On some problems of Kobayashi and Lang
Claire Voisin
Contents
- CONTENTS
- CONTENTS
Chapter 0
Introduction
≥
CHAPTER 0. INTRODUCTION
- ∈
- →
∈
∗
→
∈∈
→
→
- →∞
- ∗
∞
- →∞
- →∞
2
2
1
CHAPTER 0. INTRODUCTION
≤
+1
- ≥
- ≥
+1
- ≤
- ≤
- −
≥
+1
⊂
≥
3
≥
21
2
3
CHAPTER 0. INTRODUCTION
Chapter 1
The analytic setting
1.1 Basic results and definitions
1.1.1 Definition of the pseudo-metrics/volume forms
- {|
- |
- }
∗
∈
- {|
- |
- ∧
- ∧
- }
∗
- 1
- 1
CHAPTER 1. THE ANALYTIC SETTING
∈
∈
- ∧
- ∧
1
1
∀ ≥
⊂
→
- 0
- 0
−
|| ||
4
∧
- 2
- 2 2
- − |
- |
|| ||
⊂
|| ||
∈
- 1
- 1
- +1
- +1
1.1. BASIC RESULTS AND DEFINITIONS
→
[0 1]
(0)= (1)=
[0 1]
|| ||
1.1.2 First properties
→
∗
≤
∧
∗
- ∗
- ∗
2
- {
- }
×
1
- ∈
- ∈
- ≤
- 1
- 2
- 1
- 2
- 1
- 2
- 1
- 2
- →
- ∈
- 0
- 0
- →
- ∈
11
- 1
- 1
1
- 2
- +1
+1
+1
- 0
- 0
- 0
- 0
+1
2
1
CHAPTER 1. THE ANALYTIC SETTING
- 0
- 0
≤
- 0
- 0
- ≤
- ≤
- 1
- 2
- 1
- 2
00
0
≤
- 0
- 0
- 0
- →
- ×
×
- 0
- 0
- ≤
- ≤
×
- 1
- 1
- 2
- 2
- 1
- 2
≤
×
- 1
- 1
- 2
- 2
- 1
- 2
- ∗
- ∗
2
- ≤
- ⊗
×
1
- ∗
- ∗
- ≥
- ⊗
×
- 1
- 2
→
1
→
2
+
- →
- ×
- ×
- 1
- 2
- 1
- 2
- →
- ×
- {
- }
- t
- →
- →
- ×
- ×
- ×
∈
1.1. BASIC RESULTS AND DEFINITIONS
- |
- |≤
|
- |
- |
- ≤
- | · |
- |
−1
- |
- | · |
- |≥
1
- ∗
- ∗
- ≥
- ⊗
×
- 1
- 2
∈
- ∧
- {|
- |
- ∧
- }
∗
- 1
- 1
≤
- →
- ≤
∗
≤
CHAPTER 1. THE ANALYTIC SETTING
1.1.3 Brody’s theorem, applications
→
→
≥
|
- |
- |
- ∀ ∈
→
- |
- ∞
→∞
→
- |
- |
- ||
- ||
∈
|| ||
( )
|| ||
⊂
|| ||
→
1.1. BASIC RESULTS AND DEFINITIONS
- ||
- ||
|| ||
C
( )
∈
- ||
- ◦
- ||
- ∈
- ∗
|| ||
≥
∈
∈
- ||
- ◦
- ||
∗
- ◦
- ◦
⊂
→
- ||
- || ≤
→
CHAPTER 1. THE ANALYTIC SETTING
∈
→
∀ ∈
∈
- { ∈
- }
{ }
- 0
- 0
≥
0
- 0
- 0
≥
0
- ◦
- ◦
1.1. BASIC RESULTS AND DEFINITIONS
- →∞
- →∞
→∞
- ◦
- ◦
≤
→∞
→∞
◦
- |
- |
- →∞
- →∞
→
X →
∈
0
X
∈
→
- ||
- || ||
- ||
∈C
0
⊂
CHAPTER 1. THE ANALYTIC SETTING
→
1.1.4 Relation between volume and metric
- →∞
- →∞
→
- |
- |
- ∞
→∞
- |
- |
- ∞
→∞
∗
→
1.2 Curvature arguments
1.2. CURVATURE ARGUMENTS
1.2.1 Hyperbolic geometry and the Ahlfors-Schwarz lemma
∧
1
2 2
- − |
- |
=
∧
2 2
- − |
- |
=1
∧
==1
2 2
- − |
- |
2
- −
- − |
- |
2
- − |
- |
∧
2 2
- − |
- |
≥
≥
CHAPTER 1. THE ANALYTIC SETTING
1
- |
- |
∞
1−
1−
1−
∞
1−
−
- −
- −
∈
- ∗
- ∗
≤
−1
∗
≤
1.2. CURVATURE ARGUMENTS
→
∗
∗
≤≥
∗
OP(
∗
)
OP(
−
)
→
−
→
∗∗
∗OP(
)
→
∗OP(
−
- 1
- )
∗
≥
1
∗
→
1
- ∗
- ∗
∗
≤
1
≥| |
OP(
−
)
CHAPTER 1. THE ANALYTIC SETTING
≥
≥
→
∗
∗
≤
≥
1.2.2 Another definition of the Kobayashi infinitesimal pseudometric
→
→
↓
1
−1
0
−1
◦
0
|
1.2. CURVATURE ARGUMENTS
1
→
- ∗
- ∗
- || ||
- || ||
≥
|| ||
- ∈
- ∈
|| ||
- →
- ∈
|
∗
- || ||
- ≤
≤
- →
- ◦
−1
|
- ∗
- ∗
- ∗
- −1
- −1
- || ||
- ||
- ||
- |
- |
|| ||
∈
≥
- ∈
- →
∗
−1
- ◦
- →
−1
◦
∗
∗
0
∗
|| ||
||
≤|| ||
≤
|
||
CHAPTER 1. THE ANALYTIC SETTING
1+
- || ||
- ≤|
- |≤
- |
- | − |
- |
1
| |
≥
1.2.3 Jet differentials
+1
→
→
∗
−
→→
→
O
·
∗
- ∈
- ·
| |
- |
- | | ||
- |
- ∈
- ∈
1.2. CURVATURE ARGUMENTS
O −
| |
- |
- ·
- | | ||
- |
- ∈
- ∈
O −
1
1
2
2
- |
- |
- |
- |
→
→
1
2
2
- |
- |
- |
- |
2
- −
- |
- |
∞
2
- |
- |
−
2
- |
- |
- ∧
◦
∗
∈
- ≤ −
- →
- 2
- −1
- |
- |
- ∧
- ≤
1
1
≤ −
- ⊂
- →
|| ||
CHAPTER 1. THE ANALYTIC SETTING
0
∗
−1
- ∈
- O
- ⊗
→
→
0
2
- 1
- 2
3
3
1.3 Conjectures, examples
1.3.1 Kobayashi’s conjecture on volumes
1.3. CONJECTURES, EXAMPLES
1
- ×
- →
−
→
→
≥
1
⊂
- 1
- −1
×
∗
≤
×P1
1
×
⊂
×
∗
A →
A