Stanford University Neuroradiology Fellowship

Total Page:16

File Type:pdf, Size:1020Kb

Stanford University Neuroradiology Fellowship STANFORD UNIVERSITY NEURORADIOLOGY FELLOWSHIP The neuroradiology fellowship at Stanford University Medical Center is designed to be a well-balanced academic training program that encompasses all of the basic and advanced clinical and research areas of both adult and pediatric neuroradiology. The overall aims of this fellowship are two-fold: to produce neuroradiologists with the highest level of clinical expertise, and to produce the future leaders in academic neuroradiology. The goal of this fellowship program is for Neuroradiology fellows to develop knowledge, skills and attitudes necessary to properly evaluate, diagnose and manage patients with neurological, ENT and neurosurgical diseases. Therefore, this fellowship requires participation in clinical, research, and educational aspects of neuroradiology. Neuroradiology fellows will be exposed to all imaging modalities used to evaluate neurologic disease, including CT, MR, myelography, angiography, and imaging guided biopsies, during the course of the fellowship. Interventional neuroradiologic procedures are also performed at state-of-the-art levels at Stanford, and neuroradiology fellows will actively participate in these procedures. Goal of the Neuroradiology Fellowship Program Core Competencies Fellows should achieve the Interpersonal System following objectives: and -Based Patient Medical Practice-Based Communicati Professional Learni Care Knowledge Learning on Skills ism ng 1. Acquire specific knowledge about the physical principles of imaging modalities (CT,MR,ultrasound and digital subtraction angiography). X X 2. Identify the practical uses of CT, MR, ultrasound and digital subtraction angiography in the evaluation of neurologiocal, ENT and neurosurgical diseases. X X X 3. Develop thorough knowledge of the physical and physiological properties of contrast agents used in CT, MR, and angiography; including contraindications and management of potential complications. X X X 4. Effective implementation of CT and MR scanning protocols with the appropriate use of contrast agents. X X X 5. Assess appropriate X X X clinical indications for neuroradiologic procedures. 6. Effectively counsels patients and/or family members prior to neuroradiologic procedures and obtains written informed consent. X X X 7. Master the manual techniques and intraoperative skills required for performing neuroradiologic procedures; including identification and management of potential complications. X X 8. Identify pertinent radiologic findings on CT, MR and digital subtraction angiography examinations. X X X 9. Properly interprets and formulates an impression of the CT, MR and digital X subtraction angiography findings. 10. Demonstrate the appropriate use of X X recommendations and follow-up imaging. 11. Identify normal anatomy and development of the brain, spine and head X X and neck on all imaging modalities. 12. Perform prioritization and triage for neuroradiologic X X X X emergencies during routine work day and on-call duties. 13. Perform expert consultation of neuroradiologic imaging studies with referring clinicians. X X X 14. Produce clear, concise and accurate dictated reports. X X X 15. Develop awareness of cost effectiveness of diagnostic studies and their resource limitations in health care. X X X 16. Participate in conferences and teaching of residents and medical students. X X 17. Develop a detailed knowledge of neurological, ENT and neurosurgical pathology. X X 18. Gain an understanding of research methodology, study design and presentation of results. X 19. Demonstrate good interpersonal skills among professional colleagues and support staff. X X X 20. Always demonstrates respect, compassion, integrity and honesty. X 21. Demonstrate initiative, proactive learning and insight. X X 22. Punctuality and attendance for all daily activities. X 23. Effective use of information resources, scientific studies and technology to pursue self improvement and education. X X X 24. Provide quality patient care X X X The fellow’s evaluation will be based on his/her individual performance in fulfilling these competencies. Website A lot of resources (clinical, education and research) are available from our website, which you are encouraged to visit and explore: http://med.stanford.edu/neuroimaging.html Assigned Rotations and Responsibilities: The fellowship is divided into multiple assigned clinical rotations, which include the following: First year Shared Second year inpatient Sherman late Hoover II (PET-MRI) myelo/ENT/procedures Hoover night float myelo/ENT/procedures Hoover Sherman early vacation VA/float fellow INR INR LPCH LPCH conference/protocols elective elective board preparation (elective early in the year) Please note the differences between first year and second year rotations and time spent on particular rotations, reflecting different goals for the first and the second year, and different levels of knowledge and expertise. A schedule is posted for each month, and neuroradiology fellows, along with the radiology residents on neuroradiology, will be assigned to one or more of these rotations each day. It is anticipated, schedule permitting and clinical performance following milestones, that each fellow will receive research elective time of at least two weeks in the first year of fellowship and at least eight weeks in the second year of fellowship. Elective time will vary depending on the overall number of fellows. Note also that assignments to the various rotations can change on a daily basis, but generally clinical rotations last approximately one week. The specific responsibilities of the fellow on each rotation are generally self-evident but are detailed below: INR is a rotation under the direction of Drs. Michael Marks, Huy Do, Jeremy Heit and Robert Dodd. Specific duties for this rotation will to some extent vary according to the abilities of the fellows and will evolve with time. Details should be clarified with Drs. Marks, Do, Heit and Dodd. It is anticipated that the fellows will gain significant expertise in all aspects of diagnostic neuroangiography, and in addition will receive gradual exposure to neurointerventional procedures. Note that a dedicated neurointerventional fellow will also participate in these procedures. CT and MRI are either separate or combined rotations under either Outpatient Sherman, Outpatient Hoover 2 or InPatient depending on where the fellow is located. During these rotations, the fellow has the primary responsibility of giving preliminary readings, calling emergency reports and all significant findings to the ER or referring physicians, handling any problems encountered by technologists, protocol direction, and preparing cases for formal read-outs with the neuroradiology attendings. It is often the case that old films and more extensive history are important, and the fellow should make all efforts to obtain these when possible. The Neuroradiology Reading Rooms should be the major places of residence by the fellow when assigned to these rotations during the day. Specific duties include 1) making sure that the appropriate protocol is implemented for each patient; 2) helping to solve any problems with sedation in MR; 3) triage of add-on requests by clinicians; 4) review of MR cases when appropriate prior to taking the patient off the table; and 5) answering all questions or problems from MR technical staff. The assigned attending on the Read-Out rotation is the back-up for questions regarding these areas and should be sought when necessary. Fellows must always be available on beeper during these assignments. Dictations are performed by the fellow or assisting resident for all cases. No dictations are to be finalized prior to review with the attending. (Note: during noon resident conferences, the fellows are responsible for all CT and MRI coverage) Myelography and Biopsies at Stanford is a specific assignment. Usually this rotation is assigned along with another rotation to the same fellow or resident. Biopsies and myelograms will be performed by fellows with direct supervision by an attending. Fellows will initially perform all myelograms, but radiology residents will be given graded degrees of responsibility in performing myelograms after neuroradiology fellows demonstrate adequate expertise. All invasive procedures will be monitored by a staff neuroradiologist in addition to a neuroradiology fellow. The fellow will be expected to obtain patient consent, to place appropriate orders, to communicate with CAPR and to insure that the patient is stable for discharge. Conferences: Neuroradiology actively participates in multiple clinical and didactic conferences. Assigned fellows are required to attend most of these conferences (unless otherwise noted as optional), and they are scheduled to give teaching conferences to the radiology residents during the year. The most important fellow conference is the Interesting Case Conference held every Tuesday morning, during which current cases of interest are shown to the group. Fellows and residents are responsible for preparing these cases (retrieving old films, obtaining history, etc.) and presenting them. Fellows are also expected to attend as often as possible the Neurosciences Grand Rounds held every Friday morning. Below is a comprehensive list of didactic and clinical conferences: CONFERENCES ATTENDED BY NEURORADIOLOGY TRAINEES Conference Frequency Responsible individual or service/Department Pediatric ENT Conference 3rd Wednesday Otolaryngology Oto Radiology Conference 2nd Monday, bimonthly Otolaryngology Skull
Recommended publications
  • Neuropathology of Dementia in Patients with Parkinson's Disease: a Systematic Review of Autopsy Studies
    Neurodegeneration J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2019-321111 on 23 August 2019. Downloaded from REVIEW Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies Callum Smith ,1 Naveed Malek,2 Katherine Grosset,1 Breda Cullen ,3 Steve Gentleman,4 Donald G Grosset1 ► Additional material is ABSTRact have other causes of cognitive impairment and published online only. To view Background Dementia is a common, debilitating dementia, such as comorbid Alzheimer’s disease please visit the journal online (http:// dx. doi. org/ 10. 1136/ feature of late Parkinson’s disease (PD). PD dementia (AD) or cerebrovascular disease. These pathologies jnnp- 2019- 321111). (PDD) is associated with α-synuclein propagation, but may be difficult to identify in vivo, as the clinical coexistent Alzheimer’s disease (AD) pathology may features often overlap with those of PDD, and there 1 Department of Neurology, coexist. Other pathologies (cerebrovascular, transactive are no definitive biomarkers. The differentiation Institute of Neurosciences, response DNA-binding protein 43 (TDP-43)) may of dementia type is an important consideration in Queen Elizabeth University Hospital, Glasgow, UK also influence cognition.W e aimed to describe the clinical research, as treatments under development 2Department of Neurology, neuropathology underlying dementia in PD. are specifically targeted against abnormal accumu- Ipswich Hospital NHS Trust, Methods Systematic review of autopsy studies lation of α-synuclein, which is the pathological Ipswich, UK 3 3 published in English involving PD cases with dementia. hallmark of PDD and DLB, or tau or amyloid-β, Institute of Health and 4 5 Wellbeing, College of Medical, Comparison groups included PD without dementia, AD, which underlie AD.
    [Show full text]
  • Journal of Neuroradiology
    JOURNAL OF NEURORADIOLOGY AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0150-9861 DESCRIPTION . The Journal of Neuroradiology is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of diagnostic and Interventional neuroradiology, translational and molecular neuroimaging, and artificial intelligence in neuroradiology. The Journal of Neuroradiology considers for publication articles, reviews, technical notes and letters to the editors (correspondence section), provided that the methodology and scientific content are of high quality, and that the results will have substantial clinical impact and/or physiological importance. All manuscripts submitted to the Journal of Neuroradiology are first evaluated by the Editor-in-Chief and/or the Associate Editors to see if they are suitable for a peer-review . If yes, then the manuscript is send for peer review by international experts, and must:Be clear and easy to understand, precise and concise;Bring new, interesting, valid information - and improve clinical care or guide future research; Be solely the work of the author(s) stated; Not have been previously published elsewhere and not be under consideration by another journal; Be in accordance with the journal's Guide for Authors' instructions. Under no circumstances does the journal guarantee publication before the editorial board makes its final decision. 2020 Impact Factor: 3.447, 2020 Journal Citation Reports (Clarivate Analytics, 2021) 6 issues/year IMPACT FACTOR . 2020: 3.447 © Clarivate Analytics Journal Citation Reports 2021 AUTHOR INFORMATION PACK 2 Oct 2021 www.elsevier.com/locate/neurad 1 ABSTRACTING AND INDEXING .
    [Show full text]
  • PAH Neurology, Neurosurgery, Neuroradiology
    Provided by: PAH Neurology, NeuroSurgery, NeuroRadiology (NNN) Case Conference 2018-2020 PAH Neurology, NeuroSurgery, NeuroRadiology (NNN) Case Conference 2018-20202019 - 8/6/2019 August 8, 2019 1:00 PM - 2:00 PM Penn Neurologic Institute, 330 South 9th Street, 2nd Floor Conference Room Target Audience This program has been designed for Neurology, Neurological Surgery, Psychiatry, Surgery, Psychiatry And Neurology - Addiction Psychiatry, Psychiatry And Neurology - Brain Injury Medicine, Psychiatry And Neurology - Child And Adolescent Psychiatry, Psychiatry And Neurology - Epilepsy, Psychiatry And Neurology - Forensic Psychiatry, Psychiatry And Neurology - Geriatric Psychiatry, Psychiatry And Neurology - Clinical Neurophysiology, Psychiatry And Neurology - Consultation-Liaison Psychiatry, Psychiatry And Neurology - Neuromuscular Medicine, Psychiatry And Neurology - Pain Medicine, Psychiatry And Neurology - Sleep Medicine, Psychiatry And Neurology - Vascular Neurology, Radiology - Neuroradiology, Psychiatry And Neurology - Hospice And Palliative Medicine, Psychiatry And Neurology - Neurodevelopmental Disabilities Series Educational Objectives After participating in this regularly scheduled series, participants should be able to: 1 Correctly identify any of the entities discussed during the session when encountered in clinical practice. 2 List the appropriate imaging modalities required for diagnostic clarification, whenever the clinical syndrome is non-specific. 3 Correctly associate imaging findings discussed during the session with specific
    [Show full text]
  • Careers in Medicine 101
    Careers in Medicine 101 1/25/12 Joanne Lynn, MD Disclaimer You are NOT expected to choose a career today, tomorrow or this year Getting Started on Career Selection • Spend Time Reflecting on your talents • Develop a List of Possible Interests • Explore WIDELY – Avoid Confirmation Bias • Study Hard and Do Well – Your patients need this from you – Your residency will be easier – You will have more options Reflect: How Will You Serve? Talents & Interests Key Questions • Where do I get my energy? – Thinking? Doing? Combo? • How do I like to interact with people? – Longitudinally? Episodically? • Do I have unique time pressures? • What are my unique talents? – Relationships? Problem Solving? Vision and Strategy? Creativity? Technical Skills? • What will my life outside of medicine look like? – How many hours do I expect to work? – What else will I be committed to? Medicine today is Extraordinarily Flexible Talents can be used in many different disciplines Good at Relationships? Interested in Wellness? Primary Care • Pediatrics • Family Medicine • Internal Medicine --and— • Alternative and Complementary Medicine • Occupational Medicine Like to Solve Puzzles? Diagnostic and Therapeutic Dilemmas • Internal Medicine • Neurology • Pathology Like to use your Hands? Good at Video Games? Surgery Open Laparoscopic Robotic Endovascular Specialties Neurosurgery Neuroradiology Interventional Cardiology Peripheral Vascular Surgeon Interventional Radiology Endoscopic Specialties Gastroenterology Pulmonary Medicine Urology Interested in Electronics? Neurology:
    [Show full text]
  • Psychiatry and Neurology
    ensic For Ps f yc o h l a o l n o r g u y o J ISSN: 2475-319X Journal of Forensic Psychology Editorial Psychiatry and Neurology Carlos Roberto* Department of Psychology, La Sierra University, California, USA DESCRIPTION between neurological and psychiatric disorders. for instance , it's documented that a lot of patients with paralysis agitans and Psychiatry is that the medicine dedicated to the diagnosis, stroke manifest depression and, in some, dementia. Is there a prevention, and treatment of mental disorders. These include substantive difference between a toxic psychosis (psychiatry) and various maladaptation’s associated with mood, behavior, a metabolic encephalopathy with delirium (neurology) we've cognition, and perceptions. See glossary of psychiatry. known of those examples for several years? Never and dramatic evidence has come largely through functional resonance imaging Neurology is that the branch of drugs concerned with the study and positron emission tomography. Obsessive-compulsive and treatment of disorders of the system nervosum. The system a disorder is characterized by recurrent, unwanted, intrusive ideas, nervosum may be a complex, sophisticated system that regulates images, or impulses that appear silly, weird, nasty, or horrible and coordinates body activities. Its two major divisions: Central nervous system: the brain and medulla spinalis. (obsessions) and by urges to hold out an act (compulsions) which will lessen the discomfort thanks to the obsessions. Increasing the amount of brain serotonin with selective reuptake inhibitors DIFFERENCE BETWEEN PSYCHITARY may control the symptoms and signs of this disorder. Evidence AND NEUROLOGY of a genetic basis in some patients, structural abnormalities of the brain on resonance imaging in others, and abnormal brain For quite 2000 years within the West, neurology and psychiatry function on functional resonance imaging and positron were thought to be a part of one, unified branch of drugs, which emission tomography collectively suggest that schizophrenia may was often designated neuropsychiatry.
    [Show full text]
  • Clinical Neurophysiology (CNP) Section Resident Core Curriculum
    American Academy of Neurology Clinical Neurophysiology (CNP) Section Resident Core Curriculum 9/7/01 Definition of the Subspecialty of Clinical Neurophysiology The subspecialty of Clinical Neurophysiology involves the assessment of function of the central and peripheral nervous system for the purpose of diagnosing and treatment of neurologic disorders. The CNP procedures commonly used include EEG, EMG, evoked potentials, polysomnography, epilepsy monitoring, intraoperative monitoring, evaluation of movement disorders, and autonomic nervous system testing. The use of CNP procedures requires an understanding of neurophysiology, clinical neurology, and the findings that can occur in various neurologic disorders. The following are the recommended CORE curriculum for residents re CNP. Basic Neurophysiology: Membrane properties of nerve and muscle potentials (resting, action, synaptic, generator), ion channels, synaptic transmission, physiologic basis of EEG, EMG, evoked potentials, sleep mechanisms, autonomic disorders, epilepsy, neuromuscular diseases, and movement disorders Anatomic Substrates of EEG, EMG, evoked potentials, sleep and autonomic activity Indications: Know the indications for and the interpretation of the various CNP tests in the context of the clinical problem. EEG: 1. Recognize normal EEG patterns of infants, children, and adults 2. Recognize abnormal EEG patterns and their clinical significance, including epileptiform patterns, coma patterns, periodic patterns, and the EEG patterns seen with various focal and diffuse neurologic and systemic disorders. 3. Know the EEG criteria for recording in suspected brain death EMG: 1. Know the normal parameters of nerve conduction studies and needle exam of infants, children, and adults 2. Know the abnormal patterns of nerve conduction studies and needle exam and the clinical correlates with various diseases that affect the neuromuscular and peripheral nervous system Evoked Potential Studies 1.
    [Show full text]
  • WCN19 Journal Posters Part 2 Revised V1
    JNS-0000116542; No. of Pages 131 ARTICLE IN PRESS Journal of the Neurological Sciences (2019) xxx–xxx Contents lists available at ScienceDirect Journal of the Neurological Sciences journal homepage: www.elsevier.com/locate/jns WCN19 Journal Posters Part 2 revised_V1 WCN19-2260 WCN19-2269 Poster shift 01 - Channelopathies /neuroethics /neurooncology / Poster shift 01 - Channelopathies /neuroethics /neurooncology / pain - Part I /sleep disorders - Part I /stem cells and gene therapy - pain - Part I /sleep disorders - Part I /stem cells and gene therapy - Part I /stroke /training in neurology - Part I and traumatic brain Part I /stroke /training in neurology - Part I and traumatic brain injury injury Numb chin syndrome- The first finding in metastatic malignancy Results of surgical treatment in patients with moyamoya disease considering CT-perfusion imaging study N. Mustafayev, A. Bayrakoglu, F. Ilgen Uslu, M. Kolukısa Bezmialem University, Neurology, Istanbul, Turkey O. Harmatinaa, V. Morozb, I. Skorokhodab, I. Tyshb, N. Shahinb,R. Hanemb, U. Maliarb a Numb chin syndrome (NCS) is a sensory neuropathy of the SI «Romodanov Institute of Neurosurgery of NAMS of Ukraine», mental nerve, which is accompanied by hypoesthesia and paresthe- Neuroradiology Department, Kyiv, Ukraine b sia of the jaw and lower lip. Although being well known in neurology SI «Romodanov Institute of Neurosurgery of NAMS of Ukraine», practice, most of the physicians who have not experienced this Emergency Department of Vascular Neurosurgery, Kyiv, Ukraine phenomenon are unaware of this phenomenon since it is rare and can be confused with somatic complaints. This case report aims to Aim point out that NCS may be the first sign and symptom of metastatic To improve the results of surgical treatment of patients with cancers in patients who are not diagnosed.
    [Show full text]
  • Internet Resources for Neurosurgeons and Neuropathologists S Thomson, N Phillips
    154 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.2.154 on 1 February 2003. Downloaded from REVIEW Internet resources for neurosurgeons and neuropathologists S Thomson, N Phillips ............................................................................................................................. J Neurol Neurosurg Psychiatry 2003;74:154–157 Neurosurgical and neuropathological resources on the Neurosurgery://On-call has an “image bank” internet are rapidly developing. Some excellent clinical, section, which has an excellent downloadable collection of radiographs. There are also some patient information, professional, academic, and photographic images. This is a rapidly developing teaching web sites are available. This review database, easy to search, and likely to have images summarises the most useful online sites for relevant to most neurosurgical and neuropatho- logical conditions. neurosurgeons and neuropathologists in the United Neuroanatomy and Neuropathology on the Kingdom and beyond. More general internet resources Internet provides a very comprehensive collection of pathological images within the online neu- have been covered in the first article in this series. ropathology atlas. The neuroanatomy structures .......................................................................... subsection shows the locations of anatomical structures within normal pathological specimens. ver the past 10 years the internet has The functional neuroanatomy tables are also expanded rapidly. While potential ben- highly
    [Show full text]
  • Behavioral Neurology Fellowship Core Curriculum
    AMERICAN ACADEMY OF NEUROLOGY BEHAVIORAL NEUROLOGY FELLOWSHIP CORE CURRICULUM 1. INTRODUCTION AND DEFINITIONS The specialty of Behavioral Neurology focuses on clinical and pathological aspects of neural processes associated with mental activity, subsuming cognitive functions, emotional states, and social behavior. Historically, the principal emphasis of Behavioral Neurology has been to characterize the phenomenology and pathophysiology of intellectual disturbances in relation to brain dysfunction, clinical diagnosis, and treatment. Representative cognitive domains of interest include attention, memory, language, high-order perceptual processing, skilled motor activities, and "frontal" or "executive" cognitive functions (adaptive problem-solving operations, abstract conceptualization, insight, planning, and sequencing, among others). Advances in cognitive neuroscience afforded by functional brain imaging techniques, electrophysiological methods, and experimental cognitive neuropsychology have nurtured the ongoing evolution and growth of Behavioral Neurology as a neurological subspecialty. Applying advances in basic neuroscience research, Behavioral Neurology is expanding our understanding of the neurobiological bases of cognition, emotions and social behavior. Although Behavioral Neurology and neuropsychiatry share some common areas of interest, the two fields differ in their scope and fundamental approaches, which reflect larger differences between neurology and psychiatry. Behavioral Neurology encompasses three general types of clinical
    [Show full text]
  • 640E Neurology Critical Care (Neuro Icu Core Rotation)
    Course Code: 97348 640E NEUROLOGY CRITICAL CARE (NEURO ICU CORE ROTATION) Course Description: This elective in Neuro Critical Care and ICU is designed to give the student increased exposure and autonomy in care of the Neurocritical care patient, including the medical treatment in acute neurological patients. Students function as sub interns, becoming integral members of the ICU team, and several primary caregivers under supervision. Department: Neurology Prerequisites: Successful completion of 1st and 2nd year curriculum. Successful completion of the 3rd year neurology core rotation Restrictions: This course does not accept international students Course Director: Sara Stern-Nezer, MD, UC Irvine Medical Center 200 S. Manchester Ave., Suite #206, Orange, CA 92868 Phone: 714-456-3565 Fax: 714-456-6894 Email: [email protected] Instructing Faculty: Cyrus Dastur, MD HS Clinical Professor of Neurology Leonid Groysman, MD HS Clinical Professor of Neurology Yama Akbari, MD PhD Clinical Professor of Neurology Sara Stern-Nezer, MD HS Clinical Professor of Neurology Frank P K Hsu, MD, PhD, Chair and Clinical Professor of Neurological Surgery Kiarash Golshani, MD Assistant Clinical Professor of Neurological Surgery Jefferson Chen, MD Assistant Clinical Professor of Neurological Surgery Shuichi Suzuki, MD, PhD, Assistant Clinical Professor of Neurological Surgery Course Website: http://www.neurology.uci.edu/overview.html Who to Report to First Day: Sara Stern-Nezer, MD, Neurology Clerkship Director / Stephanie Makhlouf, Neurology Education Coordinator Location to Report on First Day: UC Irvine Medical Center- Neurology Department, Conference Room, 200 Manchester Ave., Suite 206, Orange, CA 92868 Time to Report on First Day: 7:30 am Site: UC Irvine Medical Center Periods Available: Throughout the year Duration: 4 weeks Number of Students: 1 per block Scheduling Coordinator: UC Irvine students must officially enroll for the course by contacting the Scheduling Coordinator via email or phone (714) 456-8462 to make a scheduling appointment.
    [Show full text]
  • The Distinguished History of Radiology at the University of Michigan
    The Distinguished History of Radiology at the University of Michigan On the Occasion of the Centennial Celebration of the Discovery of X-rays William Martel Fred Jenner Hodges Professor Department of Radiology 1 The Distinguished History of Radiology at the University of Michigan On the Occasion of the Centennial Celebration of the Discovery of X-rays by William Martel Fred Jenner Hodges Professor Department of Radiology 2 To my beloved wife, Rhoda, and our wonderful children, Lisa, Pamela, Caryn, Jonathan and David. Acknowledgements The Bentley Historical Library, University of Michigan, was a major information resource for this paper. I appreciate the information and advice provided by N. Reed Dunnick, Barry H. Gross, Nicholas H. Steneck, Terry M. Silver and Donna C. Eder and thank Horace W. Davenport for permitting wide use of material from his book [4] and Kallie Bila Michels, Judalyn G. Seling, Cynthia Sims-Holmes and Diane D. Williams for their assistance in preparing the manuscript. I also appreciate the editorial assistance of Keri Ellis of the American Roentgen Ray Society. Finally, I regret the inability, for lack of space, to cite many individuals whose accomplishments contributed to the rich heritage of the department. Some of this material has been previously published (Martel W. The Rich Tradition of Radiology at the University of Michigan. AJR 1995;165:995-1002) and is reproduced here with permission of the American Roentgen Ray Society. 3 The Distinguished History of Radiology at the University of Michigan As we celebrate the centennial of Roentgen's discovery of X-rays, it is appropriate to reflect on the events at the University of Michigan that arose from that discovery and on the significant influence the Department of Radiology subsequently had on the emergence of radiology as an important, scientific medical specialty.
    [Show full text]
  • Inpatient and Emergency Neurology Quality Measurement Set
    Inpatient and Emergency Neurology Quality Measurement Set ©2016. American Academy of Neurology. All Rights Reserved. 1 CPT Copyright 2004-2016 American Medical Association. Disclaimer Performance Measures (Measures) and related data specifications developed by the American Academy of Neurology (AAN) are intended to facilitate quality improvement activities by providers. AAN Measures: 1) are not clinical guidelines and do not establish a standard of medical care, and have not been tested for all potential applications; 2) are not continually updated and may not reflect the most recent information; and 3) are subject to review and may be revised or rescinded at any time by the AAN. The measures, while copyrighted, can be reproduced and distributed, without modification, for noncommercial purposes (e.g., use by health care providers in connection with their practices); they must not be altered without prior written approval from the AAN. Commercial use is defined as the sale, license, or distribution of the measures for commercial gain, or incorporation of the measures into a product or service that is sold, licensed, or distributed for commercial gain. Commercial uses of the measures require a license agreement between the user and the AAN. Neither the AAN nor its members are responsible for any use of the measures. AAN Measures and related data specifications do not mandate any particular course of medical care and are not intended to substitute for the independent professional judgment of the treating provider, as the information does not account for individual variation among patients. In all cases, the selected course of action should be considered by the treating provider in the context of treating the individual patient.
    [Show full text]