Major PNAS Classification: Biological Sciences ACCEPTED ms # 07-11777 Minor PNAS Classification: Ecology Influence of Ocean Winds on the Pelagic Ecosystem in Upwelling Regions Ryan R. Rykaczewski* and David M. Checkley, Jr. Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, MC 0218, La Jolla, California, 92093-0218, USA * To whom correspondence should be addressed and proofs should be sent: Scripps Institution of Oceanography University of California, San Diego 9500 Gilman Drive, MC 0218 La Jolla, California 92093-0218, USA telephone: (858) 220-3125 fax: (858) 822-0562 email:
[email protected] Total text pages (including references and figure legends): 21 Figures: 5 Tables: 1 Abbreviations footnote: w, vertical velocity; CCE, California Current Ecosystem; CalCOFI, California Cooperative Oceanic Fisheries Investigations; chl a, chlorophyll a; σθ, potential density; SST, sea-surface temperature; MT, million tons; EDSP, environmentally dependent surplus production; ASP, annual surplus production. Author contributions: R.R.R and D.M.C., Jr. designed research, analyzed data, and wrote the paper. R.R.R. performed research. The authors declare no conflict of interest. Upwelling of nutrient-rich, subsurface water sustains high productivity in the ocean’s eastern boundary currents. These ecosystems support a rate of fish harvest nearly 100 times the global mean and account for more than 20% of the world’s marine fish catch. Environmental variability is thought to be the major cause of the decadal-scale biomass 5 fluctuations characteristic of fish populations in these regions, but the mechanisms relating atmospheric physics to fish production remain unexplained. Two atmospheric conditions induce different types of upwelling in these ecosystems: coastal, alongshore wind stress, resulting in rapid upwelling (with high vertical velocity, w); and wind-stress curl, resulting in slower upwelling (low w).