Effects of Version 2 of the International Sunspot Number on Naïve

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Version 2 of the International Sunspot Number on Naïve https://ntrs.nasa.gov/search.jsp?R=20190001636 2019-08-30T11:15:09+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server Space Weather RESEARCH ARTICLE Effects of Version 2 of the International Sunspot Number on 10.1029/2018SW002080 Naïve Predictions of Solar Cycle 25 Key Points: • A new calibration of sunspot W. Dean Pesnell1 number must be used in solar cycle predictions 1Solar Physics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, USA • The climatological average is used to assess other predictions • Other simple predictions are not very accurate or useful Abstract The recalibration of the International Sunspot Number brings new challenges to predictions of Solar Cycle 25. One is that the list of extrema for the original series is no longer usable because the values of all maxima and minima are different for the new version of the sunspot number. Timings of extrema are Correspondence to: W. D. Pesnell, less sensitive to the recalibration but are a natural result of the calculation. Predictions of Solar Cycle 25 [email protected] published before 2016 must be converted to the new version of the sunspot number. Any prediction method that looks across the entire time span will have to be reconsidered because values in the nineteenth Citation: century were corrected by a larger factor than those in the twentieth century. We report a list of solar Pesnell, W. D. (2018). Effects of maxima and minima values and timings based on the recalibrated sunspot number. Naïve forecasts that version 2 of the International Sunspot depend only on the current values of the time series are common in economic studies. Several naïve Number on naïve predictions of Solar Cycle 25. Space Weather, 16. predictions of Solar Cycle 25, the climatological average (180 ± 60), two versions of the inertial forecast, and https://doi.org/10.1029/2018SW002080 two versions of the even-odd forecast, are derived from that table. The climatological average forecast is the baseline for more accurate predictions and the initial forecast in assimilative models of the Sun. It also Received 16 SEP 2018 provides the error estimate for Monte Carlo techniques that anticipate the long-term effects on the Accepted 15 NOV 2018 terrestrial environment. The other four predictions are shown to be statistically insignificant. Accepted article online 23 NOV 2018 Plain Language Summary We use predictions of the next sunspot cycle to plan satellite missions. The simplest prediction is the average of all previous peaks in the sunspot number. A new version of the sunspot number has been released, and this average must be recalculated. The new value predicts a peak sunspot number of 180 in Solar Cycle 25. 1. Introduction to Solar Cycle Predictions Long-term predictions of solar activity are an essential part of space weather forecasts. Two of the main sources of space weather effects at the Earth tend to track the sunspot number, solar flares (e.g., Temmer et al., 2001), and coronal mass ejections (Wang & Colaninno, 2014). A third source, high-speed streams from coro- nal holes, is not as well correlated with sunspot number, especially during the decline from solar maximum. This requires that a second quantity, such as a geomagnetic index, also be predicted. However, long-term pre- dictions of the geomagnetic indices can be created from the predictions of sunspot number and a stochastic component (Naasz et al., 2008). Satellite operators need to plan their missions years, if not decades, in advance. As a result, forecasters are asking for usable predictions of upcoming solar cycle(s) long before the anticipated maxima and leading to the development of many types of solar cycle predictions. Up through Solar Cycle 24, all solar cycle amplitude predictions had been made or reported using the International Sunspot Number, RZ. On 1 July 2015 the Solar Influences Data Center (SIDC) began serving version 2 of the International Sunspot Number, SN. It reconciled numerous inconsistencies in earlier calibrations of RZ, such as RZ being too small in the nineteenth century, that can be repaired by comparing the raw observations and deducing biases among the observers or by comparison with the geomagnetic measurements (Clette et al., 2014; Pevtsov et al., 2014; Svalgaard, 2012). Solar Cycle 24 was a below-average amplitude, peaking at an annual sunspot number of about 80 in RZ.A set of 105 predictions of the amplitude of Solar Cycle 24 ranged from zero to unprecedented levels of solar activity (Pesnell, 2016). The unweighted average of that compilation⟨ of⟩ predictions anticipated the amplitude Published 2018. This article is a US of the annual-averaged sunspot number for Solar Cycle 24 as R = 106 ± 31, slightly lower than the Government work and is in the public Z,24 domain in the USA. average value of previous cycles, but higher than the actual amplitude. There were peaks in the daily- and PESNELL 1 Space Weather 10.1029/2018SW002080 monthly-averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014, another complication in the prediction of the amplitude that we do not consider here. At least 13 predictions of the amplitude of Solar Cycle 25 already exist. Some were from before 2016 and use RZ (Dumitrache, 2011; Helal & Galal, 2013; Javaraiah, 2015; Kakad, 2011; Lampropoulos et al., 2016; Li et al., 2015; Miao et al., 2015; Yoshida, 2014; Zachilas & Gkana, 2015). Others report their results with SN (Gkana & Zachilas, 2016; Pesnell & Schatten, 2018) or as fractions of previous activity (De Jager & Duhau, 2012; Figure 1. Version 2 of the International Sunspot Number as a function of time since 1750. The solid blue line is the 13-month running average of the Shepherd et al., 2014). The Solar Cycle 25 prediction of Helal and Galal values (sampled monthly) and the “+” symbols show the monthly values. (2013) used RZ to derive a correlation between the number of spotless days and the rise time. But Pesnell (2012) showed that the number of spotless days in SN was a more accurate precursor. Because RZ is no longer officially produced, this lack of consistency in what is reported in a prediction complicates the comparison and use of those predictions. Dynamo models rarely predict the sunspot number. They often report the factor by which the next cycle will increase (Cameron et al., 2016; Hathaway & Upton, 2016) or decrease (Upton & Hathaway, 2018) over the current one. Therefore, they are less sensitive to the nominal values of SN —unless they calibrated the model on the sunspot number. Naïve forecasts use information from the near past without further adjustment or attempting to determine causality. They provide an easily calculated benchmark to compare with more sophisticated predictions. Naïve predictions are used by businesses as well as scientists. Examples include saying that tomorrow’s weather will be the same as today’s and next month’s sales of winter coats will be the same as this month’s. Both of these forecasts may ignore possible trends and seasonal effects but provide the information needed to judge other forecasts. We will describe the impact of SN on several simple solar cycle predictions. A brief description of SN will be presented, followed by a table of extrema to be used in solar cycle predictions. Five naïve predictions that can be derived from that table will then be discussed. 2. The New Calibration of the International Sunspot Number The sunspot number is a unique reference for solar dynamo models, climate studies, and solar activity predic- tions as well as a direct proxy of magnetic flux emergence (Stenflo, 2012). The original International Sunspot Number (RZ, also called version 1) was measured, derived, and recorded for over 300 years. It was created in 1849 by R. Wolf of the Zurich Observatory as an index that combined the total number of observed spots (S) and the number of groups of spots (G)∶RZ = 10G + S. Observer-dependent correction factors were intro- duced, as successive observers became the curators of the data series. Since 1981, RZ has been produced at the World Data Center for Sunspot Index and Long-term Solar Observations in Brussels using a worldwide network of over 85 stations. Daily values of RZ exist since 1818, monthly means since 1749, and annual aver- ages since 1700. The time dependences of the 13-month running mean, sampled at monthly intervals, and the monthly-averaged SN are shown in Figure 1. The reliability of RZ had long been questioned because a reanalysis of the data gave differing long-term trends (Hoyt & Schatten, 1998a, 1998b). From 2011 to 2015 a community effort led to the first recalibration of the entire series (Clette et al., 2014; Pevtsov et al., 2014; Svalgaard, 2012). Version 2 of the International Sunspot Number (SN) has been produced since 1 July 2015 and is the recommended version of the International Sunspot Number. The largest change is the renormalization of new version that makes SN 40–70% larger than RZ. This increase is particularly problematic when predicting the next solar cycle because the renormalization changes with time. The largest change was to drop the 0.6 normalization, effectively multiplying the entire series by 1∕0.6 ≈ 1.67. After 1947 the scaling factor changes from 1.67 to 1.42. Details of these and other changes are in Clette and Lefèvre (2016). The RZ data set was the basis of the many predictions of the amplitudes of Solar Cycles 21–24 (Pesnell, 2016). A recalibration of such a well-analyzed data set requires any existing prediction algorithm be thoroughly reconsidered for Solar Cycle 25.
Recommended publications
  • Fossil Fuels
    Gonzaga Debate Institute 1 Warming Core Warming Bad Gonzaga Debate Institute 2 Warming Core ***Science Debate*** Gonzaga Debate Institute 3 Warming Core Warming Real – Generic Warming real - consensus Brooks 12 - Staff writer, KQED news (Jon, staff writer, KQED news, citing Craig Miller, environmental scientist, 5/3/12, "Is Climate Change Real? For the Thousandth Time, Yes," KQED News, http://blogs.kqed.org/newsfix/2012/05/03/is- climate-change-real-for-the-thousandth-time-yes/) BROOKS: So what are the organizations that say climate change is real? MILLER: Virtually ever major, credible scientific organization in the world. It’s not just the UN’s Intergovernmental Panel on Climate Change. Organizations like the National Academy of Sciences, the American Geophysical Union, the American Association for the Advancement of Science. And that's echoed in most countries around the world. All of the most credible, most prestigious scientific organizations accept the fundamental findings of the IPCC. The last comprehensive report from the IPCC, based on research, came out in 2007. And at that time, they said in this report, which is known as AR-4, that there is "very high confidence" that the net effect of human activities since 1750 has been one of warming. Scientists are very careful, unusually careful, about how they put things. But then they say "very likely," or "very high confidence," they’re talking 90%. BROOKS: So it’s not 100%? MILLER: In the realm of science; there’s virtually never 100% certainty about anything. You know, as someone once pointed out, gravity is a theory. BROOKS: Gravity is testable, though..
    [Show full text]
  • Zonal Harmonics of Solar Magnetic Field for Solar Cycle Forecast
    Zonal harmonics of solar magnetic field for solar cycle forecast VN Obridkoa,e, DD Sokoloffa,c,d, VV Pipinb, AS Shibalovaa,c,d, IM Livshitsa aIzmiran, Kaluzhskoe Sh., 4, Troitsk, Moscow, 108840, Russia bInstitute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033, Russia cDepartment of Physics, Moscow State University, 19991, Russia dMoscow Center of Fundamental and Applied Mathematics, Moscow, 119991, Russia eCentral Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, St. Petersburg Abstract According to the scheme of action of the solar dynamo, the poloidal magnetic field can be considered a source of production of the toroidal magnetic field by the solar differential rotation. From the polar magnetic field proxies, it is natural to expect that solar Cycle 25 will be weak as recorded in sunspot data. We suggest that there are parameters of the zonal harmonics of the solar surface magnetic field, such as the magnitude of the l = 3 harmonic or the effective multipole index, that can be used as a reasonable addition to the polar magnetic field proxies. We discuss also some specific features of solar activity indices in Cycles 23 and 24. Keywords: Sun: magnetic fields, Sun: oscillations, sunspots 1. Introduction The problem of forecasting solar activity is a long-lasting one. Actually, this problem occurred as soon as the solar cycle was discovered, but we are still far from its definite solution. Before each sunspot maximum, forecasts of the cycle amplitude appear, but the predicted values are in quite a wide range (Obridko, 1995; Lantos and Richard, 1998). The past two Cycles, 23 and 24, were no exception.
    [Show full text]
  • Statistical Study of Solar Activity Parameters of Solar Cycle 24
    Volume 65, Issue 1, 2021 Journal of Scientific Research Institute of Science, Banaras Hindu University, Varanasi, India. Statistical Study of Solar Activity Parameters of Solar Cycle 24 Abha Singh1 and Kalpana Patel*2 1Department of Physics, T.D.P.G. College, Jaunpur-222002, U.P., India. [email protected] 2Department of Physics, SRM Institute of Science and Technology, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar-201204, U.P. India. [email protected]* Abstract: The solar atmosphere is one of the most dynamic smoothed sunspot numbers that was brought into existence with environments studied in modern astrophysics. The term solar its classification (Kunzel, 1961). The number predicts short term activity refers to physical phenomena occurring within the periodic high and low activity of the Sun. The part of the cycle magnetically heated outer atmosphere of the Sun at various time with low sunspot activity is referred to as "solar minimum" scales. S un spots, high-speed solar wind, solar flares and coronal while region with maximum solar activity is called as "solar mass ejections are the basic parameters that govern maximum”. Hathaway et al. (2002) examined the ‘group’ solar activity. All solar activity is driven by the solar magnetic field. The present paper studies the relation between various solar sunspot number which shows it use in featuring the Sun’s features during solar cycle 24. The study reveals that there exists a performance during the solar year (Hoyt & Schatten, 1998a). good correlation between various parameters. This indicates that they all belong to same origin i.e., the variability of Sun’s magnetic Coronal mass ejections (CMEs) are the explosions in the solar 42field.
    [Show full text]
  • Arxiv:2005.12166V1 [Astro-Ph.SR] 25 May 2020
    Draft version May 26, 2020 Typeset using LATEX modern style in AASTeX63 A model-free, data-based forecast for sunspot cycle 25 Aleix Espua-Fontcuberta,1 Saikat Chatterjee,2 Dhrubaditya Mitra,1 and Dibyendu Nandy3 1NORDITA, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden 2School of Electrical Engg and Computer Science, KTH Royal Institute of Technology, Sweden 3Center of Excellence in Space Sciences India and Department of Physical Sciences, Indian Insitute of Science Education and Research Kolkata, Mohanpur 741246, India ABSTRACT The dynamic activity of the Sun, governed by its cycle of sunspots { strongly mag- netized regions that are observed on its surface { modulate our solar system space environment creating space weather. Severe space weather leads to disruptions in satellite operations, telecommunications, electric power grids and air-traffic on po- lar routes. Forecasting the cycle of sunspots, however, has remained a challenging problem. We use reservoir computing { a model-free, neural{network based machine- learning technique { to forecast the upcoming solar cycle, sunspot cycle 25. The standard algorithm forecasts that solar cycle 25 is going to last about ten years, the maxima is going to appear in the year 2024 and the maximum number of sunspots is going to be 113 (±15). We also develop a novel variation of the standard algorithm whose forecasts for duration and peak timing matches that of the standard algorithm, but whose peak amplitude forecast is 124 (±2) { within the upper bound of the stan- dard reservoir computing algorithm. We conclude that sunspot cycle 25 is likely to be a weak, lower than average solar cycle, somewhat similar in strength to sunspot cycle 24.
    [Show full text]
  • Irina N. Kitiashvili (NASA Ames Research Center)
    Global Evolution of Solar Magnetic Fields and Prediction of Solar Activity Cycles Irina N. Kitiashvili (NASA Ames Research Center) Prediction of solar activity cycles is challenging because the physical processes inside the Sun involve a broad range of multiscale dynamics that no model can reproduce, and the available observations are highly limited and cover mostly surface layers. Helioseismology makes it possible to probe solar dynamics in the convective zone, but variations in the differential rotation and meridional circulation are currently available for only two solar activity cycles. It has been demonstrated that sunspot observations, which cover over 400 years, can be used to calibrate the Parker-Kleeorin-Ruzmaikin model and that the Ensemble Kalman Filter (EnKF) method can be used to link the model magnetic fields to sunspot observations to make reliable predictions of a following cycle. However, for more accurate predictions, it is necessary to use actual observations of the solar magnetic fields, which are available for only four solar cycles. This raises the question of how limitations in observational data and model uncertainties affect predictive capabilities and implies the need for the development of new forecast methodologies and validation criteria. In this presentation, I will discuss the influence of the limited number of available observations on the accuracy of EnKF estimates of solar cycle parameters. Data Assimilation Methodology Comparison of hemispheric sunspot numbers, Test ‘Prediction’ of Solar Cycles 23 and
    [Show full text]
  • Arxiv:2108.01412V1 [Astro-Ph.SR] 3 Aug 2021
    Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• A Dynamo-Based Prediction of Solar Cycle 25 Wei Guo1,2 · Jie Jiang1,2 · Jing-Xiu Wang3,4 © Springer •••• Abstract Solar activity cycle varies in amplitude. The last Cycle 24 is the weakest in the past century. Sun's activity dominates Earth's space environment. The frequency and intensity of the Sun's activity are accordant with the solar cycle. Hence there are practical needs to know the amplitude of the upcoming Cycle 25. The dynamo-based solar cycle predictions not only provide predic- tions, but also offer an effective way to evaluate our understanding of the solar cycle. In this article we apply the method of the first successful dynamo-based prediction developed for Cycle 24 to the prediction of Cycle 25, so that we can verify whether the previous success is repeatable. The prediction shows that Cycle 25 would be about 10% stronger than Cycle 24 with an amplitude of 126 (international sunspot number version 2.0). The result suggests that Cycle 25 will not enter the Maunder-like grand solar minimum as suggested by some publications. Solar behavior in about four to five years will give a verdict whether the prediction method captures the key mechanism for solar cycle variability, which is assumed as the polar field around the cycle minimum in the model. Keywords: Magnetic fields, Models • Solar Cycle, Models • Solar Cycle, Ob- servations 1. Introduction Solar Cycle 24 has been the weakest cycle during the past century. Before its start, there were 265 and 262 spotless days in the years 2008 and 2009, respec- B J.
    [Show full text]
  • JSTP 6 1 2020 24-28.Pdf
    Solar-Terrestrial Physics. 2020. Vol. 6. Iss. 1. P. 24–28. DOI: 10.12737/stp-61202002. © 2020 P.Yu. Gololobov, P.A. Krivoshapkin, G.F. Krymsky, S.K. Gerasimova. Published by INFRA-M Academic Publishing House Original Russian version: P.Yu. Gololobov, P.A. Krivoshapkin, G.F. Krymsky, S.K. Gerasimova, published in Solnechno-zemnaya fizika. 2020. Vol. 6. Iss. 1. P. 30–35. DOI: 10.12737/szf-61202002. © 2020 INFRA-M Academic Publishing House (Nauchno-Izdatelskii Tsentr INFRA-M) INVESTIGATING THE INFLUENCE OF GEOMETRY OF THE HELIOSPHERIC NEUTRAL CURRENT SHEET AND SOLAR ACTIVITY ON MODULATION OF GA- LACTIC COSMIC RAYS WITH A METHOD OF MAIN COMPONENTS P.Yu. Gololobov G.F. Krymsky Yu.G. Shafer Institute of Cosmophysical Research Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, and Aeronomy SB RAS, Yakutsk, Russia, [email protected] Yakutsk, Russia, [email protected] P.A. Krivoshapkin S.K. Gerasimova Yu.G. Shafer Institute of Cosmophysical Research Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, and Aeronomy SB RAS, Yakutsk, Russia, [email protected] Yakutsk, Russia, [email protected] Abstract. The work studies the cumulative modulat- factors in the modulation. The modulation character is ing effect of the geometry of the interplanetary magnetic shown to strongly depend on the polarity of the Sun’s field’s neutral current sheet and solar activity on propa- general magnetic field. Results of the study confirm the gation of galactic cosmic rays in the heliosphere. The existing theoretical concepts of the heliospheric modula- role of each factor on the modulation of cosmic rays is tion of cosmic rays and reflect its peculiarities for al- estimated using a method of main components.
    [Show full text]
  • Empirical Modelling of Solar Energetic Particles
    ANNALES ANNALES TURKUENSIS UNIVERSITATIS AI 648 Osku Raukunen EMPIRICAL MODELLING OF SOLAR ENERGETIC PARTICLES Osku Raukunen Painosalama Oy, Turku, Finland 2021 Finland Turku, Oy, Painosalama ISBN 978-951-29-8490-9 (PRINT) – ISBN 978-951-29-8491-6 (PDF) TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS ISSN 0082-7002 (PRINT) SARJA – SER. AI OSA – TOM. 648 | ASTRONOMICA – CHEMICA – PHYSICA – MATHEMATICA | TURKU 2021 ISSN 2343-3175 (ONLINE) EMPIRICAL MODELLING OF SOLAR ENERGETIC PARTICLES Osku Raukunen TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS SARJA – SER. AI OSA – TOM. 648 | ASTRONOMICA – CHEMICA – PHYSICA – MATHEMATICA | TURKU 2021 University of Turku Faculty of Science Department of Physics and Astronomy Physics Doctoral Programme in Physical and Chemical Sciences Supervised by Professor Rami Vainio Docent Eino Valtonen Department of Physics and Astronomy Department of Physics and Astronomy University of Turku University of Turku Turku, Finland Turku, Finland Reviewed by Doctor Stephen Kahler Professor Pekka T. Verronen Air Force Research Laboratory Sodankylä Geophysical Observatory Kirtland AFB Univerity of Oulu New Mexico, USA Oulu, Finland Opponent Doctor Eamonn Daly European Space Research and Technology Centre European Space Agency Noordwijk, Netherlands The originality of this publication has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-8490-9 (PRINT) ISBN 978-951-29-8491-6 (PDF) ISSN 0082-7002 (PRINT) ISSN 2343-3175 (ONLINE) Painosalama, Turku, Finland, 2021 UNIVERSITY OF TURKU Faculty of Science Department of Physics and Astronomy Physics RAUKUNEN, OSKU: Empirical Modelling of Solar Energetic Particles Doctoral dissertation, 142 pp. Doctoral Programme in Physical and Chemical Sciences June 2021 ABSTRACT Solar energetic particles (SEPs) are an important component of space weather.
    [Show full text]
  • Will Solar Cycles 25 and 26 Be Weaker Than Cycle
    Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Will Solar Cycles 25 and 26 Be Weaker than Cycle 24 ? J. Javaraiah c Springer •••• Abstract The study of variations in solar activity is important for understand- ing the underlying mechanism of solar activity and for predicting the level of activity in view of the activity impact on space weather and global climate. Here we have used the amplitudes (the peak values of the 13-month smoothed international sunspot number) of Solar Cycles 1 – 24 to predict the relative am- plitudes of the solar cycles during the rising phase of the upcoming Gleissberg cycle. We fitted a cosine function to the amplitudes and times of the solar cycles after subtracting a linear fit of the amplitudes. The best cosine fit shows overall properties (periods, maxima, minima, etc.) of Gleissberg cycles, but with large uncertainties. We obtain a pattern of the rising phase of the upcoming Gleissberg cycle, but there is considerable ambiguity. Using the epochs of violations of the Gnevyshev-Ohl rule (G-O rule) and the ‘tentative inverse G-O rule’ of solar cycles during the period 1610 – 2015, and also using the epochs where the orbital angular momentum of the Sun is steeply decreased during the period 1600 – 2099, we infer that Solar Cycle 25 will be weaker than Cycle 24. Cycles 25 and 26 will have almost same strength, and their epochs are at the minimum between the current and upcoming Gleissberg cycles. In addition, Cycle 27 is expected to be stronger than Cycle 26 and weaker than Cycle 28, and Cycle 29 is expected to be stronger than both Cycles 28 and 30.
    [Show full text]
  • The Next Solar Cycle and Why It Matters for Climate David Whitehouse
    THE NEXT SOLAR CYCLE And why it matters for climate David Whitehouse The Global Warming Policy Foundation Note 22 Contents Summary 1 About the author 1 Introduction 3 Solar variability 3 The Little Ice Age 4 Blaming sunspots 4 A sunspot cycle 5 The Maunder Minimum 6 A magnetic cycle 7 Cycle 24 8 Cycle 25 9 Coda 11 Notes 11 About the Global Warming Policy Foundation 12 The Next Solar Cycle and Why it Matters for Climate David Whitehouse Note 22, The Global Warming Policy Foundation © Copyright 2020, The Global Warming Policy Foundation ‘Any coincidence is always worth notic- ing. You can throw it away later if it is only a coincidence.’ Agatha Christie, Nemesis. Summary Predictions for the next solar cycle – Cycle 25 – range from very low activity to stronger than Cycle 24. The National Oceanic and Atmos- pheric Administration’s Solar Cycle Prediction Panel says there is no evidence for another period of very low activity, as in the Maunder Minimum of the late-17th and early-18th cen- tury, which could have an important effect on factors that govern the Earth’s climate. Never- theless, there is no consensus and it remains a possibility. About the author The science editor of the GWPF, Dr David- Whitehouse is a writer, journalist, broadcast- er and the author of six critically acclaimed books. He holds a PhD in astrophysics from the Jodrell Bank Radio Observatory. He was the BBC’s Science Correspondent and Science Editor of BBC News Online. Among his many awards are the European Internet Journalist of the Year, the first Arthur C Clarke Award and an unprecedented five Netmedia awards.
    [Show full text]
  • Here Comes Cycle 25! I Was Licensed in 1977, and What Luck from a Propagation Perspective
    David A. Minster, NA2AA, ARRL Chief Executive Officer, [email protected] Second Century Here Comes Cycle 25! I was licensed in 1977, and what luck from a propagation perspective. With a modest station, running only 40 W and a homebrew vertical on the roof, I was able to break a pileup for Chatham Island in the Pacific — on 10 meters! This experience pales to that of Solar Cycle 19, which peaked from 1957 to 1959. The sunspots were so active that ionization levels never fully diminished during darkness, so propagation on the high bands was occurring 24 hours a day, worldwide! Even 6-meter DX around the world was routine. Relatively new hams will read this and say “What?” Interestingly, it shows us what the science has also told us: because their luck wasn’t so good coming into the hobby new Solar Cycle 25 sunspots began to show up in Novem- at the end of Solar Cycle 24. But that 10-meter band ber 2019, and we are now starting to see an uptick! you’ve been thinking was a dud is about to explode! Here comes Solar Cycle 25! And some of the latest forecasts There is still much we do not know or understand about from scientists and space weather experts have us hoping how the solar cycle works. Despite sunspots being tracked for an epic event. A theory related to the actual terminator by hand for hundreds of years, many theories — not facts of each solar cycle, and the measured time between — still abound. We’ve had satellites giving us better imag- cycles, states that a long period between cycles leads to ing and data for the last four solar cycles, which is only a lower sunspot levels, but a short period leads to much beginning.
    [Show full text]
  • Arxiv:2006.15263V3 [Astro-Ph.SR] 13 Oct 2020 6 School of Engineering and Innovation, STEM Faculty, the Open University, Milton Keynes, UK
    Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Overlapping Magnetic Activity Cycles and the Sunspot Number: Forecasting Sunspot Cycle 25 Amplitude Scott W. McIntosh 1 · Sandra Chapman 2 · Robert J. Leamon 3,4 · Ricky Egeland 1 · Nicholas W. Watkins 2,5,6 © Springer •••• Abstract The Sun exhibits a well-observed modulation in the number of spots on its disk over a period of about 11 years. From the dawn of modern ob- servational astronomy sunspots have presented a challenge to understanding { their quasi-periodic variation in number, first noted 175 years ago, stimulates community-wide interest to this day. A large number of techniques are able to explain the temporal landmarks, (geometric) shape, and amplitude of sunspot \cycles," however forecasting these features accurately in advance remains elu- sive. Recent observationally-motivated studies have illustrated a relationship between the Sun's 22-year (Hale) magnetic cycle and the production of the sunspot cycle landmarks and patterns, but not the amplitude of the sunspot cycle. Using (discrete) Hilbert transforms on more than 270 years of (monthly) sunspot numbers we robustly identify the so-called "termination" events that mark the end of the previous 11-yr sunspot cycle, the enhancement/acceleration B S.W. McIntosh [email protected] 1 National Center for Atmospheric Research, High Altitude Observatory, P.O. Box 3000, Boulder, CO 80307, USA 2 Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK 3 University of Maryland{Baltimore County, Goddard Planetary Heliophysics Institute, Baltimore, MD 21250, USA 4 NASA Goddard Space Flight Center, Code 672, Greenbelt, MD 20771, USA 5 Centre for the Analysis of Time Series, London School of Economics and Political Science, London WC2A 2AZ, UK arXiv:2006.15263v3 [astro-ph.SR] 13 Oct 2020 6 School of Engineering and Innovation, STEM Faculty, The Open University, Milton Keynes, UK SOLA: ms.tex; 14 October 2020; 1:23; p.
    [Show full text]