Expanding the Genetic Heterogeneity of Intellectual Disability Shams

Total Page:16

File Type:pdf, Size:1020Kb

Expanding the Genetic Heterogeneity of Intellectual Disability Shams Expanding the genetic heterogeneity of intellectual disability Shams Anazi*1, Sateesh Maddirevula*1, Yasmine T Asi2, Saud Alsahli1, Amal Alhashem3, Hanan E. Shamseldin1, Fatema AlZahrani1, Nisha Patel1, Niema Ibrahim1, Firdous M. Abdulwahab1, Mais Hashem1, Nadia Alhashmi4, Fathiya Al Murshedi4, Ahmad Alshaer12, Ahmed Rumayyan5,6, Saeed Al Tala7, Wesam Kurdi9, Abdulaziz Alsaman17, Ali Alasmari17, Mohammed M Saleh17, Hisham Alkuraya10, Mustafa A Salih11, Hesham Aldhalaan12, Tawfeg Ben-Omran13, Fatima Al Musafri13, Rehab Ali13, Jehan Suleiman14, Brahim Tabarki3, Ayman W El-Hattab15, Caleb Bupp18, Majid Alfadhel19, Nada Al-Tassan1,16, Dorota Monies1,16, Stefan Arold20, Mohamed Abouelhoda1,16, Tammaryn Lashley2, Eissa Faqeih17, Fowzan S Alkuraya1,3,16,21,18 *These authors have contributed equally 1Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. 2Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK. 3Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. 4Department of Genetics, College of Medicine, Sultan Qaboos University, Sultanate of Oman. 5King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia. 6Neurology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia. 7Armed Forces Hospital Khamis Mushayt, Department of Pediatrics and Genetic Unit, Riyadh, Saudi Arabia. 9Department of Obstetrics and Gynecology, King Faisal Specialist Hospital, Riyadh, Saudi Arabia 10Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia. 11Division of Pediatric Neurology, Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia. 12Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. 13Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar. 14Department of Pediatrics, Division of Neurology, Tawam Hospital, Al Ain, United Arab Emirates. 15Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates. 16Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. 17Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia. 18Spectrum Health Genetics, Grand Rapids, MI, USA 19King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Genetics Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia 20King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia 21Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia Authors declare no conflict of interest Corresponding author: [email protected] ABSTRACT Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 67 families (104 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD as a particularly compelling candidate in which we identified biallelic likely deleterious variants in two ID families. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms. INTRODUCTION Intellectual disability (ID) is a common morbidity that affects 1-3% of the population 1; 2. The resulting functional impairment varies depending on the severity of ID, which ranges from mild to severe as quantified by the intelligence quotient (IQ) score. The etiology of ID is highly heterogeneous although genetic forms are increasingly recognized as a major etiological category. De novo genetic and genomic variants account for at least 50% of severe ID in outbred populations 3. In contrast, the majority of ID in highly inbred populations is caused by recessive mutations 4; 5. The recent expansion in the use of genomic sequencing techniques (primarily whole-exome sequencing) has resulted in a rapid expansion of the genetic determinants of ID. In the case of dominant causes, very large sequencing projects have concluded that the nearly all major ID genes have likely been identified 6. This appears to be in striking contrast to recessive ID where recent large sequencing projects have revealed very little overlap in their lists of novel candidate genes, which suggests that a significant proportion of recessive ID genes have yet to be identified 4; 7-9. Consanguinity loops are not only helpful in facilitating the discovery of novel recessive disease genes, including ID genes, but they also facilitate the occurrence of homozygous truncating (knockout) alleles in genes previously reported as candidates, which strongly corroborates those tentative disease-gene links 10. Additionally, consanguinity can unmask recessive mutations in genes that are only known to cause diseases in an autosomal dominant fashion 11. This can lead to a remarkably different phenotype from the previously reported dominant one 5; 12-14. Finally, certain classes of pathogenic mutations may evade detection/interpretation by the typical genomic sequencing and only come to focus with the help of positional mapping aided by consanguinity 15. In this study, we attempted to exploit the above advantages of consanguinity to expand the morbid genome of ID. MATERIALS AND METHODS Human Subjects All patients with documented ID or significant component of cognitive impairment in the setting of developmental delay in a young child were eligible. Only patients in whom we identified variants that potentially explain their phenotype were included. Those with potentially causal variants that are not novel were excluded. Available family members were recruited for segregation analysis as appropriate. A written informed consent was obtained from all subjects prior to participation in accordance with a KFSHRC IRB-approved research protocol (RAC# 2121053). Mutation Identification All subjects with negative family history had molecular karyotyping performed as described before4; 16. Only those in whom normal results were obtained were included in subsequent analysis. Specifically, a previously described multigene panel (599 genes) were used to screen for mutations in known ID genes 17. If negative, we proceeded with autozygome analysis and whole exome sequencing (WES) as described before 17. Some patients were directly tested by clinical WES. Variant classification was according to the recent ACMG guidelines 18. For PM2 score, we used gnomAD as well as an in-house ethnically matched database of 2,363 exomes and 1,607 neuro gene panels. We only included cases in whom pathogenic or likely pathogenic variants were identified. The only exceptions are those in whom variants in candidate genes were identified. These were included for the purpose of proposing novel candidate genes. Candidacy of these novel genes was based on several factors as described before 4; 16. Sanger confirmation was performed for all reported variants and segregation with the phenotype was confirmed whenever samples from relatives were available. RTPCR and Molecular Cloning RNA isolation and gene-specific RTPCR were as described 19. PCR amplified product was subjected to molecular cloning into sequencing vector pGEM-T Easy (Promega) followed by sequencing with SP6/T7 polymerase primers. Tissue Collection Samples were collected from brains donated to the Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College London, UK. The donations were made according to ethically approved protocols, and tissue at Queen Square Brain Bank is stored under a license issued by the Human Tissue Authority (No. 12198). Computational structural analysis of mutants Sequences were retrieved from the Uniprot database. SwissModel and RaptorX 20; 21 were used to produce homology models. RaptorX was used for prediction of secondary structure and protein disorder. QUARK 22 was used for ab initio structural modeling. Models were manually inspected, and mutations evaluated, using the Pymol program (pymol.org). Immunohistochemistry Immunohistochemistry Formalin-fixed paraffin-embedded tissue blocks from the frontal cortex, hippocampus and cerebellum of normal
Recommended publications
  • Systems Analysis Implicates WAVE2&Nbsp
    JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.5,NO.4,2020 ª 2020 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects a b b b Jonathan J. Edwards, MD, Andrew D. Rouillard, PHD, Nicolas F. Fernandez, PHD, Zichen Wang, PHD, b c d d Alexander Lachmann, PHD, Sunita S. Shankaran, PHD, Brent W. Bisgrove, PHD, Bradley Demarest, MS, e f g h Nahid Turan, PHD, Deepak Srivastava, MD, Daniel Bernstein, MD, John Deanfield, MD, h i j k Alessandro Giardini, MD, PHD, George Porter, MD, PHD, Richard Kim, MD, Amy E. Roberts, MD, k l m m,n Jane W. Newburger, MD, MPH, Elizabeth Goldmuntz, MD, Martina Brueckner, MD, Richard P. Lifton, MD, PHD, o,p,q r,s t d Christine E. Seidman, MD, Wendy K. Chung, MD, PHD, Martin Tristani-Firouzi, MD, H. Joseph Yost, PHD, b u,v Avi Ma’ayan, PHD, Bruce D. Gelb, MD VISUAL ABSTRACT Edwards, J.J. et al. J Am Coll Cardiol Basic Trans Science. 2020;5(4):376–86. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2020.01.012 JACC: BASIC TO TRANSLATIONALSCIENCEVOL.5,NO.4,2020 Edwards et al. 377 APRIL 2020:376– 86 WAVE2 Complex in LVOTO HIGHLIGHTS ABBREVIATIONS AND ACRONYMS Combining CHD phenotype–driven gene set enrichment and CRISPR knockdown screening in zebrafish is an effective approach to identifying novel CHD genes.
    [Show full text]
  • TRAK1 (NM 014965) Human Recombinant Protein – TP304282 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP304282 TRAK1 (NM_014965) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human trafficking protein, kinesin binding 1 (TRAK1), transcript variant 2 Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 77.1 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_055780 Locus ID: 22906 UniProt ID: Q9UPV9, B7ZAE5 RefSeq Size: 4623 Cytogenetics: 3p22.1 RefSeq ORF: 2064 Synonyms: EIEE68; MILT1; OIP106 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 TRAK1 (NM_014965) Human Recombinant Protein – TP304282 Summary: Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity).[UniProtKB/Swiss-Prot Function] Protein Families: Transcription Factors Product images: Coomassie blue staining of purified TRAK1 protein (Cat# TP304282).
    [Show full text]
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • Rabbit Anti-NCKAP1/FITC Conjugated Antibody-SL6204R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-NCKAP1/FITC Conjugated antibody SL6204R-FITC Product Name: Anti-NCKAP1/FITC Chinese Name: FITC标记的膜相关的蛋白质HEM2抗体 NCK associated protein 1; NCK associated protein 1; Membrane associated protein Alias: HEM2; Membrane-associated protein HEM-2; NAP 1; NAP1; NAP125; NCK associated protein; Nck-associated protein 1; Nckap1; NCKP1_HUMAN; p125Nap1. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Chicken,Dog,Pig,Cow,Horse,Guinea Pig,G IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 129kDa Cellular localization: The cell membrane Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human 12 NCKAP1 Lsotype: IgG Purification: affinitywww.sunlongbiotech.com purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: NAP125, also known as NCKAP1 (NCK-associated protein 1), p125Nap1 or membrane-associated protein HEM-2, is a 1,128 amino acid single pass membrane Product Detail: protein that exists as two alternatively spliced isoforms and belongs to the HEM- 1/HEM-2 family.
    [Show full text]
  • A Curated Database of Experimentally Identified Interaction Proteins Of
    International Journal of Molecular Sciences Article OGT Protein Interaction Network (OGT-PIN): A Curated Database of Experimentally Identified Interaction Proteins of OGT Junfeng Ma 1,* , Chunyan Hou 2, Yaoxiang Li 1 , Shufu Chen 3 and Ci Wu 1 1 Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; [email protected] (Y.L.); [email protected] (C.W.) 2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; [email protected] 3 School of Engineering, Pennsylvania State University Behrend, Erie, PA 16563, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-202-6873802 Abstract: Interactions between proteins are essential to any cellular process and constitute the basis for molecular networks that determine the functional state of a cell. With the technical advances in recent years, an astonishingly high number of protein–protein interactions has been revealed. However, the interactome of O-linked N-acetylglucosamine transferase (OGT), the sole enzyme adding the O-linked β-N-acetylglucosamine (O-GlcNAc) onto its target proteins, has been largely undefined. To that end, we collated OGT interaction proteins experimentally identified in the past several decades. Rigorous curation of datasets from public repositories and O-GlcNAc-focused publications led to the identification of up to 929 high-stringency OGT interactors from multiple species studied (including Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Citation: Ma, J.; Hou, C.; Li, Y.; Chen, S.; Wu, C. OGT Protein Interaction Arabidopsis thaliana, and others). Among them, 784 human proteins were found to be interactors Network (OGT-PIN): A Curated of human OGT.
    [Show full text]
  • CNTN6 Mutations Are Risk Factors for Abnormal Auditory Sensory Perception in Autism Spectrum Disorders
    CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders Mercati O1,2,3, $, Huguet G1,2,3,$, Danckaert A4, André-Leroux G5,6, Maruani A7, Bellinzoni M5, Rolland T1,2,3,, Gouder L1,2,3, Mathieu A1,2,3, Buratti J1,2,3, Amsellem F7, Benabou M1,2,3, Van-Gils J1,2,3, Beggiato A7, Konyukh M1,2,3, Bourgeois J-P1,2,3, Gazzellone MJ8, Yuen RKC8, Walker S8, Delépine M9, Boland A9, Régnault B10, Francois M11, Van Den Abbeele T11, Mosca-Boidron AL12, Faivre L12, Shimoda Y13, Watanabe K13, Bonneau D14, Rastam M15,16, Leboyer M17,18,19,20, Scherer SW8, 21, Gillberg C16, Delorme R1,2,3,7, Cloëz-Tayarani I*1,2,3, Bourgeron T*1,2,3,16,20 Supplementary data Supplementary Table S1. Description of the patients from the PARIS cohort used for the CNV screening Supplementary Table S2. Description of the cohorts used for CNV screening Supplementary Table S3. Description of the patients from the PARIS cohort used for the SNV screening Supplementary Table S4. Primers used for mutation screening of CNTN5 and CNTN6 Supplementary Table S5. Primers used for site-directed mutagenesis of CNTN5 and CNTN6 variants Supplementary Table S6. CNTN5 coding variants identified in this study Supplementary Table S7. CNTN6 coding variants identified in this study Supplementary Table S8. Clinical characterization of the patients carrying CNTN5 or CNTN6 variants and evaluated for auditory brainstem responses Supplementary Table S9. Auditory brainstem responses of the patients and the controls. Supplementary Figure S1. Genetic and clinical characterizations of family AUDIJ001 and AUDIJ002 carrying CNTN5 CNVs Supplementary Figure S2.
    [Show full text]
  • Gene Ontology Functional Annotations and Pleiotropy
    Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question
    [Show full text]
  • Eutherian Adaptation from a TRAK-Like Protein, Conserved Gene Promoter Elements, and Localization in the Human Intestine Amanda L
    Lumsden et al. BMC Evolutionary Biology (2016) 16:214 DOI 10.1186/s12862-016-0780-3 RESEARCH ARTICLE Open Access Huntingtin-associated protein 1: Eutherian adaptation from a TRAK-like protein, conserved gene promoter elements, and localization in the human intestine Amanda L. Lumsden1*, Richard L. Young2,3, Nektaria Pezos2,3 and Damien J. Keating1,2* Abstract Background: Huntingtin-associated Protein 1 (HAP1) is expressed in neurons and endocrine cells, and is critical for postnatal survival in mice. HAP1 shares a conserved “HAP1_N” domain with TRAfficking Kinesin proteins TRAK1 and TRAK2 (vertebrate), Milton (Drosophila) and T27A3.1 (C. elegans). HAP1, TRAK1 and TRAK2 have a degree of common function, particularly regarding intracellular receptor trafficking. However, TRAK1, TRAK2 and Milton (which have a “Milt/TRAK” domain that is absent in human and rodent HAP1) differ in function to HAP1 in that they are mitochondrial transport proteins, while HAP1 has emerging roles in starvation response. We have investigated HAP1 function by examining its evolution, and upstream gene promoter sequences. We performed phylogenetic analyses of the HAP1_N domain family of proteins, incorporating HAP1 orthologues (identified by genomic synteny) from 5 vertebrate classes, and also searched the Dictyostelium proteome for a common ancestor. Computational analyses of mammalian HAP1 gene promoters were performed to identify phylogenetically conserved regulatory motifs. Results: We found that as recently as marsupials, HAP1 contained a Milt/TRAK domain and was more similar to TRAK1 and TRAK2 than to eutherian HAP1. The Milt/TRAK domain likely arose post multicellularity, as it was absent in the Dictyostelium proteome. It was lost from HAP1 in the eutherian lineage, and also from T27A3.1 in C.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Genome Wide High Density SNP-Based Linkage Analysis of Childhood Absence Epilepsy Identifies a Susceptibility Locus on Chromosome 3P23-P14
    Epilepsy Research (2009) 87, 247—255 journal homepage: www.elsevier.com/locate/epilepsyres Genome wide high density SNP-based linkage analysis of childhood absence epilepsy identifies a susceptibility locus on chromosome 3p23-p14 Barry A. Chioza a,1, Jean Aicardi b,2, Harald Aschauer c,3, Oebele Brouwer d,4, Petra Callenbach d,4, Athanasios Covanis e,5, Joseph M. Dooley f,6, Olivier Dulac g,7, Martina Durner h,8, Orvar Eeg-Olofsson i,9, Martha Feucht j,10, Mogens Laue Friis k,11, Renzo Guerrini l,12, Marianne Juel Kjeldsen m,13, Rima Nabbout g,7, Lina Nashef n,14, Thomas Sander o,p,15, Auli Sirén q,16, Elaine Wirrell r,17, Paul McKeigue s,18, Robert Robinson t,19, R. Mark Gardiner a,20, Kate V. Everett a,∗ Available online 17 October 2009 ∗ Corresponding author. Tel.: +44 2079052114; fax: +44 2074046191. E-mail addresses: [email protected] (B.A. Chioza), [email protected] (J. Aicardi), [email protected] (H. Aschauer), [email protected] (O. Brouwer), [email protected] (P. Callenbach), [email protected] (A. Covanis), [email protected] (J.M. Dooley), [email protected] (O. Dulac), [email protected] (M. Durner), [email protected] (O. Eeg-Olofsson), [email protected] (M. Feucht), [email protected] (M.L. Friis), [email protected] (R. Guerrini), [email protected] (M.J. Kjeldsen), [email protected] (R. Nabbout), [email protected] (L.
    [Show full text]
  • UWS Academic Portal the RAC1 Target NCKAP1 Plays a Crucial Role
    UWS Academic Portal The RAC1 target NCKAP1 plays a crucial role in progression of BRAF/PTEN -driven melanoma in mice Swaminathan, Karthic; Campbell, Andrew ; Papalazarou, Vassilis; Jaber-Hijazi, Farah ; Nixon, Colin; McGhee, Ewan; Strathdee, Douglas; Sansom, Owen; Machesky, Laura M. Published in: Journal of Investigative Dermatology DOI: 10.1016/j.jid.2020.06.029 E-pub ahead of print: 08/08/2020 Document Version Peer reviewed version Link to publication on the UWS Academic Portal Citation for published version (APA): Swaminathan, K., Campbell, A., Papalazarou, V., Jaber-Hijazi, F., Nixon, C., McGhee, E., Strathdee, D., Sansom, O., & Machesky, L. M. (2020). The RAC1 target NCKAP1 plays a crucial role in progression of BRAF/PTEN -driven melanoma in mice. Journal of Investigative Dermatology, 141(3), 628-637.e15. https://doi.org/10.1016/j.jid.2020.06.029 General rights Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30 Sep 2021 UWS Academic Portal The RAC1 target NCKAP1 plays a crucial role in progression of BRAF/PTEN -driven melanoma in mice Swaminathan, Karthic; Campbell, Andrew ; Papalazarou, Vassilis; Jaber-Hijazi, Farah ; Nixon, Colin; McGhee, Ewan; Strathdee, Douglas; Sansom, Owen; Machesky, Laura M.
    [Show full text]
  • Several Fusion Genes Identified in a Spermatic Cord Leiomyoma With
    CANCER GENOMICS & PROTEOMICS 18 : 531-542 (2021) doi:10.21873/cgp.20278 Several Fusion Genes Identified in a Spermatic Cord Leiomyoma With Rearrangements of Chromosome Arms 3p and 21q IOANNIS PANAGOPOULOS 1, LUDMILA GORUNOVA 1, KRISTIN ANDERSEN 1, INGVILD LOBMAIER 2 and SVERRE HEIM 1,3 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 2Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 3Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway Abstract. Background/Aim: Benign smooth-muscle tumors, Leiomyomas are benign smooth -muscle tumors . They have leiomyomas, occur in nearly every organ but are most been described in nearly every organ but are most common common in the uterus. Whereas much is known about the in the uterus (fibroids) (1-5). genetics of uterine leiomyomas, little genetic information Much is known about the genetics , and hence the exists about leiomyomas of other organs. Here, we report pathogenesis, of uterine leiomyomas (6-9). In brief, most and discuss the genetic findings in a para-testicular uterine leiomyomas are cytogenetically characterized by the leiomyoma. Materials and Methods: Cytogenetic, array presence of one or more of the following cytogenetic comparative genomic hybridization (aCGH) RNA aberrations: t(12;14)(q15;q23–24) ; del(7)(q21.2q31.2) ; sequencing, reverse-transcription polymerase chain reaction rearrangements involving 6p21, 10q 22, and 1p ; trisomy 12 ; (RT- PCR), and Sanger sequencing analyses were performed deletions of 3q ; and changes of the X chromosome (10, 11). on a leiomyoma of the spermatic cord removed from a 61- These chromosomal aberrations rearrange and deregulate year-old man.
    [Show full text]