Thematic Background Study Genetic Resources for Farmed Freshwater Macrophytes: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Thematic Background Study Genetic Resources for Farmed Freshwater Macrophytes: a Review THEMATIC BACKGROUND STUDY GENETIC RESOURCES FOR FARMED FRESHWATER MACROPHYTES: A REVIEW i Disclaimer The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The content of this document is entirely the responsibility of the author, and does not necessarily represent the views of the FAO or its Members. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by the Food and Agriculture Organization of the United Nations in preference to others of a similar nature that are not mentioned. ii Table of contents Acknowledgements ..................................................................................................................................... 3 Acronyms and abbreviations ..................................................................................................................... 4 Background ................................................................................................................................................. 5 1. FIRST REGIONAL REVIEW .......................................................................................................... 7 1.1 Introduction ................................................................................................................................. 8 1.2 Definition of freshwater aquatic macrophytes ......................................................................... 9 1.2.1 Emergent species ................................................................................................................. 9 1.2.2 Submersed species ............................................................................................................. 10 1.2.3 Floating species .................................................................................................................. 10 1.3 The cultural heritage of edible aquatic plants ........................................................................ 11 1.4 Food safety and occupational health ....................................................................................... 18 1.5 Genetic resources and development of freshwater aquatic macrophytes ............................ 19 1.6 Case studies of commercial producers of freshwater aquatic macrophytes ........................ 22 1.6.1 Lu Hung Lanh – Bang B village, Thanh Tri district, Hanoi, Viet Nam ....................... 22 1.6.2 Minh Thuy – Phong Phu commune, Binh Chanh district, Ho Chi Minh City, Viet Nam ............................................................................................................................................ 25 1.6.3 Phan Kim – Tam Phu Commune, Thu Duc district, Ho Chi Minh City, Viet Nam ... 29 1.6.4 Boengchueng Congdoen – Sainoi district, Nonthaburi province, Bangkok, Thailand31 1.7 Discussion and conclusions ....................................................................................................... 33 References .................................................................................................................................................. 35 2. SECOND REGIONAL REVIEW .................................................................................................... 39 2.2 General description of freshwater aquatic macrophytes ...................................................... 42 2.2.1 Morphological characteristics of large aquatic plants ................................................... 42 2.2.2 Classification of large aquatic plants............................................................................... 42 2.3 Main farmed species and varieties: uses, farming systems, producer countries, trends in production and future prospects ......................................................................................................... 44 2.3.1 Lotus (Nelumbo nucifera) ................................................................................................ 44 2.3.2 Water bamboo (Zizania latifolia) .................................................................................... 45 2.3.3 Arrowhead (Sagittaria trifolia) ........................................................................................ 46 2.3.4 Water chestnut (Eleocharis dulcis) .................................................................................. 47 2.3.5 Gorgon nut (Euryale ferox) .............................................................................................. 48 1 2.3.6 Water spinach (Ipomoea aquatic) ................................................................................... 48 2.3.7 Reed (Phragmites australis Trin.) ................................................................................... 49 2.4 Drivers affecting the freshwater aquatic macrophytes farming sector ................................ 50 2.4.1 Improved income to farmers ............................................................................................ 50 2.4.2 Healthy food for human consumption............................................................................. 50 2.4.3 Conservation of biodiversity ............................................................................................ 50 2.4.4 Beautify the environment ................................................................................................. 51 2.4.5 Purification of water quality ............................................................................................ 51 2.4.6 Provide pharmaceutical raw materials ........................................................................... 52 2.4.7 Provide feed ingredients ................................................................................................... 52 2.5 Relevant stakeholders ............................................................................................................... 52 2.5.1 Farmers .............................................................................................................................. 52 2.5.2 Cooperatives ...................................................................................................................... 52 2.5.3 Private companies ............................................................................................................. 53 2.5.4 Research institutes and organizations ............................................................................. 53 2.5.5 Government ....................................................................................................................... 53 2.6 Risks of the introduction of freshwater aquatic macrophytes into non-native areas ......... 54 2.7 Research, education and training ............................................................................................ 55 2.7.1 Study on the germplasm resources of aquatic plants .................................................... 55 2.7.2 Education and training ..................................................................................................... 55 2.8 Collaborative approaches and exchange of information ....................................................... 55 2.8.1 Dissemination guidelines .................................................................................................. 56 2.8.2 Methods of applying for sharing germplasm material .................................................. 57 References .................................................................................................................................................. 58 2 Acknowledgements For the First Regional Review, thanks go to Le Thanh Hung, Truc Anh Minh, of Nong Lam University, Ho Chi Minh City, as well as Nguyen Thi Dieu Phuong, of the Research Institute of Aquaculture 1 (RIA 1) Hanoi, Viet Nam, for their help in data collection. Thanks also go to the many aquatic plant growers who have contributed their time and considerable experience to this review. It should also be noted that any views expressed in this review are purely those of the author and not necessarily representative of the Food and Agriculture Organization of the United Nations (FAO). All photos unless otherwise stated were taken by the author. 3 Acronyms and abbreviations DBP di-n-butyl phthalate EC European Commission FAM freshwater aquatic macrophyte GRIN Germplasm Resources Information Network GUS beta-glucuronidase gene NGRL National Germplasm Resources Laboratory NPGS National Plant Germplasm System PAPUSSA Production in Aquatic Peri-Urban Systems in Southeast Asia (EC FP Project) PTE potentially toxic element SAR Special Administrative Region 4 Background At its Fifteenth Regular Session, the Commission on Genetic Resources for Food and Agriculture endorsed the preparation of a thematic study on the genetic resources of freshwater aquatic macrophytes (FAMs) of relevance for food and agriculture. This is an initiative in support of the preparation of the Report on The State of the World’s Aquatic Genetic Resources for Food and Agriculture (http://www.fao.org/3/CA0454EN/ca0454en.pdf). The purpose of this study is to enhance the understanding of the relevance of FAMs for food security and human well-being.
Recommended publications
  • The Status and Distribution of Freshwater Biodiversity in Central Africa
    THE S THE STATUS AND DISTRIBUTION T A OF FRESHWATER BIODIVERSITY T U S IN CENTRAL AFRICA AND Brooks, E.G.E., Allen, D.J. and Darwall, W.R.T. D I st RIBU T ION OF F RE S HWA T ER B IODIVER S I T Y IN CEN CENTRAL AFRICA CENTRAL T RAL AFRICA INTERNATIONAL UNION FOR CONSERVATION OF NATURE WORLD HEADQUARTERS Rue Mauverney 28 1196 Gland Switzerland Tel: + 41 22 999 0000 Fax: + 41 22 999 0020 www.iucn.org/species www.iucnredlist.org The IUCN Red List of Threatened SpeciesTM Regional Assessment About IUCN IUCN Red List of Threatened Species™ – Regional Assessment IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development Africa challenges. The Status and Distribution of Freshwater Biodiversity in Eastern Africa. Compiled by William R.T. Darwall, Kevin IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing G. Smith, Thomas Lowe and Jean-Christophe Vié, 2005. field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. The Status and Distribution of Freshwater Biodiversity in Southern Africa. Compiled by William R.T. Darwall, IUCN is the world’s oldest and largest global environmental organization, Kevin G. Smith, Denis Tweddle and Paul Skelton, 2009. with more than 1,000 government and NGO members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over The Status and Distribution of Freshwater Biodiversity in Western Africa.
    [Show full text]
  • Tropical Aquatic Plants: Morphoanatomical Adaptations - Edna Scremin-Dias
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. I - Tropical Aquatic Plants: Morphoanatomical Adaptations - Edna Scremin-Dias TROPICAL AQUATIC PLANTS: MORPHOANATOMICAL ADAPTATIONS Edna Scremin-Dias Botany Laboratory, Biology Department, Federal University of Mato Grosso do Sul, Brazil Keywords: Wetland plants, aquatic macrophytes, life forms, submerged plants, emergent plants, amphibian plants, aquatic plant anatomy, aquatic plant morphology, Pantanal. Contents 1. Introduction and definition 2. Origin, distribution and diversity of aquatic plants 3. Life forms of aquatic plants 3.1. Submerged Plants 3.2 Floating Plants 3.3 Emergent Plants 3.4 Amphibian Plants 4. Morphological and anatomical adaptations 5. Organs structure – Morphology and anatomy 5.1. Submerged Leaves: Structure and Adaptations 5.2. Floating Leaves: Structure and Adaptations 5.3. Emergent Leaves: Structure and Adaptations 5.4. Aeriferous Chambers: Characteristics and Function 5.5. Stem: Morphology and Anatomy 5.6. Root: Morphology and Anatomy 6. Economic importance 7. Importance to preserve wetland and wetlands plants Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS Tropical ecosystems have a high diversity of environments, many of them with high seasonal influence. Tropical regions are richer in quantity and diversity of wetlands. Aquatic plants SAMPLEare widely distributed in theseCHAPTERS areas, represented by rivers, lakes, swamps, coastal lagoons, and others. These environments also occur in non tropical regions, but aquatic plant species diversity is lower than tropical regions. Colonization of bodies of water and wetland areas by aquatic plants was only possible due to the acquisition of certain evolutionary characteristics that enable them to live and reproduce in water. Aquatic plants have several habits, known as life forms that vary from emergent, floating-leaves, submerged free, submerged fixed, amphibian and epiphyte.
    [Show full text]
  • Plastome Phylogeny Monocots SI Tables
    Givnish et al. – American Journal of Botany – Appendix S2. Taxa included in the across- monocots study and sources of sequence data. Sources not included in the main bibliography are listed at the foot of this table. Order Famiy Species Authority Source Acorales Acoraceae Acorus americanus (Raf.) Raf. Leebens-Mack et al. 2005 Acorus calamus L. Goremykin et al. 2005 Alismatales Alismataceae Alisma triviale Pursh Ross et al. 2016 Astonia australiensis (Aston) S.W.L.Jacobs Ross et al. 2016 Baldellia ranunculoides (L.) Parl. Ross et al. 2016 Butomopsis latifolia (D.Don) Kunth Ross et al. 2016 Caldesia oligococca (F.Muell.) Buchanan Ross et al. 2016 Damasonium minus (R.Br.) Buchenau Ross et al. 2016 Echinodorus amazonicus Rataj Ross et al. 2016 (Rusby) Lehtonen & Helanthium bolivianum Myllys Ross et al. 2016 (Humb. & Bonpl. ex Hydrocleys nymphoides Willd.) Buchenau Ross et al. 2016 Limnocharis flava (L.) Buchenau Ross et al. 2016 Luronium natans Raf. Ross et al. 2016 (Rich. ex Kunth) Ranalisma humile Hutch. Ross et al. 2016 Sagittaria latifolia Willd. Ross et al. 2016 Wiesneria triandra (Dalzell) Micheli Ross et al. 2016 Aponogetonaceae Aponogeton distachyos L.f. Ross et al. 2016 Araceae Aglaonema costatum N.E.Br. Henriquez et al. 2014 Aglaonema modestum Schott ex Engl. Henriquez et al. 2014 Aglaonema nitidum (Jack) Kunth Henriquez et al. 2014 Alocasia fornicata (Roxb.) Schott Henriquez et al. 2014 (K.Koch & C.D.Bouché) K.Koch Alocasia navicularis & C.D.Bouché Henriquez et al. 2014 Amorphophallus titanum (Becc.) Becc. Henriquez et al. 2014 Anchomanes hookeri (Kunth) Schott Henriquez et al. 2014 Anthurium huixtlense Matuda Henriquez et al.
    [Show full text]
  • Phylogenetics and Molecular Evolution of Alismatales Based on Whole Plastid Genomes
    PHYLOGENETICS AND MOLECULAR EVOLUTION OF ALISMATALES BASED ON WHOLE PLASTID GENOMES by Thomas Gregory Ross B.Sc. The University of British Columbia, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate and Postdoctoral Studies (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) November 2014 © Thomas Gregory Ross, 2014 ABSTRACT The order Alismatales is a mostly aquatic group of monocots that displays substantial morphological and life history diversity, including the seagrasses, the only land plants that have re-colonized marine environments. Past phylogenetic studies of the order have either considered a single gene with dense taxonomic sampling, or several genes with thinner sampling. Despite substantial progress based on these studies, multiple phylogenetic uncertainties still remain concerning higher-order phylogenetic relationships. To address these issues, I completed a near- genus level sampling of the core alismatid families and the phylogenetically isolated family Tofieldiaceae, adding these new data to published sequences of Araceae and other monocots, eudicots and ANITA-grade angiosperms. I recovered whole plastid genomes (plastid gene sets representing up to 83 genes per taxa) and analyzed them using maximum likelihood and parsimony approaches. I recovered a well supported phylogenetic backbone for most of the order, with all families supported as monophyletic, and with strong support for most inter- and intrafamilial relationships. A major exception is the relative arrangement of Araceae, core alismatids and Tofieldiaceae; although most analyses recovered Tofieldiaceae as the sister-group of the rest of the order, this result was not well supported. Different partitioning schemes used in the likelihood analyses had little effect on patterns of clade support across the order, and the parsimony and likelihood results were generally highly congruent.
    [Show full text]
  • A Preliminary Checklist of the Vascular Plants and a Key to Ficus of Goualougo Triangle, Nouabalé-Ndoki National Park, Republic of Congo
    A Preliminary checklist of the Vascular Plants and a key to Ficus of Goualougo Triangle, Nouabalé-Ndoki National Park, Republic of Congo. Sydney Thony Ndolo Ebika MSc Thesis Biodiversity and Taxonomy of Plants University of Edinburgh Royal Botanic Garden Edinburgh Submitted: August 2010 Cover illustration: Aptandra zenkeri, Olacaceae Specimen: Ndolo Ebika, S.T. 28 By Sydney Thony Ndolo Ebika Acknowledgments Acknowledgments The achievement of this MSc thesis in Biodiversity and Taxonomy of Plants is the result of advice, support, help and frank collaboration between different people and organizations and institutions. Without these people this thesis could not have been achieved. My deep grateful thanks go to both Dr. Moutsamboté, J.-M. ( Rural Development Institute, Marien Ngouabi University, Republic of Congo ) and Dr. Harris, D.J. (Royal Botanic Garden Edinburgh) who gave me a powerful boost in studying plants during the botanic training workshop titled Inventory and Identification they organized at Kabo, Republic of Congo, in August 2006. Especially I would like to thank Dr. Harris, because the collaboration he established with the Goualougo Triangle Ape Project, Nouabalé- Ndoki National Park (NNNP), project I was working for, and his continued support for me has been very important to my training as a botanist. The Goualougo Triangle Ape Project (GTAP) is the area where all of the specimens treated in this thesis were collected. The team of this project was always looking after me night and day from 2006 to 2009. I would like to thank both principal investigators of the Triangle both Dr. Morgan, D. and Dr. Sanz, C. for their support to me.
    [Show full text]
  • Chapter 7. the Conservation of Aquatic and Wetland Plants in the Indo-Burma Region
    Chapter 7. The conservation of aquatic and wetland plants in the Indo-Burma region Richard V. Lansdown1 7.1 Species selection........................................................................................................................................................................................................... 114 7.2 Conservation status .................................................................................................................................................................................................... 116 7.3 The freshwater vegetation of the region ................................................................................................................................................................. 118 7.4 Major threats ................................................................................................................................................................................................................121 7.5 Conservation ................................................................................................................................................................................................................122 7.6 References .....................................................................................................................................................................................................................123 Boxes 7.1 The Podostemaceae – riverweeds .............................................................................................................................................................................124
    [Show full text]
  • ALISMATACEAE 1. SAGITTARIA Linnaeus, Sp. Pl. 2: 993. 1753
    ALISMATACEAE 泽泻科 ze xie ke Wang Qingfeng (王青锋)1; Robert R. Haynes2, C. Barre Hellquist3 Herbs, perennial or rarely annual, aquatic or of marshes, sometimes rhizomatous. Leaves basal, linear, lanceolate, elliptic to ovate or orbicular, or sagittate, with elongated sheathing petioles; principal veins parallel with margins and converging toward apex and connected by transverse veins. Flowers often whorled at nodes of scape forming racemes, panicles, or umbels, pedicellate, actinomorphic, bisexual, unisexual, or polygamous, usually bracteate. Sepals 3, persistent, green. Petals 3, deciduous, usually white, sometimes yellowish. Stamens 3 to numerous, whorled, with elongated filaments; anthers 2-celled, extrorse, opening by longitudinal slits. Carpels 3 to numerous, whorled or spirally arranged, free; ovules 1 to several; style persistent. Fruit a cluster or whorl of lat- erally compressed achenes, drupelets, or occasionally follicles. Seeds curved, with a horseshoe-shaped embryo; endosperm absent. About 13 genera and ca. 100 species: cosmopolitan, especially abundant in temperate and tropical regions of the N Hemisphere; six genera (one introduced) and 18 species (three endemic, one introduced) in China. Chen Yaodong. 1992. Alismataceae. In: Sun Xiangzhong, ed., Fl. Reipubl. Popularis Sin. 8: 127–145; Zhou Lingyun. 1992. Butomopsis and Limnocharis. In: Sun Xiangzhong, ed., Fl. Reipubl. Popularis Sin. 8: 147–151. 1a. Stamens 8 or 9, or numerous, with sterile staminodes in outermost whorl, filaments flattened; stigmas sessile, carpels 6–9 or numerous, crowded into a head; aquatic herbs with terminal umbels; bracts forming an involucre. 2a. Petals white; stamens 8 or 9; carpels 6–9; pedicels slender ................................................................................... 5. Butomopsis 2b. Petals yellowish; stamens numerous; carpels numerous; pedicels thick .............................................................
    [Show full text]
  • Sagittaria Graminea (Alismataceae)
    Effects of Tidal Action on Pollination and Reproductive Allocation in an Estuarine Emergent Wetland Plant– Sagittaria graminea (Alismataceae) Yanwen Zhang1,2*, Lihui Zhang2, Xingnan Zhao2, Shengjun Huang1, Jimin Zhao2 1 Department of Biology, Eastern Liaoning University, Dandong, China, 2 Department of Biology, Changchun Normal University, Changchun, China Abstract In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water. Citation: Zhang Y, Zhang L, Zhao X, Huang S, Zhao J (2013) Effects of Tidal Action on Pollination and Reproductive Allocation in an Estuarine Emergent Wetland Plant–Sagittaria graminea (Alismataceae).
    [Show full text]
  • Phylogenetic Studies of the Core Alismatales Inferred from Morphology and Rbcl Sequences
    Available online at www.sciencedirect.com Progress in Natural Science 19 (2009) 931–945 www.elsevier.com/locate/pnsc Phylogenetic studies of the core Alismatales inferred from morphology and rbcL sequences Xiaoxian Li, Zhekun Zhou * Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China Received 26 June 2008; received in revised form 16 September 2008; accepted 27 September 2008 Abstract The phylogeny of Alismatales remains an area of deep uncertainty, with different arrangements being found in studies that examined various subsets of genes and taxa. Herein we conducted separate and combined analyses of 103 morphological characters and 52 rbcL sequences to explore the controversial phylogenies of the families. Congruence between the two data sets was explored by computing several indices. Morphological data sets contain poor phylogenetic signals. The homology of morphological characters was tested based on the total evidence of phylogeny. The incongruence between DNA and morphological results; the hypothesis of the ‘Cymodoceaceae complex’; the relationships between Najadaceae and Hydrocharitaceae; the intergeneric relationships of Hydrocharitaceae; and the evo- lutionary convergence of morphological characters were analyzed and discussed. Ó 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved. Keywords: Alismatales; Morphological phylogeny; rbcL sequences; Cymodoceaceae complex; Najadaceae; Hydrocharitaceae 1. Introduction based on molecular data [3–13]. However, there is no evi- dence that these hypotheses of the relationship are converg- All known marine angiosperms (12 genera) and all ing on a single viewpoint. Relationships within the order hydrophiles angiosperms (17 genera) are concentrated in Alismatales are still less certain.
    [Show full text]
  • Perianth Development in the Basal Monocot Triglochin Maritima (Juncaginaceae) Matyas Buzgo University of Florida
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 9 2006 Perianth Development in the Basal Monocot Triglochin Maritima (Juncaginaceae) Matyas Buzgo University of Florida Douglas E. Soltis University of Florida Pamela S. Soltis University of Florida Sangtae Kim University of Florida Hong Ma Pennsylvania State University See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Buzgo, Matyas; Soltis, Douglas E.; Soltis, Pamela S.; Kim, Sangtae; Ma, Hong; Hauser, Bernard A.; Lebens-Mack, Jim; and Johansen, Bo (2006) "Perianth Development in the Basal Monocot Triglochin Maritima (Juncaginaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 9. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/9 Perianth Development in the Basal Monocot Triglochin Maritima (Juncaginaceae) Authors Matyas Buzgo, Douglas E. Soltis, Pamela S. Soltis, Sangtae Kim, Hong Ma, Bernard A. Hauser, Jim Lebens- Mack, and Bo Johansen This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 9 Aliso 22, pp. 107-125 © 2006, Rancho Santa Ana Botanic Garden PERIANTH DEVELOPMENT IN THE BASAL MONOCOT TRIGLOCHIN MARITIMA (JUNCAGINACEAE) 4 MATYAS BUZG0, 1•6 DOUGLAS E. SOLTIS,2 PAMELA S. SOLTIS,3 SANGTAE KIM,1 HONG MA, BERNARD A. HAUSER,2 JIM LEEBENS-MACK,4 AND Bo JOHANSEN5 'Department of Botany and the Florida Museum of
    [Show full text]
  • Alismataceae
    Molecular Phylogenetics and Evolution 58 (2011) 33–42 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetics and phylogeography of the monocot genus Baldellia (Alismataceae): Mediterranean refugia, suture zones and implications for conservation ⇑ Nils Arrigo a, Sven Buerki b, Anouk Sarr a, Roberto Guadagnuolo c, Gregor Kozlowski d, a Laboratoire de Botanique évolutive, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, CH-2007 Neuchâtel, Switzerland b Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom c Agroscope Liebefeld-Posieux ALP, Route de la Tioleyre 4, case postale 64, CH-1725 Posieux, Switzerland d Department of Biology and Botanical Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland article info abstract Article history: Aquatic plants, and especially the emblematic genus Baldellia (Alismataceae), are among the most threa- Received 3 April 2010 tened organisms, due to unprecedented human-driven habitat destructions. Therefore protection plans Revised 22 October 2010 are crucially needed and call for thoroughly documenting the genetic diversity and clarifying the taxon- Accepted 8 November 2010 omy of this endangered genus. Our sampling included 282 individuals from 42 natural populations and Available online 21 November 2010 covered the whole geographical range of the genus, across Europe and the Mediterranean. We combined sequencing
    [Show full text]
  • A Genus-Level Phylogenetic Linear Sequence of Monocots
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277301125 A genus-level phylogenetic linear sequence of monocots Article in Taxon · June 2015 DOI: 10.12705/643.9 CITATIONS READS 5 1,098 6 authors, including: William John Baker David Alan Simpson Royal Botanic Gardens, Kew Royal Botanic Gardens, Kew 155 PUBLICATIONS 3,287 CITATIONS 194 PUBLICATIONS 1,523 CITATIONS SEE PROFILE SEE PROFILE Odile Weber Paul Wilkin Musée national d'histoire naturelle de Luxemb… Royal Botanic Gardens, Kew 16 PUBLICATIONS 34 CITATIONS 113 PUBLICATIONS 1,665 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Palm hydraulics linking biodiversity and functioning of tropical forests under climate change View project Flora of Mount Jaya, Papua, Indonesia View project All content following this page was uploaded by Anna Trias Blasi on 27 May 2015. The user has requested enhancement of the downloaded file. TAXON — 27 May 2015: 30 pp. Trias-Blasi & al. • Linear sequence of monocots CLASSIFICATION A genus-level phylogenetic linear sequence of monocots Anna Trias-Blasi, William J. Baker, Anna L. Haigh, David A. Simpson, Odile Weber & Paul Wilkin Herbarium, Library, Art and Archives, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, U.K. Author for correspondence: Anna Trias-Blasi, [email protected] ORCID: AT-B, http://orcid.org/0000-0001-9745-3222; WJB, http://orcid.org/0000-0001-6727-1831 DOI http://dx.doi.org/10.12705/643.9 Abstract This paper provides an up-to-date linear sequence of monocot families and genera (excluding Orchidaceae and Poaceae) based on current phylogenetic evidence.
    [Show full text]