
<p>On some problems of Kobayashi and Lang </p><p>Claire Voisin </p><p>Contents </p><p></p><ul style="display: flex;"><li style="flex:1">CONTENTS </li><li style="flex:1">CONTENTS </li></ul><p></p><p>Chapter 0 </p><p>Introduction </p><p>≥</p><p>CHAPTER 0. INTRODUCTION </p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">→</li></ul><p>∈</p><p>∗</p><p>→<br>∈∈<br>→<br>→</p><p></p><ul style="display: flex;"><li style="flex:1">→∞ </li><li style="flex:1">∗</li></ul><p></p><p>∞</p><p></p><ul style="display: flex;"><li style="flex:1">→∞ </li><li style="flex:1">→∞ </li></ul><p></p><p>2<br>2<br>1</p><p>CHAPTER 0. INTRODUCTION </p><p>≤</p><p>+1 </p><p></p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">≥</li></ul><p></p><p>+1 </p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">≤</li><li style="flex:1">−</li></ul><p>≥</p><p>+1 </p><p>⊂<br>≥</p><p>3</p><p>≥</p><p>21<br>2<br>3</p><p>CHAPTER 0. INTRODUCTION </p><p>Chapter 1 </p><p>The analytic setting </p><p>1.1 Basic results and definitions </p><p>1.1.1 Definition of the pseudo-metrics/volume forms </p><p></p><ul style="display: flex;"><li style="flex:1">{| </li><li style="flex:1">|</li><li style="flex:1">}</li></ul><p></p><p>∗</p><p>∈</p><ul style="display: flex;"><li style="flex:1">{| </li><li style="flex:1">|</li><li style="flex:1">∧</li><li style="flex:1">∧</li><li style="flex:1">}</li></ul><p></p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p>∈<br>∈</p><ul style="display: flex;"><li style="flex:1">∧</li><li style="flex:1">∧</li></ul><p></p><p>1<br>1</p><p>∀ ≥ <br>⊂<br>→</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>−<br>|| || </p><p>4</p><p>∧</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2 2 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">− | </li><li style="flex:1">|</li></ul><p>|| || <br>⊂</p><p>|| || </p><p>∈</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">+1 </li><li style="flex:1">+1 </li></ul><p></p><p>1.1. BASIC RESULTS AND DEFINITIONS </p><p>→</p><p>[0 1] <br>(0)= (1)= <br>[0 1] </p><p>|| || </p><p>1.1.2 First properties </p><p>→</p><p>∗</p><p>≤<br>∧</p><p>∗</p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">}</li></ul><p></p><p>×</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">∈</li><li style="flex:1">≤</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">∈</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">∈</li></ul><p></p><p>11</p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p>1</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">+1 </li></ul><p>+1 <br>+1 </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>+1 <br>2<br>1</p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>≤</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">≤</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>00<br>0</p><p>≤</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">×</li></ul><p></p><p>×</p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">≤</li></ul><p></p><p>×</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>≤</p><p>×</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">⊗</li></ul><p></p><p>×</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">⊗</li></ul><p></p><p>×</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>→</p><p>1</p><p>→</p><p>2<br>+</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">×</li><li style="flex:1">×</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">×</li></ul><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">}</li><li style="flex:1">t</li></ul><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><ul style="display: flex;"><li style="flex:1">×</li><li style="flex:1">×</li><li style="flex:1">×</li></ul><p>∈</p><p>1.1. BASIC RESULTS AND DEFINITIONS </p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|≤ </li></ul><p>|</p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li></ul><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">| · | </li><li style="flex:1">|</li></ul><p></p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">| · | </li><li style="flex:1">|≥ </li></ul><p></p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">⊗</li></ul><p></p><p>×</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>∈</p><ul style="display: flex;"><li style="flex:1">∧</li><li style="flex:1">{| </li><li style="flex:1">|</li><li style="flex:1">∧</li><li style="flex:1">}</li></ul><p></p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>≤</p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">≤</li></ul><p></p><p>∗</p><p>≤</p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p>1.1.3 Brody’s theorem, applications </p><p>→<br>→<br>≥</p><p>|</p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">∀ ∈ </li></ul><p>→</p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">∞</li></ul><p></p><p>→∞ </p><p>→</p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">|| </li><li style="flex:1">|| </li></ul><p></p><p>∈</p><p>|| || </p><p>( ) </p><p>|| || <br>⊂<br>|| || </p><p>→</p><p>1.1. BASIC RESULTS AND DEFINITIONS </p><p></p><ul style="display: flex;"><li style="flex:1">|| </li><li style="flex:1">|| </li></ul><p>|| || </p><p>C</p><p>( ) </p><p>∈</p><ul style="display: flex;"><li style="flex:1">|| </li><li style="flex:1">◦</li><li style="flex:1">|| </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">∗</li></ul><p></p><p>|| || <br>≥<br>∈<br>∈</p><ul style="display: flex;"><li style="flex:1">|| </li><li style="flex:1">◦</li><li style="flex:1">|| </li></ul><p></p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">◦</li><li style="flex:1">◦</li></ul><p>⊂<br>→</p><ul style="display: flex;"><li style="flex:1">|| </li><li style="flex:1">|| ≤ </li></ul><p>→</p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p>∈<br>→<br>∀ ∈ <br>∈</p><ul style="display: flex;"><li style="flex:1">{ ∈ </li><li style="flex:1">}</li></ul><p>{ } </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>≥</p><p>0</p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>≥</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">◦</li><li style="flex:1">◦</li></ul><p></p><p>1.1. BASIC RESULTS AND DEFINITIONS </p><p></p><ul style="display: flex;"><li style="flex:1">→∞ </li><li style="flex:1">→∞ </li></ul><p>→∞ </p><p></p><ul style="display: flex;"><li style="flex:1">◦</li><li style="flex:1">◦</li></ul><p>≤</p><p>→∞ <br>→∞ </p><p>◦</p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→∞ </li><li style="flex:1">→∞ </li></ul><p></p><p>→<br>X → <br>∈</p><p>0</p><p>X<br>∈</p><p>→</p><ul style="display: flex;"><li style="flex:1">|| </li><li style="flex:1">|| || </li><li style="flex:1">|| </li></ul><p></p><p>∈C </p><p>0</p><p>⊂</p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p>→</p><p>1.1.4 Relation between volume and metric </p><p></p><ul style="display: flex;"><li style="flex:1">→∞ </li><li style="flex:1">→∞ </li></ul><p></p><p>→</p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">∞</li></ul><p></p><p>→∞ </p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">∞</li></ul><p></p><p>→∞ <br>∗</p><p>→</p><p>1.2 Curvature arguments </p><p>1.2. CURVATURE ARGUMENTS </p><p>1.2.1 Hyperbolic geometry and the Ahlfors-Schwarz lemma </p><p>∧</p><p>1<br>2 2 </p><p></p><ul style="display: flex;"><li style="flex:1">− | </li><li style="flex:1">|</li></ul><p></p><p>=</p><p>∧</p><p>2 2 </p><p></p><ul style="display: flex;"><li style="flex:1">− | </li><li style="flex:1">|</li></ul><p></p><p>=1 </p><p>∧</p><p>==1 <br>2 2 </p><p></p><ul style="display: flex;"><li style="flex:1">− | </li><li style="flex:1">|</li></ul><p></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">− | </li><li style="flex:1">|</li></ul><p></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">− | </li><li style="flex:1">|</li></ul><p>∧</p><p>2 2 </p><p></p><ul style="display: flex;"><li style="flex:1">− | </li><li style="flex:1">|</li></ul><p>≥<br>≥</p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li></ul><p></p><p>∞<br>1− <br>1− </p><p>1− <br>∞<br>1− </p><p>−</p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p>∈</p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p>≤</p><p>−1 </p><p>∗</p><p>≤</p><p>1.2. CURVATURE ARGUMENTS </p><p>→</p><p>∗<br>∗</p><p>≤≥</p><p>∗</p><p>O<sub style="top: 0.1851em;">P( </sub></p><p>∗</p><p>)</p><p>O<sub style="top: 0.1851em;">P( </sub></p><p>−</p><p>)</p><p>→<br>−<br>→</p><p>∗∗</p><p><sup style="top: -0.3301em;">∗</sup>O<sub style="top: 0.1851em;">P( </sub></p><p>)</p><p>→</p><p><sup style="top: -0.3301em;">∗</sup>O<sub style="top: 0.1851em;">P( </sub></p><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">)</li></ul><p></p><p>∗</p><p>≥</p><p>1</p><p>∗</p><p>→</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p>∗</p><p>≤</p><p>1</p><p>≥| | </p><p>O<sub style="top: 0.185em;">P( </sub></p><p>−</p><p>)</p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p>≥<br>≥<br>→</p><p>∗<br>∗</p><p>≤<br>≥</p><p>1.2.2 Another definition of the Kobayashi infinitesimal pseudometric </p><p>→<br>→<br>↓</p><p>1<br>−1 </p><p>0</p><p>−1 </p><p>◦</p><p>0</p><p>|</p><p>1.2. CURVATURE ARGUMENTS </p><p>1</p><p>→</p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">|| || </li><li style="flex:1">|| || </li></ul><p>≥<br>|| || </p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">∈</li></ul><p>|| || </p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">∈</li></ul><p>|</p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">|| || </li><li style="flex:1">≤</li></ul><p>≤</p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">◦</li></ul><p></p><p>−1 </p><p>|</p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">−1 </li><li style="flex:1">−1 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">|| || </li><li style="flex:1">|| </li><li style="flex:1">|| </li><li style="flex:1">|</li><li style="flex:1">|</li></ul><p>|| || <br>∈<br>≥</p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">→</li></ul><p></p><p>∗</p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">◦</li><li style="flex:1">→</li></ul><p></p><p>−1 </p><p>◦</p><p>∗<br>∗</p><p>0<br>∗</p><p>|| || <br>|| <br>≤|| || <br>≤</p><p>|</p><p>|| </p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p>1+</p><p></p><ul style="display: flex;"><li style="flex:1">|| || </li><li style="flex:1">≤| </li><li style="flex:1">|≤ </li></ul><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">| − | </li><li style="flex:1">|</li></ul><p></p><p>1</p><p>| | </p><p>≥</p><p>1.2.3 Jet differentials </p><p>+1 </p><p>→<br>→</p><p>∗</p><p>−<br>→→<br>→<br>O</p><p>·</p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">·</li></ul><p>| | </p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">| | || </li><li style="flex:1">|</li><li style="flex:1">∈</li><li style="flex:1">∈</li></ul><p></p><p>1.2. CURVATURE ARGUMENTS </p><p>O − <br>| | </p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">·</li><li style="flex:1">| | || </li><li style="flex:1">|</li><li style="flex:1">∈</li><li style="flex:1">∈</li></ul><p>O − </p><p>1</p><p>1<br>2</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">|</li></ul><p>→<br>→</p><p>1<br>2</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">|</li></ul><p></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">|</li><li style="flex:1">|</li></ul><p></p><p>∞</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li></ul><p>−</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">∧</li></ul><p>◦</p><p>∗</p><p>∈</p><ul style="display: flex;"><li style="flex:1">≤ − </li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">−1 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li><li style="flex:1">∧</li><li style="flex:1">≤</li></ul><p></p><p>1<br>1</p><p>≤ − </p><ul style="display: flex;"><li style="flex:1">⊂</li><li style="flex:1">→</li></ul><p>|| || </p><p>CHAPTER 1. THE ANALYTIC SETTING </p><p>0</p><p>∗</p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">O</li><li style="flex:1">⊗</li></ul><p>→<br>→</p><p>0<br>2</p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p>3</p><p>3</p><p>1.3 Conjectures, examples </p><p>1.3.1 Kobayashi’s conjecture on volumes </p><p>1.3. CONJECTURES, EXAMPLES </p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">×</li><li style="flex:1">→</li></ul><p>−</p><p>→<br>→</p><p>≥</p><p>1</p><p>⊂</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">−1 </li></ul><p></p><p>×</p><p>∗</p><p>≤</p><p>×P<sup style="top: -0.1892em;">1 </sup></p><p>1</p><p>×<br>⊂<br>×</p><p>∗</p><p>A → <br>A</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages78 Page
-
File Size-