Erschienen in: Molecular Ecology ; 26 (2017), 23. - S. 6634-6653 https://dx.doi.org/10.1111/mec.14405 Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes Helen M. Gunter1,2* | Ralf F. Schneider1,3* | Immanuel Karner4 | Christian Sturmbauer4 | Axel Meyer1,3,5 1Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, Abstract University of Konstanz, Konstanz, Germany Adaptive radiations are characterized by adaptive diversification intertwined with 2Zukunftskolleg, University of Konstanz, rapid speciation within a lineage resulting in many ecologically specialized, pheno- Konstanz, Germany 3International Max Planck Research School typically diverse species. It has been proposed that adaptive radiations can originate for Organismal Biology, University of from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, Konstanz, Konstanz, Germany facilitating ecologically driven phenotypic diversification that is ultimately fixed 4Department of Zoology, University of Graz, Graz, Austria through genetic assimilation of gene regulatory regions. This study aimed to investi- 5Radcliffe Institute for Advanced Study, gate how phenotypic plasticity is reflected in gene expression patterns in the Harvard University, Cambridge, MA, USA trophic apparatus of several lineages of East African cichlid fishes, and whether the Correspondence observed patterns support genetic assimilation. This investigation used a split brood Axel Meyer, Lehrstuhl fur€ Zoologie und Evolutionsbiologie, Department of Biology, experimental design to compare adaptive plasticity in species from within and out- University of Konstanz, Konstanz, Germany. side of adaptive radiations. The plastic response was induced in the crushing pha- Email:
[email protected] ryngeal jaws through feeding individuals either a hard or soft diet. We find that Present address nonradiating, basal lineages show higher levels of adaptive morphological plasticity Helen M.