BRMS1 Gene Expression May Be Associated with Clinico-Pathological Features of Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

BRMS1 Gene Expression May Be Associated with Clinico-Pathological Features of Breast Cancer Bioscience Reports (2017) 37 BSR20170672 DOI: 10.1042/BSR20170672 Research Article BRMS1 gene expression may be associated with clinico-pathological features of breast cancer Li-Zhong Lin1, Miao-Guo Cai2, Yue-Chu Dai1, Zhi-Bao Zheng1, Fang-Fang Jiang1, Li-Li Shi3,YinPan1 and Han-Bing Song3 1Department of Oncology, Taizhou Central Hospital, Taizhou 318000, P.R. China; 2Department of Oncology, Luqiao Branch of Taizhou Hospital, Taizhou 318000, P.R. China; Downloaded from http://portlandpress.com/bioscirep/article-pdf/37/4/BSR20170672/480548/bsr-2017-0672.pdf by guest on 30 September 2021 3Department of Infection, Luqiao Branch of Taizhou Hospital, Taizhou 318000, P.R. China Correspondence: Yin Pan ([email protected]) Our aim is to investigate whether or not the breast cancer metastasis suppressor 1 (BRMS1) gene expression is directly linked to clinico-pathological features of breast cancer. Following a stringent inclusion and exclusion criteria, case–control studies with associations between BRMS1 and breast cancer were selected from articles obtained by way of searches con- ducted through an electronic database. All statistical analyses were performed with Stata 12.0 (Stata Corp, College Station, TX, U.S.A.). Ultimately, 1,263 patients with breast can- cer were found in a meta-analysis retrieved from a total that included 12 studies. Results of our meta-analysis suggested that BRMS1 protein in breast cancer tissues was signifi- cantly lower in comparison with normal breast tissues (odds ratio, OR = 0.08, 95% confi- dence interval (CI) = 0.04–0.15). The BRMS1 protein in metastatic breast cancer tissue was decreased than from that was found in non-metastatic breast cancer tissue (OR = 0.20, 95%CI = 0.13–0.29), and BRMS1 protein in tumor-node-metastasis (TNM) stages 1 and 2 was found to be higher than TNM stages 3 and 4 (OR = 4.62, 95%CI = 2.77–7.70). BRMS1 protein in all three major types of breast cancer was lower than that of control tissues re- spectively. We also found strong correlations between BRMS1 mRNA levels and TNM stage and tumor size. The results our meta-analysis showed that reduction in BRMS1 expression level was linked directly to clinico-pathological features of breast cancer significantly; there- fore, suggesting the loss of expression or reduced levels of BRMS1 is potentially a strong indicator of the metastatic capacity of breast cancer with poor prognosis. Introduction Breast cancer accounts for approximately33% of cancers diagnosed among females in the U.S.A., and is the secondleading cause of cancer deaths worldwide[1]. Generally, older women are more commonly diagnosed with breast cancer, with one in 200 women before the age of 40 being diagnosed [2]. Generally, approximately 40% of all patients with breast cancer experience a relapse, of which recurrences 10–20% are locallymetastaticand 60–70% are distant metastases [3].Theestablished risk factors for breast cancer are age, menopausal status, bodymassindex (BMI), duration of breastfeeding, age at first pregnancy, and postmenopausal hormonal use [4-6].Thepredominant cause of death in breast cancer is distant metastasis Received: 12 April 2017 [7]. Tumor metastasis is a multistep process involving disruption of intercellular adhesions anddispersal Revised: 18 May 2017 of singlecellsfromsolid tumor, invasion of blood andlymphatic vessels, immunologic escape in circula- Accepted: 22 May 2017 tion, attachment to endothelial cells, extravasation from blood andlymph vesselsand proliferation, and angiogenesis induction [8,9]. This process is assisted by a preferred microenvironment at the primary and Accepted Manuscript Online: 22 May 2017 metastatic sites [7]. Version of Record published: Breast cancer metastasis suppressor 1 (BRMS1), introduced in 2000,inhibitsmetastasiswhilehaving 21 August 2017 no effect on the growth of primary tumors [10].TheBRMS1 gene is located at 11q13.1-13.2, a region c 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution 1 License 4.0 (CC BY). Bioscience Reports (2017) 37 BSR20170672 DOI: 10.1042/BSR20170672 A BRMS1 postive rate (Breast cancer tissue VS. healthy control) Included study OR (95% CI) Weight% Wang DY (2014) 0.03 (0.01, 0.12) 44.10 Wu ZY (2011) 0.14 (0.04, 0.50) 18.22 He XB (2009) 0.06 (0.01, 0.27) 20.71 Cui M (2009) 0.17 (0.05, 0.54) 16.98 Heterogeneity test (I2 = 32.1%, P = 0.219) 0.08 (0.04, 0.15) 100.00 Z test (Z = 7.67, P < 0.001) Downloaded from http://portlandpress.com/bioscirep/article-pdf/37/4/BSR20170672/480548/bsr-2017-0672.pdf by guest on 30 September 2021 0.00641 1 156 B BRMS1 mRNA level (Breast cancer tissue VS. healthy control) Included study SMD (95% CI) Weight% Tang LB (2007) −12.00 (−13.44, −10.55) 49.80 Zhang YL (2006) −0.97 (−1.38, −0.56) 50.20 Heterogeneity test (I2 = 99.5%, P < 0.001) −6.46 (−17.27, 4.34) 100.00 Z test (Z = 1.17, P = 0.241) Random effects analysis −17.3 0 17.3 Figure 1. The expressions of BRMS1 in breast cancer and healthy tissues. often altered in late-stage breast cancers, whileinclose proximity to the genomic loci that contains deletions and amplifications commonlyobserved in progression of breast cancer [11].BRMS1 is also an inhibitor of metastasis in ovarian cancer, bladder cancer, non-small cell lung cancer, melanoma, and breast cancer. Metastasis mouse models have demonstrated ahighcapacityforBRMS1 to inhibit metastasis, recording up to 80–90% metastasis inhibition [8,12,13].ThemechanismsbywhichBRMS1 mediates its anti-metastasis function still remain unknown despite observations of anti-metastatic potential of BRMS1 [7].Following this context, it is also important that thorough evaluation of the BRMS1 association with metastatic breast cancer is performed, so for this reason performing a meta-analysis based studytotestthecorrelation between BRMS1 expression and the tumor behavior in breast cancers alone was necessary. Materials and methods Search strategy A literature search was performed systematically using PubMed,EBSCO, SpringerLink, Wiley, Ovid, Web of science, Wanfang Database, China National Knowledge Infrastructure (CNKI), andVIP Information databases using MeSH and free text search terms (last updated search on October, 2014). All variantsofkeysearchterms: breast cancer and BRMS1were included. For example, (‘BRMS1 protein, human’ or ‘breast-cancer metastasis suppressor 1’)and (‘breast neoplasms’ or ‘breast cancer’ or ‘breast carcinoma’ or ‘tumors, breast’ or ‘mammary neoplasms, human’ or ‘carcinoma, human mammary’ or ‘mammary cancer’ or ‘malignant neoplasmofbreast’ or ‘malignant tumor of breast’ or ‘cancer of the breast’)wereselected to retrieve corresponding literatures. Bibliographies regarding the collected trialsand review papers were studied and explored manuallyforpotentiallyrelevant and conducive articles. Criteria for selecting articles included in this meta-analysis Studyarticles were incorporated if (1)thestudytypeofselected studies was case–control study; (2) studysubjects were patients diagnosed with breast cancer and healthy controls; (3) selected studies provided complete data consisting of sample size, age, ethnicity, gender, pathological types, positive expression rate of BRMS1 protein, expression of BRMS1 mRNA etc.; (4) the extracted studies were published by the same authors, onlyincluding the last or complete one. 2 c 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). Bioscience Reports (2017) 37 BSR20170672 DOI: 10.1042/BSR20170672 A B BRMS1 postive rate BRMS1 postive rate (LN Present VS. LN Absent) (TNM I/II stage VS. TNM III/IV stage) Included study OR (95% CI) Weight% Included study OR (95% CI) Weight% Wang DY (2014) 0.38 (0.20, 0.73) 25.22 Wang DY (2014) 3.98 (1.80, 8.83) 44.03 Wang LX (2013) 0.08 (0.02, 0.29) 15.66 Wu ZY (2011) 4.38 (1.47, 13.05) 20.25 Han DY (2012) 0.15 (0.05, 0.41) 16.80 He XB (2009) 4.36 (1.32, 14.45) 19.77 Wu ZY (2011) 0.19 (0.06, 0.68) 10.74 He XB (2009) 0.16 (0.05, 0.49) 14.65 Cui M (2009) 7.00 (2.13, 23.02) 15.95 Cui M (2009) 0.12 (0.04, 0.37) 16.94 Heterogeneity test (I2 = 0.00%, P = 0.892) 4.62 (2.77, 7.70) 100.00 2 Heterogeneity test (I = 27.5%, P = 0.229) 0.20 (0.13, 0.29) 100.00 Z test (Z = 5.87, P < 0.001) Z test (Z = 8.05, P < 0.001) 0.023 1 43.4 0.0434 1 23 C D BRMS1 postive rate BRMS1 postive rate (Big tumors VS. Small tumors) (Histological I/II grade VS. Histological III grade) Included study OR (95% CI) Weight% Included study OR (95% CI) Weight% Downloaded from http://portlandpress.com/bioscirep/article-pdf/37/4/BSR20170672/480548/bsr-2017-0672.pdf by guest on 30 September 2021 Wang DY (2014) 1.26 (0.66, 2.42) 29.33 Wang DY (2014) 1.38 (0.72, 2.65) 41.08 Han DY (2012) 1.25 (0.49, 3.17) 14.44 Han DY (2012) 1.25 (0.50, 3.16) 21.17 Wu ZY (2011) 0.66 (0.23, 1.92) 15.29 He XB (2009) 1.30 (0.47, 3.54) 17.91 He XB (2009) 1.04 (0.41, 2.63) 15.69 Cui M (2009) 1.32 (0.51, 3.41) 19.84 Cui M (2009) 0.43 (0.17, 1.07) 25.26 Heterogeneity test (I2 = 0.00%, P = 0.998) 1.33 (0.87, 2.02) 100.00 Heterogeneity test (I2 = 10.2%, P = 0.348) 0.92 (0.63, 1.35) 100.00 Z test (Z = 1.31, P = 0.190) Z test (Z = 0.42, P = 0.673) 0.171 1 5.86 0.282 1 3.54 Figure 2.
Recommended publications
  • Loss of Fam60a, a Sin3a Subunit, Results in Embryonic Lethality and Is Associated with Aberrant Methylation at a Subset of Gene
    RESEARCH ARTICLE Loss of Fam60a, a Sin3a subunit, results in embryonic lethality and is associated with aberrant methylation at a subset of gene promoters Ryo Nabeshima1,2, Osamu Nishimura3,4, Takako Maeda1, Natsumi Shimizu2, Takahiro Ide2, Kenta Yashiro1†, Yasuo Sakai1, Chikara Meno1, Mitsutaka Kadota3,4, Hidetaka Shiratori1†, Shigehiro Kuraku3,4*, Hiroshi Hamada1,2* 1Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; 2Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan; 3Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; 4Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan Abstract We have examined the role of Fam60a, a gene highly expressed in embryonic stem cells, in mouse development. Fam60a interacts with components of the Sin3a-Hdac transcriptional corepressor complex, and most Fam60a–/– embryos manifest hypoplasia of visceral organs and die in utero. Fam60a is recruited to the promoter regions of a subset of genes, with the expression of these genes being either up- or down-regulated in Fam60a–/– embryos. The DNA methylation level of the Fam60a target gene Adhfe1 is maintained at embryonic day (E) 7.5 but markedly reduced at –/– *For correspondence: E9.5 in Fam60a embryos, suggesting that DNA demethylation is enhanced in the mutant. [email protected] (SK); Examination of genome-wide DNA methylation identified several differentially methylated regions, [email protected] (HH) which were preferentially hypomethylated, in Fam60a–/– embryos. Our data suggest that Fam60a is †These authors contributed required for proper embryogenesis, at least in part as a result of its regulation of DNA methylation equally to this work at specific gene promoters.
    [Show full text]
  • Breast Cancer Resource Book Breast Cancer Resource BOOK
    TM Breast Cancer Resource Book BREAST CANCER RESOURCE BOOK Table of Contents Introduction ��������������������������������������������������������������������������������������������������������������������������������������������������� 1 Tumor Cell Lines ��������������������������������������������������������������������������������������������������������������������������������������������� 2 Tumor Cell Panels ������������������������������������������������������������������������������������������������������������������������������������������� 3 hTERT immortalized Cells ������������������������������������������������������������������������������������������������������������������������������ 4 Primary Cells ��������������������������������������������������������������������������������������������������������������������������������������������������� 5 Culture and Assay Reagents �������������������������������������������������������������������������������������������������������������������������� 6 Transfection Reagents ����������������������������������������������������������������������������������������������������������������������������������� 8 Appendix ��������������������������������������������������������������������������������������������������������������������������������������������������������� 9 Tumor Cell Lines ................................................................................................................................................................................. 9 Tumor Cell
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Breast Cancer Metastasis Suppressor 1 Inhibits Gene Expression by Targeting Nuclear Factor-KB Activity
    Research Article Breast Cancer Metastasis Suppressor 1 Inhibits Gene Expression by Targeting Nuclear Factor-KB Activity Muzaffer Cicek,1 Ryuichi Fukuyama,1 Danny R. Welch,2 Nywana Sizemore,1 and Graham Casey1 1Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Lerner School of Medicine, Cleveland, Ohio and 2Department of Pathology, Comprehensive Cancer Center, and National Foundation for Cancer Research Center for Metastasis Research, University of Alabama at Birmingham, Birmingham, Alabama Abstract An important component of metastatic dissemination is the Breast cancer metastasis suppressor 1 (BRMS1) functions as a proteolysis and degradation of the extracellular matrix (ECM), and metastasis suppressor gene in breast cancer and melanoma among the key mediators of ECM remodeling is the urokinase-type cell lines, but the mechanism of BRMS1 suppression remains plasminogen activator (uPA), a serine protease that stimulates the conversion of inactive plasminogen to the broad-spectrum unclear. We determined that BRMS1 expression was inversely correlated with that of urokinase-type plasminogen activator protease plasmin (4, 5). Plasmin mediates cellular invasion directly (uPA), a prometastatic gene that is regulated at least in part by by degrading members of the matrix proteins (6, 7) and indirectly nuclear factor-KB (NF-KB). To further investigate the role of by activating matrix metalloproteinases (MMP; ref. 8). Several NF-KB in BRMS1-regulated gene expression, we examined NF- groups have shown that uPA plays a critical role in tumor KB binding activity and found an inverse correlation between metastasis (9) and that elevated levels of uPA as well as its inhibitor BRMS1 expression and NF-KB binding activity in MDA-MB-231 plasminogen activator inhibitor-1 (PAI-1) are strong indicators of poor prognosis in breast cancers (10–14).
    [Show full text]
  • BRMS1 Expression in Resected Lung Adenocarcinoma
    366 Editorial BRMS1 expression in resected lung adenocarcinoma Domenico Galetta, Pamela Pizzutilo, Vito Longo Medical Thoracic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy Correspondence to: Vito Longo, MD, PhD. Medical Thoracic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65 - 70124, Bari, Italy. Email: [email protected]. Comment on: Bucciarelli PR, Tan KS, Chudgar NP, et al. BRMS1 Expression in Surgically Resected Lung Adenocarcinoma Predicts Future Metastases and Is Associated with a Poor Prognosis. J Thorac Oncol 2018;13:73-84. Submitted Sep 16, 2018. Accepted for publication Sep 25, 2018. doi: 10.21037/tlcr.2018.09.20 View this article at: http://dx.doi.org/10.21037/tlcr.2018.09.20 The identification of prognostic markers for surgical that it may be part of a transcription complex (11). BRMS1 resected cancers is a current issue for several malignancies has been shown to function as a corepressor to inhibit NF- (1,2). As regard lung adenocarcinoma (LUAD), despite kB transactivation by deacetylation of the RelA/p65 subunit curative-intent surgical resection, tumor recurrence and at K310. It also regulates angiogenesis, phosphoinositide spread remain the primary causes of cancer-related death signalling, expression of microRNA, and p300 histone among patients with early stage. A precise prediction of the acetyltransferase levels. Moreover, the loss of endogenous risk of tumor recurrence at the time of surgery could spare BRMS1 significantly promotes basal and TGF-Beta-induced patients the toxicity of adjuvant chemotherapy, and target epithelial to mesenchymal transition (EMT) in lung cancer other patients for increased therapy and surveillance (3).
    [Show full text]
  • The Breast Cancer Metastasis Suppressor BRMS1 Binds
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC Sorting Nexin 6 interacts with Breast Cancer Metastasis Suppressor-1 and promotes transcriptional repression 1* 2 3* José Rivera , Diego Megías and Jerónimo Bravo 1Centro Nacional de Investigaciones Cardiovasculares Carlos III, C/ Melchor Fernández Almagro 3, E-28029 Madrid, Spain. Email: [email protected]. Phone: (+34) 91 4531200; Fax:+ (34) 91 4531245. 2Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas, C/ Melchor Fernández Almagro 3, E-28029 Madrid, Spain. Email: [email protected] 3 Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, 46010 Valencia, Spain. Email: [email protected] *Corresponding author Running title: SNX6 interacts with BRMS1and repress transcription KEY WORDS: Protein-protein interaction, Yeast two-hybrid assay, Binding domain, FRET, BRMS1, SNX6. Grant sponsor: MCyT; Grant number: SAF2006-10269. Grant sponsor: MICINN; Grant number: SAF2008-04048-E, SAF2009-10667. Grant sponsor: CSIC; Grant number: 200820I020. Grant sponsor: Fundación-Mutua-Madrileña. Grant sponsor: Conselleria de Sanitat, Generalitat valenciana; Grant number: AP001/10. Total Number of text figures and tables: 4 Figures, 1 Table and 2 Supplemental Figures. 1 ABSTRACT Sorting nexin 6 (SNX6), a predominantly cytoplasmic protein involved in intracellular trafficking of membrane receptors, was identified as a TGFβ family interactor. However, apart from being a component of the Retromer, little is known about SNX6 cellular functions. Pim1-dependent SNX6 nuclear translocation has been reported suggesting a putative nuclear role for SNX6. Here we describe a previously non- reported association of SNX6 with Breast Cancer Metastasis Suppressor 1 (BRMS1) protein detected by a yeast two-hybrid screening.
    [Show full text]
  • Protein Annotation of Breast-Cancer-Related Proteins with Machine-Learning Tools
    Makara Journal of Science Volume 24 Issue 2 June Article 6 6-26-2020 Protein Annotation of Breast-cancer-related Proteins with Machine-learning Tools Arli Aditya Parikesit Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia, [email protected] David Agustriawan Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia Rizky Nurdiansyah Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia Follow this and additional works at: https://scholarhub.ui.ac.id/science Recommended Citation Parikesit, Arli Aditya; Agustriawan, David; and Nurdiansyah, Rizky (2020) "Protein Annotation of Breast- cancer-related Proteins with Machine-learning Tools," Makara Journal of Science: Vol. 24 : Iss. 2 , Article 6. DOI: 10.7454/mss.v24i1.12106 Available at: https://scholarhub.ui.ac.id/science/vol24/iss2/6 This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been accepted for inclusion in Makara Journal of Science by an authorized editor of UI Scholars Hub. Protein Annotation of Breast-cancer-related Proteins with Machine-learning Tools Cover Page Footnote The authors would like to thank the Institute for Research and Community Services of the Indonesia International Institute for Life Sciences (i3l) for their heartfelt support. Thanks also goes to Direktorat Riset dan Pengabdian Masyarakat, Direktorat Jenderal Penguatan Riset dan Pengembangan Kementerian Riset, Teknologi dan Pendidikan Tinggi Republik Indonesia for providing Hibah Penelitian Dasar DIKTI/ LLDIKTI III 2019 No. 1/AKM/PNT/2019.
    [Show full text]
  • Metastatic Genes Targeted by an Antioxidant in an Established Radiation- and Estrogen-Breast Cancer Model
    1590 INTERNATIONAL JOURNAL OF ONCOLOGY 51: 1590-1600, 2017 Metastatic genes targeted by an antioxidant in an established radiation- and estrogen-breast cancer model GLORIA M. CALAF1,2 and DEBASISH ROY3 1Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile; 2Center for Radiological Research, Columbia University Medical Center, New York, NY; 3Department of Natural Sciences, Hostos College, The City University of New York, Bronx, NY, USA Received March 16, 2017; Accepted August 23, 2017 DOI: 10.3892/ijo.2017.4125 Abstract. Breast cancer remains the second most common Introduction disease worldwide. Radiotherapy, alone or in combination with chemotherapy, is widely used after surgery as a treatment for Breast cancer remains the second most common cancer cancer with proven therapeutic efficacy manifested by reduced worldwide with nearly 1.7 million new cases in 2012 (1). In incidence of loco-regional and distant recurrences. However, cancer treatment, radiotherapy, alone or in a combination clinical evidence indicates that relapses occurring after radio- with chemotherapy, is widely used after surgery with proven therapy are associated with increased metastatic potential therapeutic efficacy manifested by reduced incidence of and poor prognosis in the breast. Among the anticarcinogenic loco-regional and distant recurrences (2-4). However, clinical and antiproliferative agents, curcumin is a well-known major evidence indicates that relapses occurring after radiotherapy dietary natural yellow pigment derived from the rhizome of the are associated with increased metastatic potential and poor herb Curcuma longa (Zingiberaceae). The aim of the present prognosis in breast (5,6) and other tissues (7,8). This has also study was to analyze the differential expression of metastatic been confirmed experimentally in tumors growing within a genes in radiation- and estrogen-induced breast cancer cell previously irradiated mammary tissue that is more invasive model and the effect of curcumin on such metastatic genes in and metastasized (9-11).
    [Show full text]
  • Prognostic Significance of BRMS1 Expression in Human Melanoma
    Oncogene (2011) 30, 896–906 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis JLi1, Y Cheng1, D Tai1, M Martinka2, DR Welch3 and G Li1 1Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; 2Department of Pathology, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada and 3Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA Breast cancer metastasis suppressor 1 (BRMS1) has Keywords: BRMS1; melanoma; tumor progression; been reported to suppress metastasis without significantly prognosis; angiogenesis affecting tumorigenicity in breast cancer and ovarian cancer. To investigate the role of BRMS1 in human melanoma progression and prognosis, we established tissue microarray and BRMS1 expression was evaluated Introduction by immunohistochemistry in 41 dysplastic nevi, 90 primary melanomas and 47 melanoma metastases. We Cutaneous melanoma is the most lethal form of skin found that BRMS1 expression was significantly decreased cancers and the incidence of melanoma has drastically in metastatic melanoma compared with primary melano- increased during the past decades (Dauda and Shehu, ma or dysplastic nevi (P ¼ 0.021 and 0.001, respectively, 2005; Thompson et al., 2005). Although patients with v2 test). In addition, reduced BRMS1 staining was low-risk primary melanoma can be completely cured by significantly correlated with American Joint Committee a successful operation, melanoma can spread to other on Cancer stages (P ¼ 0.011, v2 test), but not associated organs very fast.
    [Show full text]
  • Functional Evidence for a Novel Human Breast Carcinoma Metastasis Suppressor, BRMS1, Encoded at Chromosome 11Q131
    [CANCER RESEARCH 60, 2764–2769, June 1, 2000] Advances in Brief Functional Evidence for a Novel Human Breast Carcinoma Metastasis Suppressor, BRMS1, Encoded at Chromosome 11q131 M. Jabed Seraj,2,3 Rajeev S. Samant,2 Michael F. Verderame, and Danny R. Welch4 Jake Gittlen Cancer Research Institute [M. J. S., R. S. S., D. R. W.] and Department of Medicine [M. F. V.], The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2390 Abstract Two general approaches were used to identify these metastasis- controlling genes. The first involved comparison of gene expression in We previously showed that introduction of a normal, neomycin-tagged poorly or nonmetastatic cells with matched metastasis-competent human chromosome 11 reduces the metastatic capacity of MDA-MB-435 cells. The second took advantage of clinical observations that identi- (435) human breast carcinoma cells by 70–90% without affecting tumor- igenicity, suggesting the presence of one or more metastasis suppressor fied nonrandom chromosomal changes that occur during tumor pro- genes encoded on human chromosome 11. To identify the gene(s) respon- gression. This information localized the gene(s) from which cloning sible, differential display comparing chromosome 11-containing (neo11/ could commence. In this study, we combined aspects of both strate- 435) and parental, metastatic cells was done. We describe the isolation and gies to identify a novel, functional breast carcinoma metastasis sup- functional characterization of a full-length cDNA for one of the novel pressor gene. genes, designated breast-cancer metastasis suppressor 1 (BRMS1), which A recent cataloging of differential gene/protein gene expression and maps to human chromosome 11q13.1-q13.2.
    [Show full text]
  • BRMS1 (NM 015399) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC203428L1V BRMS1 (NM_015399) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: BRMS1 (NM_015399) Human Tagged ORF Clone Lentiviral Particle Symbol: BRMS1 Vector: pLenti-C-Myc-DDK (PS100064) ACCN: NM_015399 ORF Size: 738 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC203428). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_015399.3 RefSeq Size: 1455 bp RefSeq ORF: 741 bp Locus ID: 25855 UniProt ID: Q9HCU9 Protein Families: Druggable Genome MW: 28.5 kDa Gene Summary: This gene reduces the metastatic potential, but not the tumorogenicity, of human breast cancer and melanoma cell lines. The protein encoded by this gene localizes primarily to the nucleus and is a component of the mSin3a family of histone deacetylase complexes (HDAC). The protein contains two coiled-coil motifs and several imperfect leucine zipper motifs.
    [Show full text]
  • Erα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene Brms1
    ERΑ MEDIATES ESTROGEN-INDUCED EXPRESSION OF THE BREAST CANCER METASTASIS SUPPRESSOR GENE BRMS1 The Texas Tech community has made this publication openly available. Please share how this access benefits you. Your story matters to us. Citation Ma, H., & Gollahon, L. (2016). ERα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMS1. International Journal of Molecular Sciences, 17(2), 158. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ijms17020158 Citable Link http://hdl.handle.net/2346/66800 Terms of Use CC-BY 4.0 Title page template design credit to Harvard DASH. International Journal of Molecular Sciences Article ERα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMS1 Hongtao Ma and Lauren S. Gollahon * Department of Biological Sciences, Texas Tech University, 2901 Main St. Suite 108, Lubbock, TX 79409, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-806-834-3287; Fax: +1-806-742-2963 Academic Editor: William Chi-shing Cho Received: 16 December 2015; Accepted: 18 January 2016; Published: 26 January 2016 Abstract: Recently, estrogen has been reported as putatively inhibiting cancer cell invasion and motility. This information is in direct contrast to the paradigm of estrogen as a tumor promoter. However, data suggests that the effects of estrogen are modulated by the receptor isoform with which it interacts. In order to gain a clearer understanding of the role of estrogen in potentially suppressing breast cancer metastasis, we investigated the regulation of estrogen and its receptor on the downstream target gene, breast cancer metastasis suppressor 1 (BRMS1) in MCF-7, SKBR3, TTU-1 and MDA-MB-231 breast cancer cells.
    [Show full text]