THE PUERCO and TORREJON FORMATIONS of the NACIMIENTO GROUP' Introduction History of the Puerco History of the Torrejon Naming Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Church Rock Uranium Mill Tailings Spill a Health and Environmental Assessment
THE CHURCH ROCK URANIUM MILL TAILINGS SPILL A HEALTH AND ENVIRONMENTAL ASSESSMENT SUMMARY REPORT Jere Millard Bruce Gallaher David Baggett Steven Gary September 1983 New Mexico Environmental Improvement Division Health and Environment Department P.O. Box 968 Santa TQ, New Mexico 87504-0968 000791 Front and Rear Cover Photographs Provided Courtesy of the U. S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory. Las Vegas, Nevada. 000792 THE CHURCH ROCK URANIUM MILL TAILINGS SPILL: A HEALTH AND ENVIRONMENTAL ASSESSMENT Executive Summary The largest single release of liquid radioactive waste in the Uruted States occurred at the United Nuclear Corporation^ uranium mill near Church Rock, New Mexico, in July 1979. This document reports the results of environmental monitoring conducted by the New Mexico Envi- ronmental Improvement Division (EID) subsequent to the mill tailings spill* Interpretation of data leads to the general conclusion that although the spill was potentially hazardous. Its short-term and long- term impacts on people and the environment were quite limited. How- ever/ the data suggest that dewatering effluents (water from under- ground uranium mines) continually pumped into the Puerco River may represent a greater long-term hazard than the spill. Recommendations are made regarding continued environmental monitoring and resumption of normal land and water use along the Puerco River. EID is also spillissuin ang dtwo its technicaimpacts.l reports to provide more detailed information on the The spill occurred early on the morning of July 16 when the retention dam for a tailings pond failed. Most of the 1100 tons of solid material released was caught by a small emergency catchment dam. -
(Mammalia) in the Early Eocene Ofeurope
The presence of Taeniodonta (Mammalia) in the Early Eocene ofEurope Carmen ESTRAVIS* Donald E. RUSSELL** * Centro de Estratigrafia e Palcobiologia da UNL, Faculdade de Ciencias e Tecnologia, Quinta da Torre, P-2825 Monte de Caparica, Portugal. ** Institut de Paleontologic (URA 12, CNRS), 8 rue Buffon, 75005 Paris, France. pp.191-201 Ciencias da Terra (UNL) Lisboa NQ 11 1992 1 pI. RESUMO Palavras-chave: Eurodon- Taeniodonta- Eocenico-:- Silveirinha - Portugal. Eurodon silveirinhensis nov. gen., nov. sp., do Eocenico inferior de Silveirinha (portugal) econsiderado o primeiro representante, na Europa, da extinta ordem de mamiferosTaeniodonta.0 enigrnaticogeneroLessnessina Hooker, 1979, de Abbey Wood(lnglaterra), sensive1mente contcrnporaneo de Eurodon, e tambern atribufdo aos teniodontes. RESUME Mots-dis: Eurodon - Taeniodonta - Eocene Silveirinha - Portugal. Eurodon silveirinhensis nov. gen., nov. sp., de I'Eocene infericur de Silveirinha (portugal) est interpretee commeIapremiererepresentanteen Europedes Taeniodonta (ordre eteint de mammiferes). L'enigmatique genre Lessnessina Hooker, 1979, de Abbey Wood (Angleterre), apeu pres contemporainde Eurodon,estrapporteegalement aux Taeniodonta. ABSTRACT Key-words: Eurodon - Taeniodonta - Eocene Silveirinha - Portugal. The first representative of the extinct mammalian order Taeniodonta in Europe is described, Eurodon silveirinhensis n. gen., n. sp., from the early Eocene local ity of Silveirinha, Portugal. A formerly enigmatic form, Lessnessina Hooker, 1979, from Abbey Wood, England, and approximately contemporary, is also referred to the Taeniodonta. 193 INTRODUCTION Type species - Eurodon silveirinhensis, new species. Study of the early Eocene mammalian fauna Diagnosis - Small mammal, smaller than any from Silveirinha, Portugal (ANTUNES, 1981; described taeniodont. M3 with large hypoconulid, ANTUNES & RUSSELL, 1981), is the subject of a apparently subequal hypoconid and slightly smaller, doctoral dissertation for one ofus (c. -
Basin-Margin Depositional Environments of the Fort Union and Wasatch Formations in the Buffalo-Lake De Smet Area, Johnson County, Wyoming
U.S. DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY Basin-Margin Depositional Environments of the Fort Union and Wasatch Formations in the Buffalo-Lake De Smet area, Johnson County, Wyoming By Stanley L. Obernyer Open-File Report 79-712 1979 Contents Page Abstract 1 Introduction 5 Methods of investigation 8 Previ ous work - 9 General geol ogy 10 Acknowledgments 16 Descriptive stratigraphy of the Fort Union and Wasatch Formations 18 Fort Union Formation- 18 Lower member 20 Conglomerate member 21 Wasatch Formation 30 Kingsbury Conglomerate Member 32 Moncrief Member 38 Coal-bearing strata Wasatch Formation 45 Conglomeratic sandstone sequence 46 The Lake De Smet coal bed 53 Very fine to medium-grained sandstone sequence 69 Fossil marker beds 78 Environments of Deposition 79 General 79 Alluvial fan environment 82 Braided stream environments 86 Alluvial valley environments 89 Tectonics and Sedimentation 92 Conglomerates and tectonics- 92 Coals and tectonics 98 Conclusions 108 References 111 11 ILLUSTRATIONS Plates Plate 1. Bedrock geologic map of the Buffalo-Lake De Smet area, Johnson County, Wyoming In pocket 2. Geologic cross sections along the Bighorn Mountain Front, Buffalo-Lake De Smet area, Johnson County, Wyoming In pocket FIGURES Page Figure 1. Location map sh wing the major structural units surround ing the Powder River Basin, Wyoming and Montana 7 2. Composite geologic section of the rocks exposed in in the Buffalo-Lake De Smet area- 11 3. Generalized geologic map of the Powder River Basin 12 4. Isopach map of the Fort Union and Wasatch Formations, Powder River Basin, from Curry (1971) 14 5. Generalized stratigraphic column of the conglomerate sequences 19 6. -
Biological Assessment After Uranium Mill Tailings Spill, Church Rock, New Mexico
FOR ADMINISTRATIVE USE LIMITED DISTRIBUTION PUBLIC HEALTH SERVlCE-CDC-Atlanta KOT TOR PUBLICATION EPI-79-94-2 December 24, 1980 TO Director, Centers for Disease Control FROM Chronic Diseases Division Bureau of Epidemiology : • i I'J' ! •t;?| SUBJECT: Biological Assessment After Uranium Mill Tailings Spill, Church Rock, New Mexico SUMMARY On July 16, 1979, a tailings pond dam broke near Church Rock, New Mexico, spilling liquid and solid wastes contami- nated with radioactive uranium, thorium, radium, lead, and polonium- Subsequent evaluation of 6 Navajos potentially exposed to the materials spilled in the Rio Puerco River showed them to have no detectable increase in radioactivity by whole-body counting and no increase in urinary radio- nuclides* Since food-chain analysis is a more sensitive indicator of possible radiation dose, 8 local and 3 control animals were aufcopsied to determine radionuclide concentrations in edible tissues. Calculations indicate that human doses which would result from consumption of such animals would be higher from local than from control animals; however, the data also suggest chat exposure from chronic ingest ion of uranium mine dewatering effluent may be responsible for the elevated radionuclide concentrations found in tissue of local animals. Even though no state or federal regulations were violated, radionuclide concentrations found in animals and calculated human ingestion doses fell in a range Chat justifies both further surveillance of radionuclides in animals and the natural environment and further efforts to reduce the amount of radiation Co which humans and animals are exposed, Navajos in the area have been advised that. theiT exposure Co radionuclides may be reduced by not eat^ - ing kidney and liver from local animals. -
Revision of the Lower Part of the Tertiary System in the Central and \Vestern Uinta Basin, Utah______
Revision of the Lower Part of the Tertiary System in the Central and \Vestern Uinta Basin, Utah_____ __________ GEOLOGICAL SURVEY BULLETIN 1405G Revision of the Lower Part of the Tertiary System in the Central and \Vfestern Uinta Basin, Utah By THOMAS D. FOUCH CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1405-C Correlation of lower Tertiary stratigraphic units recently penetrated in northeastern Utah UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Fouch, Thomas D. Revision of the lower part of the Tertiary system in the central and western Uinta Basin, Utah. (Contributions to stratigraphy) (Geological Survey Bulletin 1405-C) Bibliography: p. Supt. of Docs, no.: I 19.3:1405-C 1. Geology, Stratigraphic Tertiary. 2. Geology, Stratigraphic Nomenclature Utah Uinta Basin. I. Title. II. Series. III. Series: United States Geological Survey Bulletin 1405-C. QE75.B9 No. 1405-C [QE691] 557.3'08s [ 551.7'8'0979221] 75-619374 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D. C. 20402 Stock Number 024-001-02770-4 CONTENTS Page Abstract....................................................................................................................... Cl Introduction................................................................................................................ 1 North Horn Formation ............................................................................................. -
Uppermost Cretaceous and Tertiary Stratigraphy of Fossil Basin, Southwestern Wyoming
Uppermost Cretaceous and Tertiary Stratigraphy of Fossil Basin, Southwestern Wyoming By STEVEN S. ORIEL and JOSHUA I. TRACEY, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 635 New subdivisions of the J,ooo-Joot-thick continental Evanston, Wasatch, Green River, and Fowkes Formations facilitate understanding of sediment genesis and Jl7yoming thrust-belt tectonic events UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 70-604646 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 65 cents (paper cover) CONTENTS Page Wasatch Formation-Continued Abstract __________________________________________ _ 1 Fossils and age-Continued· Page Introduction ______________________________________ _ 2 Tunp Member______________________________ 28 Purpose ______________________________________ _ 2 Origin--------~-------------------------------- 28 Earlier work_ .. __ - __ - ___________________ - _-- _- __ 2 Tectonic implications ____________ -_-------------- 29 Acknowledgments __ . ___________________________ _ 2 Green River Formation ___ .. _______ ------------------ 30 General relations ___ -- _________________________ _ 5 Name and usage __________________ -------------- 30 Evanston Formation _______________________________ _ 5 Definition __________________ -_-------------- 30 N arne and usage _______________________________ _ 5 Lithologic heterogeneity. -
Mesaverde Group and Wasatch Formation - Piceance Basin, Colorado
NONTRIBUTARY GROUNDWATER ASSESSMENT: MESAVERDE GROUP AND WASATCH FORMATION - PICEANCE BASIN, COLORADO Submitted to: OXY USA INC. AND OXY USA WTP LP Date: November 4, 2009 Norwest Corporation 950 South Cherry Street, Suite 800 Denver, CO 80246 Tel: (303) 782-0164 Fax: (303) 782-2560 Email [email protected] www.norwestcorp.com 004280 TABLE OF CONTENTS EXECUTIVE SUMMARY ..............................................................................................................1 1 INTRODUCTION.................................................................................................................1-1 2 CONCEPTUAL MODEL .....................................................................................................2-1 2.1 GEOLOGIC SETTING ....................................................................................................2-1 2.1.1 Mancos Shale ..............................................................................................2-1 2.1.2 Iles Formation ..............................................................................................2-2 2.1.3 Williams Fork Formation ..............................................................................2-2 2.1.4 Wasatch Formation......................................................................................2-3 2.2 HYDROLOGIC DATA .....................................................................................................2-3 3 HYDROLOGEOLOGIC PARAMETERS.............................................................................3-1 -
Eocene Green River Formation, Western United States
Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States M. Elliot Smith* Alan R. Carroll Brad S. Singer Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT Members. Sediment accumulation patterns than being confi ned to a single episode of arid thus refl ect basin-center–focused accumula- climate. Evaporative terminal sinks were Numerous 40Ar/39Ar experiments on sani- tion rates when the basin was underfi lled, initially located in the Greater Green River dine and biotite from 22 ash beds and 3 and supply-limited accumulation when the and Piceance Creek Basins (51.3–48.9 Ma), volcaniclastic sand beds from the Greater basin was balanced fi lled to overfi lled. Sedi- then gradually migrated southward to the Green River, Piceance Creek, and Uinta ment accumulation in the Uinta Basin, at Uinta Basin (47.1–45.2 Ma). This history is Basins of Wyoming, Colorado, and Utah Indian Canyon, Utah, was relatively con- likely related to progressive southward con- constrain ~8 m.y. of the Eocene Epoch. Mul- stant at ~150 mm/k.y. during deposition of struction of the Absaroka Volcanic Prov- tiple analyses were conducted per sample over 5 m.y. of both evaporative and fl uctuat- ince, which constituted a major topographic using laser fusion and incremental heating ing profundal facies, which likely refl ects the and thermal anomaly that contributed to a techniques to differentiate inheritance, 40Ar basin-margin position of the measured sec- regional north to south hydrologic gradient. loss, and 39Ar recoil. -
Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted. -
Appendix a Assessment Units
APPENDIX A ASSESSMENT UNITS SURFACE WATER REACH DESCRIPTION REACH/LAKE NUM WATERSHED Agua Fria River 341853.9 / 1120358.6 - 341804.8 / 15070102-023 Middle Gila 1120319.2 Agua Fria River State Route 169 - Yarber Wash 15070102-031B Middle Gila Alamo 15030204-0040A Bill Williams Alum Gulch Headwaters - 312820/1104351 15050301-561A Santa Cruz Alum Gulch 312820 / 1104351 - 312917 / 1104425 15050301-561B Santa Cruz Alum Gulch 312917 / 1104425 - Sonoita Creek 15050301-561C Santa Cruz Alvord Park Lake 15060106B-0050 Middle Gila American Gulch Headwaters - No. Gila Co. WWTP 15060203-448A Verde River American Gulch No. Gila County WWTP - East Verde River 15060203-448B Verde River Apache Lake 15060106A-0070 Salt River Aravaipa Creek Aravaipa Cyn Wilderness - San Pedro River 15050203-004C San Pedro Aravaipa Creek Stowe Gulch - end Aravaipa C 15050203-004B San Pedro Arivaca Cienega 15050304-0001 Santa Cruz Arivaca Creek Headwaters - Puertocito/Alta Wash 15050304-008 Santa Cruz Arivaca Lake 15050304-0080 Santa Cruz Arnett Creek Headwaters - Queen Creek 15050100-1818 Middle Gila Arrastra Creek Headwaters - Turkey Creek 15070102-848 Middle Gila Ashurst Lake 15020015-0090 Little Colorado Aspen Creek Headwaters - Granite Creek 15060202-769 Verde River Babbit Spring Wash Headwaters - Upper Lake Mary 15020015-210 Little Colorado Babocomari River Banning Creek - San Pedro River 15050202-004 San Pedro Bannon Creek Headwaters - Granite Creek 15060202-774 Verde River Barbershop Canyon Creek Headwaters - East Clear Creek 15020008-537 Little Colorado Bartlett Lake 15060203-0110 Verde River Bear Canyon Lake 15020008-0130 Little Colorado Bear Creek Headwaters - Turkey Creek 15070102-046 Middle Gila Bear Wallow Creek N. and S. Forks Bear Wallow - Indian Res. -
Rainfall-Runoff Model for Black Creek Watershed, Navajo Nation
Rainfall-Runoff Model for Black Creek Watershed, Navajo Nation Item Type text; Proceedings Authors Tecle, Aregai; Heinrich, Paul; Leeper, John; Tallsalt-Robertson, Jolene Publisher Arizona-Nevada Academy of Science Journal Hydrology and Water Resources in Arizona and the Southwest Rights Copyright ©, where appropriate, is held by the author. Download date 25/09/2021 20:12:23 Link to Item http://hdl.handle.net/10150/301297 37 RAINFALL-RUNOFF MODEL FOR BLACK CREEK WATERSHED, NAVAJO NATION Aregai Tecle1, Paul Heinrich1, John Leeper2, and Jolene Tallsalt-Robertson2 ABSTRACT This paper develops a rainfall-runoff model for estimating surface and peak flow rates from precipitation storm events on the Black Creek watershed in the Navajo Nation. The Black Creek watershed lies in the southern part of the Navajo Nation between the Defiance Plateau on the west and the Chuska Mountains on the east. The area is in the semiarid part of the Colorado Plateau on which there is about 10 inches of precipitation a year. We have two main purposes for embarking on the study. One is to determine the amount of runoff and peak flow rate generated from rainfall storm events falling on the 655 square mile watershed and the second is to provide the Navajo Nation with a method for estimating water yield and peak flow in the absence of adequate data. Two models, Watershed Modeling System (WMS) and the Hydrologic Engineering Center (HEC) Hydrological Modeling System (HMS) that have Geographic Information System (GIS) capabilities are used to generate stream hydrographs. Figure 1. Physiographic map of the Navajo Nation with the Chuska The latter show peak flow rates and total amounts of Mountain and Deance Plateau and Stream Gaging Stations. -
Resolving the Relationships of Paleocene Placental Mammals
Biol. Rev. (2015), pp. 000–000. 1 doi: 10.1111/brv.12242 Resolving the relationships of Paleocene placental mammals Thomas J. D. Halliday1,2,∗, Paul Upchurch1 and Anjali Goswami1,2 1Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K. 2Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, U.K. ABSTRACT The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic.