NAEGLERIA FOWLERI: BRAIN-EATING AMOEBA by the PHTA Recreational Water Quality Committee

Total Page:16

File Type:pdf, Size:1020Kb

NAEGLERIA FOWLERI: BRAIN-EATING AMOEBA by the PHTA Recreational Water Quality Committee TECH NOTES NAEGLERIA FOWLERI: BRAIN-EATING AMOEBA By the PHTA Recreational Water Quality Committee NAEGLERIA FOWLERI IS a 99.9% (a 3-log kill) of the amoeba in 9 and migrates along the olfactory nerve microscopic amoeba that grows in minutes (CT=9). to the brain. Once in the brain the warm lakes, ponds, streams and One outbreak in a swimming pool amoeba multiplies and causes PAM. other untreated fresh waters. (It did occur in one conventional pool and Naegleria has been detected in does not grow in salt water.) In rare lasted from 1962 to 1965 in Usti nad swimming pools with less than 1 ppm cases, this amoeba causes serious Labem, Czechoslovakia. During this free chlorine in France and Australia. illness for swimmers, entering the time period 16 deaths occurred due to There are no reported illnesses from brain and causing primary amebic infections from Naegleria. Over several these pools. meningoencephalitis (PAM), which is years it was discovered the pool had usually fatal. Since it was first reported a cracked false wall with a water-filled OCCURRENCE IN NATURE there have been a total of 145 cases in pocket that was not disinfected. The Naegleria fowleri is one of 40 species the U.S. Of these cases, 141 have been pool had been maintained at 80 to 86 of Naegleria but is the only one that fatal. In 2013 a new drug was found to degrees Fahrenheit. As the pool water causes illness in humans. It is one be an effective treatment if given early. level was raised for competitive event of the many microorganisms found it flushed the amoebae and organic in natural waters, particularly warm IS IT A HEALTH THREAT IN matter from behind the cracked wall waters. The amoeba phase is sensitive POOLS AND SPAS? into the pool. Because the free chlorine to changes in the environment. Rapid No. In the time since the CDC first level was maintained at 0.3 ppm the drying kills the amoeba. In less drastic began reporting on RWIs there have concentration was not sufficient to kill situations the amoeba converts to the been no confirmed cases in properly the amoebae. cyst phase. There is no known means chlorinated pools or spas. The most Naegleria fowleri life cycle has three to control Naegleria levels in lakes and recent summary of RWIs in treated phases: 1) the amoeba phase called rivers. venues published by the CDC did a trophozoite, 2) a flagellated phase Naegleria fowleri prefers warm not report any illnesses caused by and 3) an environmentally resistant waters and grows at temperatures up Naegleria in the 2000 to 2014 period. cyst phase. The only phase that causes to 115 degrees Fahrenheit (46 degrees Naegleria is easily killed by chlorine. infection is the amoeba phase. During Celsius). The amoeba may survive at One ppm of free chlorine will kill swimming the amoeba enters the nose even higher temperatures for short 76 JULY 2019 AQUAMAGAZINE.COM WHAT DOES NAEGLERIA FOWLERI DO TO HUMANS? • Causes primary amebic meningoencephalitis (PAM), a normally fatal disease • The amoeba enters the brain through the olfactory nerve canal • The amoeba damages tissue and causes inflammation • Only 4 known survivors out of 145 documented medical cases in the U.S. • These numbers are quite likely a great exaggeration in fatality, as millions of only 34 cases in the US between 2009 the amoeba in 9 minutes (CT=9). This swimmers are exposed but and 2018. The CDC reports that there low CT value verifies that the infective few become ill were 34,000 drowning deaths in the amoeba of this organism will not survive U.S. between 2001 and 2010. in a properly chlorinated swimming • We do not understand why Two recent U.S. cases have pool or spa. The cyst, which is not the some individuals have only heightened awareness of this rare infective form, is more than four times minor reactions and others pathogen. In 2016, an 18-year old died resistant (CT=42). The resistance of the develop the usually fatal after exposure to water at the U.S. cyst is nearly identical to Giardia (CT=45) version (PAM) National Whitewater Center outside of and there are no documented cases of • Infection does not occur in Charlotte, N.C. It is theorized that she Giardia when the pool contained at least properly chlorinated pools was exposed when her raft overturned. 1.0 ppm of free chlorine. At the time of the exposure, the facility The amoeba form is quickly killed by used 200 micron filters on a portion drying. of the water, low-pressure UV and hand fed chlorination when testing PRECAUTIONS AND times but is killed by refrigeration. The revealed coliforms. During a post-event TREATMENTS cysts can survive for weeks to months investigation, the free chlorine in the When in natural warm water, in refrigeration but appear to be killed lower portion of the river was 0.05 swimmers should avoid inhaling water. by freezing. The cysts likely survive ppm and turbidity was 6.7 NTU. The There are no known mechanisms to low temperatures in the sediments of temperature in the lower pool was 86 control Naegleria in natural waters. lakes and rivers and then reemerge degrees Fahrenheit. Because this infection is so rare, as temperatures elevate in the In 2018, a surfer died after exposure the development of effective medical summer months. This may explain the at the BSR surf facility in Waco, Texas. treatment has been a challenge. Prior geographic distribution in the warm A joint investigation of the local health to 2013, only three persons are known Southern and Western states. (See department and the CDC found to have survived infection, two in the map). Recent years have seen several Naegleria in sediment from one of five U.S. and one in Mexico. In that year, incidents in the upper Midwest. park venues but not in the surf resort. the anti-parasitic drug miltefosine was The risk of infection while They also found non-Naegleria amoeba successfully used in two cases. The swimming is very low, even in the in four of five venues. At the time of time between symptom onset and warmer states including those with the investigation the surf resort had treatment appears to be the critical a history of infection. Exposure does no detectable free chlorine and was factor for full recovery. In one case, a not always result in infection. Clinical quite turbid (558 NTU). The health treatment including miltefosine was tests have shown that many people department concluded that the likely used within 48 hours and the patient have developed antibodies. Antibodies exposure occurred at this facility. had a full recovery. In the second case, are developed only after exposure. It is a similar drug treatment was used not clear why some exposures result CONTROL METHODS but not initiated until more than 5 in infection and others do not. Despite The amoeba of Naegleria fowleri is days after symptoms. This person did hundreds of millions of swimmers in sensitive to chlorine. One ppm of free survive but had significant neurologic untreated recreational water, there were chlorine will kill 99.9% (a 3-log kill) of impairment afterward. AQUAMAGAZINE.COM JULY 2019 77.
Recommended publications
  • Inhibition of Fatty Acid Oxidation As a New Target to Treat Primary Amoebic Meningoencephalitis
    EXPERIMENTAL THERAPEUTICS crossm Inhibition of Fatty Acid Oxidation as a New Target To Treat Primary Amoebic Meningoencephalitis Maarten J. Sarink,a Aloysius G. M. Tielens,a,b Annelies Verbon,a Robert Sutak,c Jaap J. van Hellemonda a Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands Downloaded from bDepartment of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands cDepartment of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic ABSTRACT Primary amoebic meningoencephalitis (PAM) is a rapidly fatal infection caused by the free-living amoeba Naegleria fowleri. The amoeba migrates along the ol- factory nerve to the brain, resulting in seizures, coma, and, eventually, death. Previous research has shown that Naegleria gruberi, a close relative of N. fowleri, prefers lipids over glucose as an energy source. Therefore, we tested several already-approved inhibi- http://aac.asm.org/ tors of fatty acid oxidation alongside the currently used drugs amphotericin B and milte- fosine. Our data demonstrate that etomoxir, orlistat, perhexiline, thioridazine, and val- proic acid inhibited growth of N. gruberi. We then tested these compounds on N. fowleri and found etomoxir, perhexiline, and thioridazine to be effective growth inhibitors. Hence, not only are lipids the preferred food source for N. gruberi, but also oxidation of fatty acids seems to be essential for growth of N. fowleri. Inhibition of fatty acid oxida- tion could result in new treatment options, as thioridazine inhibits N. fowleri growth in concentrations that can be reached at the site of infection. It could also potentiate cur- rently used therapy, as checkerboard assays revealed synergy between miltefosine and on August 4, 2020 by guest etomoxir.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Primary Amoebic Meningoencephalitis Due to Naegleria Fowleri
    56 Case report Primary amoebic meningoencephalitis due to Naegleria fowleri A. Angrup, L. Chandel, A. Sood, K. Thakur, S. C. Jaryal Department of Microbiology,Dr. Rajendra Prasad Government Medical College, Kangra at Tanda, Himachal Pradesh, Pin Code- 176001, India. Correspondence to: Dr. Archana Angrup, Department of Microbiology, Dr. Rajendra Prasad Government Medical College, Kangra, Tanda, Himachal Pradesh, Pin Code-176001, India. Phone no. 09418119222, Facsimile: 01892-267115 Email: [email protected] Abstract The genus Naegleria comprises of free living ameboflagellates found in soil and fresh water. More than 30 species have been isolated but only N. fowleri has been associated with human disease. N. fowleri causes primary amoebic meningoencephalitis (PAM), an acute, often fulminant infection of CNS. Here we report a rare and first case of PAM in an immunocompetent elderly patient from this part of the country. Amoeboid and flagellate forms of N. fowleri were detected in the direct microscopic examination of CSF and confirmed by flagellation test in distilled water, demonstrating plaques /clear areas on 1.5% non nutrient agar and its survival at 42°C. Keywords: Meningitis, Naegleria fowleri, primary amoebic meningoencephalitis Introduction of our knowledge, in India, only eight cases have been reported so far .1, 5-8 Infection of the central nervous system (CNS) in human We hereby report a rare case of PAM in elderly beings with free living amoebae is uncommon. Among the immunocompetent patient from the hilly state of Himachal many different genera of amoebae, Naegleria spp, Pradesh (H.P) in Northern India. Acanthamoeba spp and Balamuthia spp are primarily pathogenic to the CNS.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Experimental Listeria–Tetrahymena–Amoeba Food Chain Functioning Depends on Bacterial Virulence Traits Valentina I
    Pushkareva et al. BMC Ecol (2019) 19:47 https://doi.org/10.1186/s12898-019-0265-5 BMC Ecology RESEARCH ARTICLE Open Access Experimental Listeria–Tetrahymena–Amoeba food chain functioning depends on bacterial virulence traits Valentina I. Pushkareva1, Julia I. Podlipaeva2, Andrew V. Goodkov2 and Svetlana A. Ermolaeva1,3* Abstract Background: Some pathogenic bacteria have been developing as a part of terrestrial and aquatic microbial eco- systems. Bacteria are consumed by bacteriovorous protists which are readily consumed by larger organisms. Being natural predators, protozoa are also an instrument for selection of virulence traits in bacteria. Moreover, protozoa serve as a “Trojan horse” that deliver pathogens to the human body. Here, we suggested that carnivorous amoebas feeding on smaller bacteriovorous protists might serve as “Troy” themselves when pathogens are delivered to them with their preys. A dual role might be suggested for protozoa in the development of traits required for bacterial passage along the food chain. Results: A model food chain was developed. Pathogenic bacteria L. monocytogenes or related saprophytic bacteria L. innocua constituted the base of the food chain, bacteriovorous ciliate Tetrahymena pyriformis was an intermedi- ate consumer, and carnivorous amoeba Amoeba proteus was a consumer of the highest order. The population of A. proteus demonstrated variations in behaviour depending on whether saprophytic or virulent Listeria was used to feed the intermediate consumer, T. pyriformis. Feeding of A. proteus with T. pyriformis that grazed on saprophytic bacteria caused prevalence of pseudopodia-possessing hungry amoebas. Statistically signifcant prevalence of amoebas with spherical morphology typical for fed amoebas was observed when pathogenic L.
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • Accomplishments 2013
    National Center for Emerging and Zoonotic Infectious Diseases Accomplishments 2013 The National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) works to improve public health at home and around the world by protecting people from • Foodborne and waterborne illnesses • Deadly diseases like Ebola, anthrax, and rabies • Infections spread by animals, mosquitoes, ticks, and fleas • Infections in healthcare facilities or drug-resistant threats • Illnesses that cross borders and affect refugees, immigrants, and travelers Responding to outbreaks in the United States and across the globe In fiscal year 2013 (FY 2013), NCEZID regularly received requests from states and other countries to assist in the investigation of local, national, and international outbreaks of infectious diseases, known as Epi-Aids (see examples in the boxes on the bottom of pages 2–7). In addition to participating in more than 35 Epi-Aids, NCEZID supported health departments’ response to a variety of outbreaks through epidemiologic investigations, phone consultations, and technical assistance. CDC maintains an up-to-date list of current outbreaks on its website. National Center for Emerging and Zoonotic Infectious Diseases Office of the Director CS241973-A National Center for Emerging and Zoonotic Infectious Diseases Protecting public water systems and the public from Naegleria fowleri (brain-eating ameba) infections After the death of a child staying in St. Bernard Parish, Louisiana, NCEZID laboratories confirmed the presence of the brain-eating ameba Naegleria fowleri in the parish’s treated public water system. NCEZID worked with state public health officials and the US Environmental Protection Agency to develop a plan to rid the system of the ameba and communicate with residents about steps they can take to protect themselves.
    [Show full text]
  • A PRELIMINARY NOTE on TETRAMITUS, a STAGE in the LIFE CYCLE of a COPROZOIC AMOEBA by MARTHA BUNTING
    294 Z6OL6G Y.- M. BUNTING PROC. N. A. S. A PRELIMINARY NOTE ON TETRAMITUS, A STAGE IN THE LIFE CYCLE OF A COPROZOIC AMOEBA By MARTHA BUNTING DEPARTMENT OF ZOOLOGY, UNIVERSITY OF PENNSYLVANIA Communicated July 24, 1922 In 1920 a study of the Entamoeba of the rat was begun and in a culture on artificial medium a number of Coprozoic amoeba appeared, one of which exhibited a flagellate phase which seems to be identical with Tetramitus rostratus Perty.1 The appearance of flagellate phases in cultures of Coprozoic amoeba (Whitmore,2 etc.) as well as of soil amoeba (Kofoid,1 Wilson,4 etc.) has been recorded a number of times, but the flagellates which appeared were relatively simple in organization and very transitory in occurrence. Fur- thermore, some of the simpler flagellates have been observed (Pascher5) to lose their flagella and become amoeboid. In the case here described, however, there is a transformation of a simple amoeba into a relatively complex flagellate which multiplies for several days then returns to the amoeboid condition and becomes encysted. Tetramitus rostratus has been studied by a number of investigators since its discovery in 1852, by Perty,' yet no one has given a full account of its life history. The lack of cysts in previous accounts, mentioned by Dobell and O'Connor,6 is explained by the transformation into an amoeba before encystment. It is believed that this animal presents the extreme in transformations of this sort and serves to emphasize the close relationship between amoebae and flagellates, and the need for careful studies of life cycles, in pure cultures where possible, in investigations of coprozoic and other Protozoa.
    [Show full text]
  • Brown Algae and 4) the Oomycetes (Water Molds)
    Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level.
    [Show full text]
  • Bacterial Brain Abscess in a Patient with Granulomatous Amebic Encephalitis
    SVOA Neurology ISSN: 2753-9180 Case Report Bacterial Brain Abscess in a Patient with Granulomatous Amebic Encephalitis. A Misdiagnosis or Free-Living Amoeba Acting as Trojan Horse? Rolando Lovaton1* and Wesley Alaba1 1 Hospital Nacional Cayetano Heredia (Lima-Peru) *Corresponding Author: Dr. Rolando Lovaton, Neurosurgery Service-Hospital Nacional Cayetano Heredia, Avenida Honorio Delgado 262 San Martin de Porres, Lima-Peru Received: July 13, 2021 Published: July 24, 2021 Abstract Amebic encephalitis is a rare and devastating disease. Mortality rate is almost 90% of cases. Here is described a very rare case of bacterial brain abscess in a patient with recent diagnosis of granulomatous amebic encephalitis. Case De- scription: A 29-year-old woman presented with headache, right hemiparesis and tonic-clonic seizure. Patient was diag- nosed with granulomatous amebic encephalitis due to Acanthamoeba spp.; although, there was no improvement of symptoms in spite of stablished treatment. Three months after initial diagnosis, a brain MRI showed a ring-enhancing lesion in the left frontal lobe compatible with brain abscess. Patient was scheduled for surgical evacuation and brain abscess was confirmed intraoperatively. However, Gram staining of the purulent content showed gram-positive cocci. Patient improved headache and focal deficit after surgery. Conclusion: It is the first reported case of a patient with cen- tral nervous system infection secondary to Acanthamoeba spp. who presented a bacterial brain abscess in a short time. Keywords: amebic encephalitis; Acanthamoeba spp; bacterial brain abscess Introduction Free–living amoebae cause potentially fatal infection of central nervous system. Two clinical entities have been de- scribed for amebic encephalitis: primary amebic meningoencephalitis (PAM), and granulomatous amebic encephalitis (GAE).
    [Show full text]
  • Evolutionary History Predicts the Stability of Cooperation in Microbial Communities
    ARTICLE Received 13 Aug 2013 | Accepted 9 Sep 2013 | Published 11 Oct 2013 DOI: 10.1038/ncomms3573 Evolutionary history predicts the stability of cooperation in microbial communities Alexandre Jousset1,2, Nico Eisenhauer3, Eva Materne1 & Stefan Scheu1 Cooperation fundamentally contributes to the success of life on earth, but its persistence in diverse communities remains a riddle, as selfish phenotypes rapidly evolve and may spread until disrupting cooperation. Here we investigate how evolutionary history affects the emergence and spread of defectors in multispecies communities. We set up bacterial communities of varying diversity and phylogenetic relatedness and measure investment into cooperation (proteolytic activity) and their vulnerability to invasion by defectors. We show that evolutionary relationships predict the stability of cooperation: phylogenetically diverse communities are rapidly invaded by spontaneous signal-blind mutants (ignoring signals regulating cooperation), while cooperation is stable in closely related ones. Maintenance of cooperation is controlled by antagonism against defectors: cooperators inhibit phylogenetically related defectors, but not distant ones. This kin-dependent inhibition links phylogenetic diversity and evolutionary dynamics and thus provides a robust mechanistic predictor for the persistence of cooperation in natural communities. 1 J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Go¨ttingen, Berliner Strae 28, 37073 Go¨ttingen, Germany. 2 Department of Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. 3 Institute of Ecology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany. Correspondence and requests for materials should be addressed to A.J. (email: [email protected]). NATURE COMMUNICATIONS | 4:2573 | DOI: 10.1038/ncomms3573 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited.
    [Show full text]
  • Studies of Laboratory Subcutaneous Infection of Naegleria Fowleri Carter, 1970 in Guinea Pigs| BCG Vaccination and Delayed Hypersensitivity
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1974 Studies of laboratory subcutaneous infection of Naegleria fowleri Carter, 1970 in guinea pigs| BCG vaccination and delayed hypersensitivity Peter Diffley The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Diffley, Peter, "Studies of laboratory subcutaneous infection of Naegleria fowleri Carter, 1970 in guinea pigs| BCG vaccination and delayed hypersensitivity" (1974). Graduate Student Theses, Dissertations, & Professional Papers. 3697. https://scholarworks.umt.edu/etd/3697 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. STUDIES OP LABORATORY SUBCUTANEOUS INFECTION OF Naegleria fowleri CARTER, 1970 IN GUINEA PIGS:BOG VACCINATION AND DELAYED HYPERSENSITIVITY by Peter Diffley B.S., Tulane University, 1968 Presented in partial fulfillment of the requirements for the degree of Master of Science University of Montana 1974 Approved by: UMI Number: EP33846 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI EP33846 Copyright 2012 by ProQuest LLC.
    [Show full text]