locate object boundaries. Problems associated with initializa- close to the true boundary or else it will likely converge tion and poor convergence to boundary concavities, however, have limited their utility. This paper presents a new external force to the wrong result. Several methods have been proposed to for active contours, largely solving both problems. This external address this problem including multiresolution methods [11], force, which we call gradient vector flow (GVF), is computed pressure forces [10], and distance potentials [12]. The basic as a diffusion of the gradient vectors of a gray-level or binary idea is to increase the capture range of the external force edge map derived from the image. It differs fundamentally from fields and to guide the contour toward the desired boundary. traditional snake external forces in that it cannot be written as the negative gradient of a potential function, and the corresponding The second problem is that active contours have difficulties snake is formulated directly from a force balance condition rather progressing into boundary concavities [13], [14]. There is no than a variational formulation. Using several two-dimensional satisfactory solution to this problem, although pressure forces (2-D) examples and one three-dimensional (3-D) example, we [10], control points [13], domain-adaptivity [15], directional show that GVF has a large capture range and is able to move snakes into boundary concavities. -
Fast Image Registration Using Pyramid Edge Images
Fast Image Registration Using Pyramid Edge Images Kee-Baek Kim, Jong-Su Kim, Sangkeun Lee, and Jong-Soo Choi* The Graduate School of Advanced Imaging Science, Multimedia and Film, Chung-Ang University, Seoul, Korea(R.O.K) *Corresponding author’s E-mail address: [email protected] Abstract: Image registration has been widely used in many image processing-related works. However, the exiting researches have some problems: first, it is difficult to find the accurate information such as translation, rotation, and scaling factors between images; and it requires high computational cost. To resolve these problems, this work proposes a Fourier-based image registration using pyramid edge images and a simple line fitting. Main advantages of the proposed approach are that it can compute the accurate information at sub-pixel precision and can be carried out fast for image registration. Experimental results show that the proposed scheme is more efficient than other baseline algorithms particularly for the large images such as aerial images. Therefore, the proposed algorithm can be used as a useful tool for image registration that requires high efficiency in many fields including GIS, MRI, CT, image mosaicing, and weather forecasting. Keywords: Image registration; FFT; Pyramid image; Aerial image; Canny operation; Image mosaicing. registration information as image size increases [3]. 1. Introduction To solve these problems, this work employs a pyramid-based image decomposition scheme. Image registration is a basic task in image Specifically, first, we use the Gaussian filter to processing to combine two or more images that are remove the noise because it causes many undesired partially overlapped. -
Good Colour Maps: How to Design Them
Good Colour Maps: How to Design Them Peter Kovesi Centre for Exploration Targeting School of Earth and Environment The University of Western Australia Crawley, Western Australia, 6009 [email protected] September 2015 Abstract Many colour maps provided by vendors have highly uneven percep- tual contrast over their range. It is not uncommon for colour maps to have perceptual flat spots that can hide a feature as large as one tenth of the total data range. Colour maps may also have perceptual discon- tinuities that induce the appearance of false features. Previous work in the design of perceptually uniform colour maps has mostly failed to recognise that CIELAB space is only designed to be perceptually uniform at very low spatial frequencies. The most important factor in designing a colour map is to ensure that the magnitude of the incre- mental change in perceptual lightness of the colours is uniform. The specific requirements for linear, diverging, rainbow and cyclic colour maps are developed in detail. To support this work two test images for evaluating colour maps are presented. The use of colour maps in combination with relief shading is considered and the conditions under which colour can enhance or disrupt relief shading are identified. Fi- nally, a set of new basis colours for the construction of ternary images arXiv:1509.03700v1 [cs.GR] 12 Sep 2015 are presented. Unlike the RGB primaries these basis colours produce images whereby the salience of structures are consistent irrespective of the assignment of basis colours to data channels. 1 Introduction A colour map can be thought of as a line or curve drawn through a three dimensional colour space. -
Sobel Operator and Canny Edge Detector ECE 480 Fall 2013 Team 4 Daniel Kim
P a g e | 1 Sobel Operator and Canny Edge Detector ECE 480 Fall 2013 Team 4 Daniel Kim Executive Summary In digital image processing (DIP), edge detection is an important subject matter. There are numerous edge detection methods such as Prewitt, Kirsch, and Robert cross. Two different types of edge detectors are explored and analyzed in this paper: Sobel operator and Canny edge detector. The performance of two edge detection methods are then compared with several input images. Keywords : Digital Image Processing, Edge Detection, Sobel Operator, Canny Edge Detector, Computer Vision, OpenCV P a g e | 2 Table of Contents 1| Introduction……………………………………………………………………………. 3 2|Sobel Operator 2.1 Background……………………………………………………………………..3 2.2 Example………………………………………………………………………...4 3|Canny Edge Detector 3.1 Background…………………………………………………………………….5 3.2 Example………………………………………………………………………...5 4|Comparison of Sobel and Canny 4.1 Discussion………………………………………………………………………6 4.2 Example………………………………………………………………………...7 5|Conclusion………………………………………………………………………............7 6|Appendix 6.1 OpenCV Sobel tutorial code…............................................................................8 6.2 OpenCV Canny tutorial code…………..…………………………....................9 7|Reference………………………………………………………………………............10 P a g e | 3 1) Introduction Edge detection is a crucial step in object recognition. It is a process of finding sharp discontinuities in an image. The discontinuities are abrupt changes in pixel intensity which characterize boundaries of objects in a scene. In short, the goal of edge detection is to produce a line drawing of the input image. The extracted features are then used by computer vision algorithms, e.g. recognition and tracking. A classical method of edge detection involves the use of operators, a two dimensional filter. An edge in an image occurs when the gradient is greatest. -
View Matching with Blob Features
View Matching with Blob Features Per-Erik Forssen´ and Anders Moe Computer Vision Laboratory Department of Electrical Engineering Linkoping¨ University, Sweden Abstract mographic transformation that is not part of the affine trans- formation. This means that our results are relevant for both This paper introduces a new region based feature for ob- wide baseline matching and 3D object recognition. ject recognition and image matching. In contrast to many A somewhat related approach to region based matching other region based features, this one makes use of colour is presented in [1], where tangents to regions are used to de- in the feature extraction stage. We perform experiments on fine linear constraints on the homography transformation, the repeatability rate of the features across scale and incli- which can then be found through linear programming. The nation angle changes, and show that avoiding to merge re- connection is that a line conic describes the set of all tan- gions connected by only a few pixels improves the repeata- gents to a region. By matching conics, we thus implicitly bility. Finally we introduce two voting schemes that allow us match the tangents of the ellipse-approximated regions. to find correspondences automatically, and compare them with respect to the number of valid correspondences they 2. Blob features give, and their inlier ratios. We will make use of blob features extracted using a clus- tering pyramid built using robust estimation in local image regions [2]. Each extracted blob is represented by its aver- 1. Introduction age colour pk,areaak, centroid mk, and inertia matrix Ik. I.e. -
Edge Detection Low Level
Image Processing - Lesson 10 Image Processing - Computer Vision Edge Detection Low Level • Edge detection masks Image Processing representation, compression,transmission • Gradient Detectors • Compass Detectors image enhancement • Second Derivative - Laplace detectors • Edge Linking edge/feature finding • Hough Transform image "understanding" Computer Vision High Level UFO - Unidentified Flying Object Point Detection -1 -1 -1 Convolution with: -1 8 -1 -1 -1 -1 Large Positive values = light point on dark surround Large Negative values = dark point on light surround Example: 5 5 5 5 5 -1 -1 -1 5 5 5 100 5 * -1 8 -1 5 5 5 5 5 -1 -1 -1 0 0 -95 -95 -95 = 0 0 -95 760 -95 0 0 -95 -95 -95 Edge Definition Edge Detection Line Edge Line Edge Detectors -1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1 2 2 2 -1 2 -1 -1 2 -1 -1 2 -1 -1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 gray value gray x edge edge Step Edge Step Edge Detectors -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 -1 1 1 1 1 1 1 gray value gray -1 -1 1 1 1 -1 1 1 x edge edge Example Edge Detection by Differentiation Step Edge detection by differentiation: 1D image f(x) gray value gray x 1st derivative f'(x) threshold |f'(x)| - threshold Pixels that passed the threshold are -1 -1 1 1 -1 -1 -1 -1 Edge Pixels -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 1 -1 1 1 Gradient Edge Detection Gradient Edge - Examples ∂f ∂x ∇ f((x,y) = Gradient ∂f ∂y ∂f ∇ f((x,y) = ∂x , 0 f 2 f 2 Gradient Magnitude ∂ + ∂ √( ∂ x ) ( ∂ y ) ∂f ∂f Gradient Direction tg-1 ( / ) ∂y ∂x ∂f ∇ f((x,y) = 0 , ∂y Differentiation in Digital Images Example Edge horizontal - differentiation approximation: ∂f(x,y) Original FA = ∂x = f(x,y) - f(x-1,y) convolution with [ 1 -1 ] Gradient-X Gradient-Y vertical - differentiation approximation: ∂f(x,y) FB = ∂y = f(x,y) - f(x,y-1) convolution with 1 -1 Gradient-Magnitude Gradient-Direction Gradient (FA , FB) 2 2 1/2 Magnitude ((FA ) + (FB) ) Approx. -
Gradient Magnitude Similarity Deviation: an Highly Efficient Perceptual Image Quality Index
1 Gradient Magnitude Similarity Deviation: An Highly Efficient Perceptual Image Quality Index Wufeng Xue, Lei Zhang, Member IEEE, Xuanqin Mou, Member IEEE, and Alan C. Bovik, Fellow, IEEE Abstract—It is an important task to faithfully evaluate the perceptual quality of output images in many applications such as image compression, image restoration and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. Figure 1 The flowchart of a class of two-step FR-IQA models. We present a new effective and efficient IQA model, called ratio (PSNR) correlates poorly with human perception, and gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local hence researchers have been devoting much effort in structures in a distorted image suffer different degrees of developing advanced perception-driven image quality degradations. This motivates us to explore the use of global assessment (IQA) models [2, 25]. IQA models can be classified variation of gradient based local quality map for overall image [3] into full reference (FR) ones, where the pristine reference quality prediction. We find that the pixel-wise gradient magnitude image is available, no reference ones, where the reference similarity (GMS) between the reference and distorted images image is not available, and reduced reference ones, where combined with a novel pooling strategy – the standard deviation of the GMS map – can predict accurately perceptual image partial information of the reference image is available. -
Fast and Optimal Laplacian Solver for Gradient-Domain Image Editing Using Green Function Convolution
Fast and Optimal Laplacian Solver for Gradient-Domain Image Editing using Green Function Convolution Dominique Beaini, Sofiane Achiche, Fabrice Nonez, Olivier Brochu Dufour, Cédric Leblond-Ménard, Mahdis Asaadi, Maxime Raison Abstract In computer vision, the gradient and Laplacian of an image are used in different applications, such as edge detection, feature extraction, and seamless image cloning. Computing the gradient of an image is straightforward since numerical derivatives are available in most computer vision toolboxes. However, the reverse problem is more difficult, since computing an image from its gradient requires to solve the Laplacian equation (also called Poisson equation). Current discrete methods are either slow or require heavy parallel computing. The objective of this paper is to present a novel fast and robust method of solving the image gradient or Laplacian with minimal error, which can be used for gradient-domain editing. By using a single convolution based on a numerical Green’s function, the whole process is faster and straightforward to implement with different computer vision libraries. It can also be optimized on a GPU using fast Fourier transforms and can easily be generalized for an n-dimension image. The tests show that, for images of resolution 801x1200, the proposed GFC can solve 100 Laplacian in parallel in around 1.0 milliseconds (ms). This is orders of magnitude faster than our nearest competitor which requires 294ms for a single image. Furthermore, we prove mathematically and demonstrate empirically that the proposed method is the least-error solver for gradient domain editing. The developed method is also validated with examples of Poisson blending, gradient removal, and the proposed gradient domain merging (GDM). -
Colour Image Gradient Regression Reintegration
Colour Image Gradient Regression Reintegration Graham D. Finlayson1, Mark S. Drew2 and Yasaman Etesam2 1 School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K. [email protected] 2School of Computing Science, Simon Fraser University, Vancouver, British Columbia, Canada V5A 1S6, {mark,yetesam}@cs.sfu.ca Abstract much-used method for the reintegration task is the well known Suppose we process an image and alter the image gradients Frankot-Chellappa algorithm [3]. This method solves a Poisson in each colour channel R,G,B. Typically the two new x and y com- equation by minimizing difference from an integrable gradient ponent fields p,q will be only an approximation of a gradient and pair in the Fourier domain. Of course, many other algorithms hence will be nonintegrable. Thus one is faced with the prob- have been proposed, e.g. [4, 5, 6, 7, 8, 9]. lem of reintegrating the resulting pair back to image, rather than Note in the first place that any reintegration method leaves a derivative of image, values. This can be done in a variety of ways, constant of integration to be set – an offset added to the resulting usually involving some form of Poisson solver. Here, in the case image – since we start off with derivatives which would zero out of image sequences or video, we introduce a new method of rein- any such offset. Its value must be handled through a heuristic of tegration, based on regression from gradients of log-images. The some kind. strength of this idea is that not only are Poisson reintegration arti- But more fundamentally many reintegration methods will facts eliminated, but also we can carry out the regression applied generate aliasing of various kinds such as creases or halos in the to only thumbnail images. -
Feature Detection Florian Stimberg
Feature Detection Florian Stimberg Outline ● Introduction ● Types of Image Features ● Edges ● Corners ● Ridges ● Blobs ● SIFT ● Scale-space extrema detection ● keypoint localization ● orientation assignment ● keypoint descriptor ● Resources Introduction ● image features are distinct image parts ● feature detection often is first operation to define image parts to process later ● finding corresponding features in pictures necessary for object recognition ● Multi-Image-Panoramas need to be “stitched” together at according image features ● the description of a feature is as important as the extraction Types of image features Edges ● sharp changes in brightness ● most algorithms use the first derivative of the intensity ● different methods: (one or two thresholds etc.) Types of image features Corners ● point with two dominant and different edge directions in its neighbourhood ● Moravec Detector: similarity between patch around pixel and overlapping patches in the neighbourhood is measured ● low similarity in all directions indicates corner Types of image features Ridges ● curves which points are local maxima or minima in at least one dimension ● quality depends highly on the scale ● used to detect roads in aerial images or veins in 3D magnetic resonance images Types of image features Blobs ● points or regions brighter or darker than the surrounding ● SIFT uses a method for blob detection SIFT ● SIFT = Scale-invariant feature transform ● first published in 1999 by David Lowe ● Method to extract and describe distinctive image features ● feature -
EECS 442 Computer Vision: Homework 2
EECS 442 Computer Vision: Homework 2 Instructions • This homework is due at 11:59:59 p.m. on Friday October 18th, 2019. • The submission includes two parts: 1. To Gradescope: a pdf file as your write-up, including your answers to all the questions and key choices you made. You might like to combine several files to make a submission. Here is an example online link for combining multiple PDF files: https://combinepdf.com/. 2. To Canvas: a zip file including all your code. The zip file should follow the HW formatting instructions on the class website. • The write-up must be an electronic version. No handwriting, including plotting questions. LATEX is recommended but not mandatory. Python Environment We are using Python 3.7 for this course. You can find references for the Python stan- dard library here: https://docs.python.org/3.7/library/index.html. To make your life easier, we recommend you to install Anaconda 5.2 for Python 3.7.x (https://www.anaconda.com/download/). This is a Python package manager that includes most of the modules you need for this course. We will make use of the following packages extensively in this course: • Numpy (https://docs.scipy.org/doc/numpy-dev/user/quickstart.html) • OpenCV (https://opencv.org/) • SciPy (https://scipy.org/) • Matplotlib (http://matplotlib.org/users/pyplot tutorial.html) 1 1 Image Filtering [50 pts] In this first section, you will explore different ways to filter images. Through these tasks you will build up a toolkit of image filtering techniques. By the end of this problem, you should understand how the development of image filtering techniques has led to convolution.