The Efficacy and Safety of Acarbose Compared
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fixed Dose Combination of Voglibose & Repaglinide in the Management
Clinical Group Global Journal of Obesity, Diabetes and Metabolic Syndrome ISSN: 2455-8583 DOI CC By Arif Faruqui* Research Article Medical Services Department, Medley Pharmaceuticals Limited, Mumbai, India Fixed Dose Combination of Voglibose Dates: Received: 09 August, 2017; Accepted: 26 August, 2017; Published: 28 August, 2017 & Repaglinide in the Management of *Corresponding author: Arif Faruqui, Medical Services Department, Medley Pharmaceuticals Limited, Mumbai, Postprandial Hyperglycemia in Indian India, E-mail: Subjects Keywords: T2DM; Postprandial hyperglycemia; Voglibose; Repaglinide https://www.peertechz.com Abstract To evaluate the effi cacy and tolerability of fi xed dose combination of voglibose and repaglinide in postprandial hyperglycemia (PPHG) in Indian subjects. A non-randomized, open labeled, non-comparative, single-centric, study was conducted in total of 20 type 2 diabetes mellitus (T2DM) patients (9 men and 11 women, mean age 69.07 ± 3.495 years). Each patient was administered a fi xed dose combination of voglibose 0.3mg and repaglinide 0.5/1mg three times a day, just before each meal for 30 days. Fasting blood glucose (FBG) and postprandial blood glucose (PPBG) was performed at baseline and at the end of study as assessment tools. At the end of study data was extractable only in 15 patients because 5 patient dropped out as they did not turn up for follow up at day 30.Postprandial blood glucose reduced signifi cantly {-61.67mg/dl (95% confi dence interval -76.79 to -46.54 p<0.0001)} from baseline at day 30. Also a signifi cant reduction (p<0.0001) was found with FBG {-42.13mg/dl (Confi dence interval -61.25 to -23.02 P value <0.0001)} at end of day 30. -
LANTUS® (Insulin Glargine [Rdna Origin] Injection)
Rev. March 2007 Rx Only LANTUS® (insulin glargine [rDNA origin] injection) LANTUS® must NOT be diluted or mixed with any other insulin or solution. DESCRIPTION LANTUS® (insulin glargine [rDNA origin] injection) is a sterile solution of insulin glargine for use as an injection. Insulin glargine is a recombinant human insulin analog that is a long-acting (up to 24-hour duration of action), parenteral blood-glucose-lowering agent. (See CLINICAL PHARMACOLOGY). LANTUS is produced by recombinant DNA technology utilizing a non- pathogenic laboratory strain of Escherichia coli (K12) as the production organism. Insulin glargine differs from human insulin in that the amino acid asparagine at position A21 is replaced by glycine and two arginines are added to the C-terminus of the B-chain. Chemically, it is 21A- B B Gly-30 a-L-Arg-30 b-L-Arg-human insulin and has the empirical formula C267H404N72O78S6 and a molecular weight of 6063. It has the following structural formula: LANTUS consists of insulin glargine dissolved in a clear aqueous fluid. Each milliliter of LANTUS (insulin glargine injection) contains 100 IU (3.6378 mg) insulin glargine. Inactive ingredients for the 10 mL vial are 30 mcg zinc, 2.7 mg m-cresol, 20 mg glycerol 85%, 20 mcg polysorbate 20, and water for injection. Inactive ingredients for the 3 mL cartridge are 30 mcg zinc, 2.7 mg m-cresol, 20 mg glycerol 85%, and water for injection. The pH is adjusted by addition of aqueous solutions of hydrochloric acid and sodium hydroxide. LANTUS has a pH of approximately 4. CLINICAL PHARMACOLOGY Mechanism of Action: The primary activity of insulin, including insulin glargine, is regulation of glucose metabolism. -
Treatment of Diabetes Mellitus
TREATMENT OF DIABETES MELLITUS DIABETES is a condition that affects how the body makes energy from food. Food is broken down into sugar (glucose) in the body and released into the blood. When the blood sugar level rises after a meal, insulin responds to let the sugar into the cells to be used as energy. In diabetes, the body either does not make enough insulin or it stops responding to insulin as well as it should. This results in sugar staying in the blood and leads to serious health problems over time. DIAGNOSIS OF DIABETES1 • A1C Test: Lab test measuring average blood sugar over past two to three months • Fasting Blood Sugar Test: Lab test measuring blood sugar after eight hours of no food or drink • Oral Glucose Tolerance Test (OGTT): Measures blood sugar before and two hours after drinking a specific sugary liquid • Random Blood Sugar Test: Measures blood sugar at a moment in time, without any kind of preparation (like fasting) FASTING BLOOD ORAL GLUCOSE TOLERANCE RANDOM BLOOD RESULT A1C TEST SUGAR TEST TEST SUGAR TEST Diabetes ≥ 6.5% ≥126 mg/dL ≥ 200 mg/dL ≥ 200 mg/dL Prediabetes 5.7 – 6.4% 100 – 125 mg/dL 140 – 199 mg/dL N/A Normal < 5.7% ≤99 mg/dL < 140 mg/dL N/A NON-DRUG TREATMENTS2 THERAPY COST WHAT TO EXPECT Diet (Mediterranean diet) and exercise (30 minutes a day, five days a week of moderate- Weight loss $-$$ intensity exercise); 7% weight loss decreases risk of diabetes3 Psychological intervention $$-$$$ Psychotherapy may reduce diabetic distress and improve glycemic control4,5 nationalcooperativerx.com PRESCRIPTION TREATMENTS -
In-Vitro Anti-Diabetic Activity and In-Silico Studies of Binding Energies
Pharmacia 67(4): 363–371 DOI 10.3897/pharmacia.67.e58392 Research Article In-vitro anti-diabetic activity and in-silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes Patrick Okechukwu1, Mridula Sharma1, Wen Hui Tan1, Hor Kuan Chan1, Kavita Chirara1, Anand Gaurav1, Mayasah Al-Nema1 1 UCSI Universit, Kuala Lumpur, Malaysia Corresponding author: Patrick Okechukwu ([email protected]) Received 5 September 2020 ♦ Accepted 18 October 2020 ♦ Published 27 November 2020 Citation: Okechukwu P, Sharma M, Tan WH, Chan HK, Chirara K, Gaurav A, Al-Nema M (2020) In-vitro anti-diabetic activity and in-silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes. Pharmacia 67(4): 363–371. https://doi.org/10.3897/pharmacia.67.e58392 Abstract Palmatine a protoberberine alkaloid has been previously reported to possess in vivo antidiabetic and antioxidant property. The aim of the experiment is to evaluate the in vitro antidiabetic activity and in-silico studies of the binding energies of Palmatine, acarbose, and Sitagliptin with the three enzymes of alpha-amylase, alpha-glucosidase, and dipeptidyl peptidase-IV (DPP-IV). The in vitro antidiabetic study was done by evaluating the inhibitory effect of palmatine on the activities of alpha-amylase, alpha-glucosidase, and DPP-IV. Acarbose, and sitagliptin was used as standard drug. The molecular docking study was performed to study the binding interactions of palmatine with alpha-glucosidase, a-amylase, and DPP-IV. The binding interactions were compared with the standard compounds Sitagliptin and acarbose. Palmatine with IC50 (1.31 ± 0.27 µM) showed significant difference of (< 0.0001) higher inhib- iting effect on alpha-amylase and weak inhibiting effect on alpha-glucosidase enzyme with IC50 (9.39 ± 0.27 µM) and DPP-IV with IC50 (8.7 ± 1.82 µM). -
The Sodium Glucose Cotransporter Type 2 Inhibitor Empagliflozin Preserves B-Cell Mass and Restores Glucose Homeostasis in the Male Zucker Diabetic Fatty Rat
1521-0103/350/3/657–664$25.00 http://dx.doi.org/10.1124/jpet.114.213454 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 350:657–664, September 2014 Copyright ª 2014 by The American Society for Pharmacology and Experimental Therapeutics The Sodium Glucose Cotransporter Type 2 Inhibitor Empagliflozin Preserves b-Cell Mass and Restores Glucose Homeostasis in the Male Zucker Diabetic Fatty Rat Henrik H. Hansen, Jacob Jelsing, Carl Frederik Hansen, Gitte Hansen, Niels Vrang, Michael Mark, Thomas Klein, and Eric Mayoux Gubra, Hørsholm, Denmark (H.H.H., J.J., C.F.H., G.H., N.V.); and Boehringer Ingelheim Pharma, Biberach, Germany (M.M., T.K., E.M.) Received January 22, 2014; accepted July 2, 2014 Downloaded from ABSTRACT Type 2 diabetes is characterized by impaired b-cell function at week 8 of treatment compared with week 4, those of empagliflozin associated with progressive reduction of insulin secretion and remained stable throughout the study period. Similarly, empagliflozin b -cell mass. Evidently, there is an unmet need for treatments improved glucose tolerance and preserved insulin secretion jpet.aspetjournals.org with greater sustainability in b-cell protection and antidiabetic after both 4 and 8 weeks of treatment. These effects were efficacy. Through an insulin and b cell–independent mechanism, reflected by less reduction in b-cell mass with empagliflozin or empagliflozin, a specific sodium glucose cotransporter type 2 liraglutide at week 4, whereas only empagliflozin showed b-cell (SGLT-2) inhibitor, may potentially provide longer efficacy. This sparing effects also at week 8. Although this study cannot be study compared the antidiabetic durability of empagliflozin treat- used to dissociate the absolute antidiabetic efficacy among ment (10 mg/kg p.o.) against glibenclamide (3 mg/kg p.o.) and the different mechanisms of drug action, the study demon- liraglutide (0.2 mg/kg s.c.) on deficient glucose homeostasis and strates that empagliflozin exerts a more sustained improve- b-cell function in Zucker diabetic fatty (ZDF) rats. -
Diabetes: Everything You Want to Know
Diabetes: Everything You Want to Know LCDR Bernadine John, RN, BSN, CDE I have no financial affiliation to disclose as a conflict of interest regarding this presentation. DM Standards of Care The IHS Division of Diabetes endorses and supports the current American Diabetes Association (ADA) Clinical Practice Recommendations as the foundation of excellence in diabetes. The 2008 IHS Standards of Care for Patients With Type 2 Bringing the focus to the specific care issues of American Indian and Alaska Native adults with diabetes, placing greater emphasis on the prevention of complications that are most notable in the this population. STANDARDS OF CARE FOR ADULTS WITH TYPE 2 DIABETES, MARCH 2009, DIVISION OF DIABETES TREATMENT AND PREVENTION, HTTP://WWW.IHS.GOV/MEDICALPROGRAMS/DIABETES acanthosis nigricans (uh-kan-THO-sis NIH-grih-kans) a skin condition characterized by darkened skin patches; common in people whose body is not responding correctly to the insulin that they make in their pancreas (insulin resistance). This skin condition is also seen in people who have pre-diabetes or Type 2 diabetes. Motivational Interviewing •Are you concerned about your weight? •How willing are you to make a change? •What would it take to make you more motivated ( increase in number scale) •What are you willing to change? •Set achievable goals (e.g, 5-2-1-0) •If they aren’t interested-JUST WALK AWAY! •Resist the temptation to fire a parting shot…. •But emphasize your concern, readdress another visit AADE 7 Diabetes Education Curriculum Guiding Patients to Successful Self-Management Curriculum Foundation is based on continuum of Outcomes categories Learning is an immediate outcome Behavioral is measured over time Clinical examples are improved A1c Health status is measured in changes in quality of life 7 Self Care Behaviors Being Active Healthy Eating Taking Medication Reducing Risks Monitoring Healthy Coping Problem Solving 1. -
Impact of Voglibose on the Pharmacokinetics of Dapagliflozin
Diabetes Ther (2013) 4:41–49 DOI 10.1007/s13300-012-0016-5 ORIGINAL RESEARCH Impact of Voglibose on the Pharmacokinetics of Dapagliflozin in Japanese Patients with Type 2 Diabetes Akira Imamura • Masahito Kusunoki • Shinya Ueda • Nobuya Hayashi • Yasuhiko Imai To view enhanced content go to www.diabetestherapy-open.com Received: September 24, 2012 / Published online: January 10, 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com ABSTRACT glucose reabsorption. This study was performed to assess the effect of the oral antidiabetic agent Introduction: Dapagliflozin is an orally voglibose [0.2 mg thrice daily (t.i.d.)] at steady- administered selective sodium-glucose state, on the pharmacokinetics, safety and cotransporter 2 (SGLT2) inhibitor under tolerability of dapagliflozin administered as a development for the treatment of type 2 single oral dose (10 mg) to Japanese patients diabetes mellitus (T2DM). Dapagliflozin lowers with T2DM. blood glucose through a reduction in renal Methods: This was an open-label, multi-center, ClinicalTrials.gov: #NCT01055652. drug–drug interaction study. A single oral dose of dapagliflozin (10 mg) was administered to 22 A. Imamura (&) Japanese patients with T2DM in the presence Moriya Keiyu Hospital, 980-1, Tatuzawa, and absence of voglibose (0.2 mg t.i.d.). Serial Moriya City, Ibaraki 302-0118, Japan e-mail: [email protected] blood samples were collected before and at regular prespecified intervals after each M. Kusunoki The Institute for Rehabilitation Studies, Kobe dapagliflozin dose to determine dapagliflozin International University, 9-1-6 Koyocho-naka, plasma concentrations and to evaluate Higashinada-ku, Kobe-city, Hyogo 658-0032, Japan pharmacokinetic parameters. -
Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research
Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Garabedian, Laura Faden. 2013. Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156786 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research A dissertation presented by Laura Faden Garabedian to The Committee on Higher Degrees in Health Policy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Health Policy Harvard University Cambridge, Massachusetts March 2013 © 2013 – Laura Faden Garabedian All rights reserved. Professor Stephen Soumerai Laura Faden Garabedian Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research Abstract This dissertation consists of two empirical papers and one methods paper. The first two papers use quasi-experimental methods to evaluate the impact of universal health insurance reform in Massachusetts (MA) and Thailand and the third paper evaluates the validity of a quasi- experimental method used in comparative effectiveness research (CER). My first paper uses interrupted time series with data from IMS Health to evaluate the impact of Thailand’s universal health insurance and physician payment reform on utilization of medicines for three non-communicable diseases: cancer, cardiovascular disease and diabetes. -
Cost-Effectiveness of Saxagliptin Versus Acarbose As Second-Line Therapy in Type 2 Diabetes in China
RESEARCH ARTICLE Cost-Effectiveness of Saxagliptin versus Acarbose as Second-Line Therapy in Type 2 Diabetes in China Shuyan Gu1, Yuhang Zeng1, Demin Yu2, Xiaoqian Hu1, Hengjin Dong1* 1 Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China, 2 Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China * [email protected] a11111 Abstract Objective OPEN ACCESS This study assessed the long-term cost-effectiveness of saxagliptin+metformin (SAXA Citation: Gu S, Zeng Y, Yu D, Hu X, Dong H (2016) +MET) versus acarbose+metformin (ACAR+MET) in Chinese patients with type 2 diabetes Cost-Effectiveness of Saxagliptin versus Acarbose mellitus (T2DM) inadequately controlled on MET alone. as Second-Line Therapy in Type 2 Diabetes in China. PLoS ONE 11(11): e0167190. doi:10.1371/ journal.pone.0167190 Methods Editor: Cheng Hu, Shanghai Diabetes Institute, Systematic literature reviews were performed to identify studies directly comparing SAXA CHINA +MET versus ACAR+MET, and to obtain diabetes-related events costs which were modified Received: July 28, 2016 by hospital surveys. A Cardiff Diabetes Model was used to estimate the long-term economic and health treatment consequences in patients with T2DM. Costs (2014 Chinese yuan) Accepted: November 9, 2016 were calculated from the payer's perspective and estimated over a patient's lifetime. Published: November 22, 2016 Copyright: © 2016 Gu et al. This is an open access Results article distributed under the terms of the Creative Commons Attribution License, which permits SAXA+MET predicted lower incidences of most cardiovascular events, hypoglycemia unrestricted use, distribution, and reproduction in events and fatal events, and decreased total costs compared with ACAR+MET. -
Pharmacoepidemiological Study Report Synopsis ER-9489 A
DAHLIA Report synopsis ER-9489 Version 1.0 14 November 2017 Pharmacoepidemiological study report synopsis ER-9489 A retrospective nationwide cohort study to investigate the treatment of type 2 diAbetic pAtients in Finland - DAHLIA Authors: Solomon Christopher, Anna Lundin, Minna Vehkala, Fabian Hoti Study ID: ER-9489 Sponsor: AstraZeneca Nordic Baltic Report version: 1.0 Report date: 14 November 2017 EPID ReseArch CONFIDENTIAL DAHLIA Report synopsis ER-9489 Version 1.0 14 November 2017 Study Information Title A retrospective nationwide cohort study to investigate the treatment of type 2 diabetic patients in Finland – DAHLIA Study ID ER-9489 Report synopsis version 1.0 Report synopsis date 14 November 2017 EU PAS register number ENCEPP/SDPP/8202 Sponsor AstraZeneca Nordic Baltic SE-151 85 Södertälje, Sweden Sponsor contact person Susanna Jerström, Medical Evidence Manager Medical Nordic-Baltic SE-151 85 Södertälje, Sweden Active substance ATC codes A10 (Drugs used in diabetes) Medicinal product The folloWing AstraZeneca products are available on the Finnish market: Bydureon (exenatide A10BX04), Byetta (exenatide A10BX04), Forxiga (dapagliflozin A10BX09), Komboglyze (metformine and saxagliptin A10BD10), Onglyza (saxagliptin A10BH03), Xigduo (dapagliflozin and metformin A10BD15) Country of study Finland Authors of the report Solomon Christopher, Anna Lundin, Minna Vehkala, Fabian Hoti synopsis EPID ReseArch Page 2 of 43 DAHLIA Report synopsis ER-9489 Version 1.0 14 November 2017 Table of contents 1 Study report summary (Abstract) ........................................................................................... -
Glycemic Management of Type 2 Diabetes
Glycemic Management of Type 2 Diabetes Gail Nunlee-Bland, M.D. Professor Medicine & Pediatrics Director, Diabetes Treatment Center Howard University 1 Disclosures • None Learning Objectives • Understand the importance of lifestyle therapy in diabetes management • Know the classes of antihyperglycemic agents, mechanism of action, benefits and side effects of these agents • Recognize the importance of individualized treatment goals for diabetic patients AACE Comprehensive Care Plan Disease management from Antihyperglycemic a multidisciplinary team pharmacotherapy Comprehensive Care Plan Comprehensive diabetes Therapeutic lifestyle self-education for the change patient 4 Handelsman YH, et al. Endocr Pract. 2015;21(suppl 1):1-87. Glycemic Management of Type 2 Diabetes THERAPEUTIC LIFESTYLE CHANGE 5 Components of Therapeutic Lifestyle Change • Healthful eating • Sufficient physical activity • Sufficient sleep • Avoidance of tobacco products • Limited alcohol consumption • Stress reduction 6 Handelsman YH, et al. Endocr Pract. 2015;21(suppl 1):1-87. Glycemic Management of Type 2 Diabetes ANTIHYPERGLYCEMIC THERAPY 7 Cardiovascular Outcomes Trials: A Brief History • 2008 FDA guidance mandating assessment of CV safety of all antihyperglycemic agents in RCTs – Designed as noninferiority studies to demonstrate study drug was not associated with more MACE than placebo • Some study designs tested for superiority if noninferiority criteria were met – Primary endpoint: composite of cardiovascular death, nonfatal MI, and nonfatal stroke • Some primary -
180703 Glucobay Pi 1
PRODUCT INFORMATION GLUCOBAY® (acarbose) 1. NAME OF THE MEDICINE Acarbose 2. QUALITATIVE AND QUANTITATIVE COMPOSITION GLUCOBAY tablets contain acarbose 50 mg or 100 mg. For the list of excipients, see Section 6.1 LIST OF EXCIPIENTS. 3. PHARMACEUTICAL FORM GLUCOBAY 50 mg tablets are round, biconvex, white to yellow-tinged tablets, marked with the Bayer cross on the one side and “G” and “50” on the reverse side. GLUCOBAY 100 mg tablets are round, convex, white to yellow-tinged tablets, marked with “G” and “100”. 4. CLINICAL PARTICULARS 4.1 THERAPEUTIC INDICATIONS As an adjunct to prescribed diet and exercise for the management of blood glucose concentrations in non-insulin dependent diabetic patients who are inadequately controlled by diet alone or by diet and oral hypoglycaemic agents. 4.2 DOSE AND METHOD OF ADMINISTRATION Since the activity and the tolerability of GLUCOBAY varies from individual to individual, the optimal dosage must be individualised. GLUCOBAY tablets should be swallowed whole with a little liquid directly before a meal or chewed with the first few mouthfuls of the meal. In adults, GLUCOBAY should be started at a low initial dose and be increased slowly to minimise the gastrointestinal side effects. Treatment is usually commenced at 50 mg once daily for the first week, 50 mg twice daily for the second week and 50 mg three times a day for the third week. A further increase of the dose may be necessary after 4 - 8 weeks on the basis of the blood glucose level. The average adult dose is 100 mg GLUCOBAY three times daily.