The Next Solar Cycle and Why It Matters for Climate David Whitehouse

Total Page:16

File Type:pdf, Size:1020Kb

The Next Solar Cycle and Why It Matters for Climate David Whitehouse THE NEXT SOLAR CYCLE And why it matters for climate David Whitehouse The Global Warming Policy Foundation Note 22 Contents Summary 1 About the author 1 Introduction 3 Solar variability 3 The Little Ice Age 4 Blaming sunspots 4 A sunspot cycle 5 The Maunder Minimum 6 A magnetic cycle 7 Cycle 24 8 Cycle 25 9 Coda 11 Notes 11 About the Global Warming Policy Foundation 12 The Next Solar Cycle and Why it Matters for Climate David Whitehouse Note 22, The Global Warming Policy Foundation © Copyright 2020, The Global Warming Policy Foundation ‘Any coincidence is always worth notic- ing. You can throw it away later if it is only a coincidence.’ Agatha Christie, Nemesis. Summary Predictions for the next solar cycle – Cycle 25 – range from very low activity to stronger than Cycle 24. The National Oceanic and Atmos- pheric Administration’s Solar Cycle Prediction Panel says there is no evidence for another period of very low activity, as in the Maunder Minimum of the late-17th and early-18th cen- tury, which could have an important effect on factors that govern the Earth’s climate. Never- theless, there is no consensus and it remains a possibility. About the author The science editor of the GWPF, Dr David- Whitehouse is a writer, journalist, broadcast- er and the author of six critically acclaimed books. He holds a PhD in astrophysics from the Jodrell Bank Radio Observatory. He was the BBC’s Science Correspondent and Science Editor of BBC News Online. Among his many awards are the European Internet Journalist of the Year, the first Arthur C Clarke Award and an unprecedented five Netmedia awards. As- teroid 4036 Whitehouse is named after him. 1 2 Introduction 2019 was mostly without sunspots. For a long period, the Sun was spot-free for 90% of the time, making the period of minimum activity at the end of Solar Cycle 24* and the beginning of Cycle 25 one of the deepest solar minima ever observed. Understanding the 11-year solar cycle is important, not just for the science of the Sun, but also for appreciating and predicting its influence on Earth and its climate. The Sun is changing its behaviour, and is not acting the same way as it did 50 years ago, when solar cycles were stronger than they are today. How significant is this change? Could the solar cycle behaviour be about to influence the Earth’s climate, as some think may have happened 350 years ago? Are we able to make predictions of future solar cycles and be forewarned of their climatic influence? This note discusses some of these issues. Solar variability It can be very easy to dismiss the Sun as having far too little variability to have an effect on the Earth’s climate. The fluc- tuations of total solar radiation averaged over the electro- magnetic spectrum amount to just 0.1%. However, a much larger variability occurs in the flux of energetic particles and short-wavelength radiation over the 11-year solar cy- cle, and these changes have effects in the upper regions of the atmosphere. Changes of up to 10% occur in the amount of ultraviolet light leaving the Sun over a solar cycle. It has been suggested that, averaged over the globe, the Earth’s surface warms by as much as 0.1°C over the 11-year cycle from solar minimum to solar maximum, and some regions may experience considerably more warming than the aver- age. Cyclical warming of 0.1° C is important, given the scale of global temperature increase observed this century. Also, any prolonged reduction in solar activity could have dec- ades-long effects on the Earth’s temperature. It is important to understand the solar cycle and the predictions of its be- haviour in the future. Some have suggested that the significant variations in climate can only be explained if the influence of the Sun has been underestimated by a factor of about five.1 Svensmark obtains a similar result derived from temperatures since the Medieval Warm Period, as estimated from boreholes.2 This implies there would be a decrease of at least 1°C if a new deep solar minimum occurred. * For convenience, solar cycles are numbered starting in 1755 with Cycle 1. Since 1 July 2015, the original sunspot number data have been replaced by a new entirely revised data series. 3 The Little Ice Age There are many ways to estimate the Earth’s climate over the past 1000 years or so. Scientists have been ingenious in find- ing what they term ‘proxies’ – measurements that in some way reflect the climate. These are an impressive array of phe- nomena: tree-rings, stalagmites, boreholes, pollen counts, sea sediments, corals, ice cores and mountain glacier de- posits. The remarkable thing is that (aside from the past 30 years or so) they generally agree that in the past millennium or so there have been two global climate anomalies: the so- called Little Ice Age (LIA), which stretches from 1300–1900 AD, and the Medieval Warm Period (MWP), from 800–1200 AD. Evidence is found all over the world: in sediments as- sociated with the Indo-China Warm Pool (the largest body of warm water on Earth), in lake sediments in South America, and from radioisotope analysis of shells on the shores of Greenland. These two climatic events are not just European, as was once thought, but more global in nature. For centuries, many French villages have recorded the date at which the local grapes have ripened. This data shows that, starting in the mid-17th century, harvests began one or two weeks later than before. Cereal production also slumped in the mid-17th century. The LIA affected Europe at just the wrong time. In re- sponse to the more benign climate of the MWP, Europe’s population may have doubled. More people married, and most did so earlier, giving birth to six or seven children de- spite – or perhaps because – infant mortality was high. But in the mid-17th century, demographic growth stopped, and in some areas fell, in part due to the reduced crop yields. Bread prices doubled and then quintupled. Buying bread now absorbed almost all of a family’s income. This in turn caused a collapse in demand for manufactured goods and thus to high unemployment. High prices and reduced incomes forced many couples in Europe to marry later; the average age of brides rose: they were typically teenagers in the later 16th century, but were putting off getting married until age twenty-seven or twen- ty-eight in the mid-seventeenth, thus reducing the birth rate. Hunger weakened the population. To paraphrase the English philosopher Thomas Hobbes, writing about political philosophy in 1651, ‘the life of man [is] solitary, poor, nasty, brutish, and short’. Blaming sunspots During the English Civil War (1642–1651), a preacher told the House of Commons in London, ‘these are days of shaking… and this shaking is universal: The Palatinate, Bohemia, Ger- many, Catalonia, Portugal, Ireland, England.’ Later the Tsar of 4 Muscovy was told, ‘The whole world is shaking, and the peo- ple are troubled.’ There were upheavals in the Ottoman Em- pire, Portugal, Sicily, Spain, Sweden, and the Ukraine, as well as Brazil, India, and China in the world beyond. Ralph Jos- selin, an English vicar, wrote, ‘I find nothing but confusions.’ Josselin looked towards God’s inscrutable purpose, but oth- ers looked elsewhere. The Italian historian, Majolino Bisac- cioni, suggested that the wave of revolutions might be due to the influence of the stars, but Jesuit astronomer Giovanni Battista Riccioli speculated that fluctuations in the number of sunspots might be to blame. Something was happening to the Sun, and astrono- mers and philosophers of the time knew it. The early users of telescopes had seen numerous sunspots but, from the 1640s to the early 18th century, they noted with alarm their almost total absence. When Giovanni Cassini, the director of the Paris observatory, saw one in 1671 the Philosophical Transactions of the Royal Society of London at once reported it, adding a description of what sunspots were, because the last one had faded away a decade before and readers might have forgotten. In May 1684, John Flamsteed, the first Astronomer Roy- al, wrote ‘tis near seven and a half years since I saw one be- fore they have been of late so scarce, however frequent in the days of Galileo and Scheiner’. After an absence of almost a century, sunspots and the northern lights came back suddenly in the second decade of the 18th century. The sun had been in a long period of low activity, but it had now awoken and the particles it was fling- ing into space struck the Earth’s upper atmosphere, causing the rarefied air to light up the night skies of northern Europe and America. The 1780s in particular were a good decade for the northern lights. No one had seen such fine displays in living memory. In addition, two great volcanoes erupted – Laki in Iceland and Asama in Japan – and piled the strato- sphere with enough dust to shield the sun and lower global temperatures. For months, the dust meant glorious sunrises and sunsets. It all made a deep impression on the youth of the time. Wordsworth called them ‘northern gleams’, while Coleridge said they were the ‘streamy banners of the north’ and ‘floating robes of rosy light‘. A sunspot cycle A few decades later came an important discovery. In 1826, the German amateur astronomer Samuel Heinrich Schwabe (1789–1875), set himself the task of discovering planets in- side Mercury’s orbit, whose existence had been conjectured for centuries.
Recommended publications
  • Transactions 1905
    THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. The Royal Astronomical Society of Canada. THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. TABLE OF CONTENTS. The Dominion Observatory, Ottawa (Frontispiece) List of Officers, Fellows and A ssociates..................... - - 3 Treasurer’s R eport.....................--------- 12 President’s Address and Summary of Work ------ 13 List of Papers and Lectures, 1905 - - - - ..................... 26 The Dominion Observatory at Ottawa - - W. F. King 27 Solar Spots and Magnetic Storms for 1904 Arthur Harvey 35 Stellar Legends of American Indians - - J. C. Hamilton 47 Personal Profit from Astronomical Study - R. Atkinson 51 The Eclipse Expedition to Labrador, August, 1905 A. T. DeLury 57 Gravity Determinations in Labrador - - Louis B. Stewart 70 Magnetic and Meteorological Observations at North-West River, Labrador - - - - R. F. Stupart 97 Plates and Filters for Monochromatic and Three-Color Photography of the Corona J. S. Plaskett 89 Photographing the Sun and Moon with a 5-inch Refracting Telescope . .......................... D. B. Marsh 108 The Astronomy of Tennyson - - - - John A. Paterson 112 Achievements of Nineteenth Century Astronomy , L. H. Graham 125 A Lunar Tide on Lake Huron - - - - W. J. Loudon 131 Contributions...............................................J. Miller Barr I. New Variable Stars - - - - - - - - - - - 141 II. The Variable Star ξ Bootis -------- 143 III. The Colors of Helium Stars - - - ..................... 144 IV. A New Problem in Solar Physics ------ 146 Stellar Classification ------ W. Balfour Musson 151 On the Possibility of Fife in Other Worlds A.
    [Show full text]
  • The Maunder Minimum and the Variable Sun-Earth Connection
    The Maunder Minimum and the Variable Sun-Earth Connection (Front illustration: the Sun without spots, July 27, 1954) By Willie Wei-Hock Soon and Steven H. Yaskell To Soon Gim-Chuan, Chua Chiew-See, Pham Than (Lien+Van’s mother) and Ulla and Anna In Memory of Miriam Fuchs (baba Gil’s mother)---W.H.S. In Memory of Andrew Hoff---S.H.Y. To interrupt His Yellow Plan The Sun does not allow Caprices of the Atmosphere – And even when the Snow Heaves Balls of Specks, like Vicious Boy Directly in His Eye – Does not so much as turn His Head Busy with Majesty – ‘Tis His to stimulate the Earth And magnetize the Sea - And bind Astronomy, in place, Yet Any passing by Would deem Ourselves – the busier As the Minutest Bee That rides – emits a Thunder – A Bomb – to justify Emily Dickinson (poem 224. c. 1862) Since people are by nature poorly equipped to register any but short-term changes, it is not surprising that we fail to notice slower changes in either climate or the sun. John A. Eddy, The New Solar Physics (1977-78) Foreword By E. N. Parker In this time of global warming we are impelled by both the anticipated dire consequences and by scientific curiosity to investigate the factors that drive the climate. Climate has fluctuated strongly and abruptly in the past, with ice ages and interglacial warming as the long term extremes. Historical research in the last decades has shown short term climatic transients to be a frequent occurrence, often imposing disastrous hardship on the afflicted human populations.
    [Show full text]
  • Predicting Maximum Sunspot Number in Solar Cycle 24 Nipa J Bhatt
    J. Astrophys. Astr. (2009) 30, 71–77 Predicting Maximum Sunspot Number in Solar Cycle 24 Nipa J Bhatt1,∗, Rajmal Jain2 & Malini Aggarwal2 1C. U. Shah Science College, Ashram Road, Ahmedabad 380 014, India. 2Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India. ∗e-mail: [email protected] Received 2008 November 22; accepted 2008 December 23 Abstract. A few prediction methods have been developed based on the precursor technique which is found to be successful for forecasting the solar activity. Considering the geomagnetic activity aa indices during the descending phase of the preceding solar cycle as the precursor, we predict the maximum amplitude of annual mean sunspot number in cycle 24 to be 111 ± 21. This suggests that the maximum amplitude of the upcoming cycle 24 will be less than cycles 21–22. Further, we have estimated the annual mean geomagnetic activity aa index for the solar maximum year in cycle 24 to be 20.6 ± 4.7 and the average of the annual mean sunspot num- ber during the descending phase of cycle 24 is estimated to be 48 ± 16.8. Key words. Sunspot number—precursor prediction technique—geo- magnetic activity index aa. 1. Introduction Predictions of solar and geomagnetic activities are important for various purposes, including the operation of low-earth orbiting satellites, operation of power grids on Earth, and satellite communication systems. Various techniques, namely, even/odd behaviour, precursor, spectral, climatology, recent climatology, neural networks have been used in the past for the prediction of solar activity. Many investigators (Ohl 1966; Kane 1978, 2007; Thompson 1993; Jain 1997; Hathaway & Wilson 2006) have used the ‘precursor’ technique to forecast the solar activity.
    [Show full text]
  • Fossil Fuels
    Gonzaga Debate Institute 1 Warming Core Warming Bad Gonzaga Debate Institute 2 Warming Core ***Science Debate*** Gonzaga Debate Institute 3 Warming Core Warming Real – Generic Warming real - consensus Brooks 12 - Staff writer, KQED news (Jon, staff writer, KQED news, citing Craig Miller, environmental scientist, 5/3/12, "Is Climate Change Real? For the Thousandth Time, Yes," KQED News, http://blogs.kqed.org/newsfix/2012/05/03/is- climate-change-real-for-the-thousandth-time-yes/) BROOKS: So what are the organizations that say climate change is real? MILLER: Virtually ever major, credible scientific organization in the world. It’s not just the UN’s Intergovernmental Panel on Climate Change. Organizations like the National Academy of Sciences, the American Geophysical Union, the American Association for the Advancement of Science. And that's echoed in most countries around the world. All of the most credible, most prestigious scientific organizations accept the fundamental findings of the IPCC. The last comprehensive report from the IPCC, based on research, came out in 2007. And at that time, they said in this report, which is known as AR-4, that there is "very high confidence" that the net effect of human activities since 1750 has been one of warming. Scientists are very careful, unusually careful, about how they put things. But then they say "very likely," or "very high confidence," they’re talking 90%. BROOKS: So it’s not 100%? MILLER: In the realm of science; there’s virtually never 100% certainty about anything. You know, as someone once pointed out, gravity is a theory. BROOKS: Gravity is testable, though..
    [Show full text]
  • Zonal Harmonics of Solar Magnetic Field for Solar Cycle Forecast
    Zonal harmonics of solar magnetic field for solar cycle forecast VN Obridkoa,e, DD Sokoloffa,c,d, VV Pipinb, AS Shibalovaa,c,d, IM Livshitsa aIzmiran, Kaluzhskoe Sh., 4, Troitsk, Moscow, 108840, Russia bInstitute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033, Russia cDepartment of Physics, Moscow State University, 19991, Russia dMoscow Center of Fundamental and Applied Mathematics, Moscow, 119991, Russia eCentral Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, St. Petersburg Abstract According to the scheme of action of the solar dynamo, the poloidal magnetic field can be considered a source of production of the toroidal magnetic field by the solar differential rotation. From the polar magnetic field proxies, it is natural to expect that solar Cycle 25 will be weak as recorded in sunspot data. We suggest that there are parameters of the zonal harmonics of the solar surface magnetic field, such as the magnitude of the l = 3 harmonic or the effective multipole index, that can be used as a reasonable addition to the polar magnetic field proxies. We discuss also some specific features of solar activity indices in Cycles 23 and 24. Keywords: Sun: magnetic fields, Sun: oscillations, sunspots 1. Introduction The problem of forecasting solar activity is a long-lasting one. Actually, this problem occurred as soon as the solar cycle was discovered, but we are still far from its definite solution. Before each sunspot maximum, forecasts of the cycle amplitude appear, but the predicted values are in quite a wide range (Obridko, 1995; Lantos and Richard, 1998). The past two Cycles, 23 and 24, were no exception.
    [Show full text]
  • Our Sun Has Spots.Pdf
    THE A T M O S P H E R I C R E S E R V O I R Examining the Atmosphere and Atmospheric Resource Management Our Sun Has Spots By Mark D. Schneider Aurora Borealis light shows. If you minima and decreased activity haven’t seen the northern lights for called The Maunder Minimum. Is there actually weather above a while, you’re not alone. The end This period coincides with the our earth’s troposphere that con- of Solar Cycle 23 and a minimum “Little Ice Age” and may be an cerns us? Yes. In fact, the US of sunspot activity likely took place indication that it’s possible to fore- Department of Commerce late last year. Now that a new 11- cast long-term temperature trends National Oceanic and over several decades or Atmospheric Administra- centuries by looking at the tion (NOAA) has a separate sun’s irradiance patterns. division called the Space Weather Prediction Center You may have heard (SWPC) that monitors the about 22-year climate weather in space. Space cycles (two 11-year sun- weather focuses on our sun spot cycles) in which wet and its’ cycles of solar activ- periods and droughts were ity. Back in April of 2007, experienced in the Mid- the SWPC made a predic- western U.S. The years tion that the next active 1918, 1936, and 1955 were sunspot or solar cycle would periods of maximum solar begin in March of this year. forcing, but minimum Their prediction was on the precipitation over parts of mark, Solar Cycle 24 began NASA TRACE PROJECT, OF COURTESY PHOTO the U.S.
    [Show full text]
  • Occurrence Characteristics of Electromagnetic Ion Cyclotron
    Upadhyay et al. Earth, Planets and Space (2020) 72:35 https://doi.org/10.1186/s40623-020-01157-7 FULL PAPER Open Access Occurrence characteristics of electromagnetic ion cyclotron waves at sub-auroral Antarctic station Maitri during solar cycle 24 Aditi Upadhyay1*, Bharati Kakad1, Amar Kakad1, Yoshiharu Omura2 and Ashwini Kumar Sinha1 Abstract We present a statistical study of electromagnetic ion cyclotron (EMIC) waves observed at Antarctic station (geo- graphic 70.7◦ S , 11.8◦ E , L = 5 ) on quiet and disturbed days during 2011–2017. The data span a fairly good period of both ascending and descending phases of the solar cycle 24, which has witnessed extremely low activity. We noted EMIC wave occurrence by examining wave power in diferent frequency ranges in the spectrogram. EMIC wave occurrence during ascending and descending phases of solar cycle 24, its local time, seasonal dependence and dura- tions have been examined. There are total 2367 days for which data are available. Overall, EMIC waves are observed for 3166.5 h (≈ 5.57% of total duration) which has contributions from 1263 days. We fnd a signifcantly higher EMIC wave occurrence during the descending phase (≈ 6.83%) as compared to the ascending phase (≈ 4.08%) of the solar cycle, which implies nearly a twofold increase in EMIC wave occurrence. This feature is attributed to the higher solar wind dynamic pressure during descending phase of solar activity. There is no evident diference in the percentage occurrence of EMIC waves on magnetically disturbed and quiet days. On ground, EMIC waves show marginally higher occurrence during winter as compared to summer.
    [Show full text]
  • Charles Le Charles Lewis Brook: Third
    Charles Lewis Brook: third Director of the BAA Variable Star Section Jeremy Shears Charles Lewis Brook, MA, FRAS, FRMetS (1855−1939) served as Director of the BAA Variable Star Section from 1910 to 1921. During this time he was not interested merely in collecting the observations of the members (to which he also contributed), but he also spent considerable time analys- ing the data and preparing numerous publications on the findings. This paper discusses Brook’s life and work, with a particular focus on his con- tribution to variable star astronomy. Introduction with a particular fo- cus on his contri- bution to variable Charles Lewis Brook (1855−1939; Figures 1 and 2) was the star astronomy. It third Director of the BAA Variable Star Section (VSS) serv- draws on four sepa- ing from 1910 to 1921. As well as being an enthusiastic ob- rate obituaries: one server of variable stars, he undertook the analysis of vari- written for the BAA able star observations submitted by others, writing many by a later VSS Di- papers and memoirs on the subject. His astronomical inter- rector, W .M. Lindley (1891−1972),2 one written for the Royal ests were not confined to variables and he observed a range Astronomical Society by Annie (A. S. D.) Maunder (1868− of other astronomical objects. In addition to astronomy, he 1947),3 one for the Royal Meteorological Society4 and a brief was an active meteorologist. one published in the Huddersfield Examiner.5 In addition I Brook led a busy professional life as a Director of the have reviewed Brook’s published work, especially his pa- thread and textile company Messrs J.
    [Show full text]
  • Solar Cycle 23 and 24 and Their Geoeffectiveness
    Study of Space weather events of Solar cycle 23 and 24 and their Geoeffectiveness B. Veenadhari Selvakumaran, S Kumar, Megha P, S. Mukherjee Indian Institute of Geomagnetism, Navi Mumbai, India. UN/US International Space Weather Initiative Workshop Boston, USA July 31 – 4 August, 2017 Out line Colaba - Bombay old magnetic records Solar and Interplanetary drivers, estimation of interplanetary conditions. Space weather events – Solar cycle 23 and 24 Geomagnetic response from low and equatorial latitudes On the reduced geoeffectiveness of solar cycle 24: a moderate storm perspective summary Magnetic Observatories In India by IIG Oldest Indian magnetic observatory at Alibag, established in 1904. Alibag(ABG) and Jaipur(JAI) are INTERMAGNET Observatories World Data Center (WDC) Mumbai - is member of ISCU World Data center(WDS),. The Colaba (Bombay) magnetogram for the extreme Geomagnetic storm 1-2 September, 1859. Tsurutani, B. T., W. D. Gonzalez, G. S. Lakhina, and S. Alex, The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108, 2003. The 1 September 1859 Carrington solar flare most likely had an associated intense magnetic cloud ejection which led to a storm on Earth of DST ~ -1760 nT. This is consistent with the Colaba, India local noon magnetic response of H = 1600 ± 10 nT. It is found that both the 1–2 September 1859 solar flare energy and the associated coronal mass ejection speed were extremely high but not unique. Superposed epoch plot of 69 magnetic storms (- 100nT) with clear main phase were selected during the solar cycle 23 period. (a) the associated interplanetary electric fields Some of the intense magnetic storms recorded (b) the Dst index.
    [Show full text]
  • Statistical Study of Solar Activity Parameters of Solar Cycle 24
    Volume 65, Issue 1, 2021 Journal of Scientific Research Institute of Science, Banaras Hindu University, Varanasi, India. Statistical Study of Solar Activity Parameters of Solar Cycle 24 Abha Singh1 and Kalpana Patel*2 1Department of Physics, T.D.P.G. College, Jaunpur-222002, U.P., India. [email protected] 2Department of Physics, SRM Institute of Science and Technology, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar-201204, U.P. India. [email protected]* Abstract: The solar atmosphere is one of the most dynamic smoothed sunspot numbers that was brought into existence with environments studied in modern astrophysics. The term solar its classification (Kunzel, 1961). The number predicts short term activity refers to physical phenomena occurring within the periodic high and low activity of the Sun. The part of the cycle magnetically heated outer atmosphere of the Sun at various time with low sunspot activity is referred to as "solar minimum" scales. S un spots, high-speed solar wind, solar flares and coronal while region with maximum solar activity is called as "solar mass ejections are the basic parameters that govern maximum”. Hathaway et al. (2002) examined the ‘group’ solar activity. All solar activity is driven by the solar magnetic field. The present paper studies the relation between various solar sunspot number which shows it use in featuring the Sun’s features during solar cycle 24. The study reveals that there exists a performance during the solar year (Hoyt & Schatten, 1998a). good correlation between various parameters. This indicates that they all belong to same origin i.e., the variability of Sun’s magnetic Coronal mass ejections (CMEs) are the explosions in the solar 42field.
    [Show full text]
  • Effects of Version 2 of the International Sunspot Number on Naïve
    https://ntrs.nasa.gov/search.jsp?R=20190001636 2019-08-30T11:15:09+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server Space Weather RESEARCH ARTICLE Effects of Version 2 of the International Sunspot Number on 10.1029/2018SW002080 Naïve Predictions of Solar Cycle 25 Key Points: • A new calibration of sunspot W. Dean Pesnell1 number must be used in solar cycle predictions 1Solar Physics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, USA • The climatological average is used to assess other predictions • Other simple predictions are not very accurate or useful Abstract The recalibration of the International Sunspot Number brings new challenges to predictions of Solar Cycle 25. One is that the list of extrema for the original series is no longer usable because the values of all maxima and minima are different for the new version of the sunspot number. Timings of extrema are Correspondence to: W. D. Pesnell, less sensitive to the recalibration but are a natural result of the calculation. Predictions of Solar Cycle 25 [email protected] published before 2016 must be converted to the new version of the sunspot number. Any prediction method that looks across the entire time span will have to be reconsidered because values in the nineteenth Citation: century were corrected by a larger factor than those in the twentieth century. We report a list of solar Pesnell, W. D. (2018). Effects of maxima and minima values and timings based on the recalibrated sunspot number.
    [Show full text]
  • The April Membership Meeting Will Be Held on Thursday, April 19, 2007 at 7:30 Pm at the Adventure Science Center
    The Newsletter of the Barnard-Seyfert Astronomical Society - Organized in 1928 APRIL 2007 The April membership meeting will be held on Thursday, April 19, 2007 at 7:30 pm at the Adventure Science Center On Thursday, April 19, 2007 we will hold our regularly scheduled membership meet- ing at the Adventure Science Center. Our speaker this month will be our own Lonnie Puter- baugh. He will focus on two topics for his presentation. The first topic he will address are the Outreach Awards offered by the Astronomical League. These awards are also known as the AstroOscars. This is a new category of awards currently offered by the Astronomical League and are designed to recognize individuals who have made a substantial impact on public edu- cation and enrichment in the science of Astronomy. His second topic will be Mount Palomar Observatory. Mount Palomar Observatory is located in North San Diego County, California and is owned and operated by the California Institute of Technology. Lonnie will discuss the features of the world-class observatory, fo- cusing on the impressive equipment and advancements in Astronomical Research that the ob- servatory has achieved throughout its history. Message from the President Page 2 In last month’s “President’s Message”, I spoke about the wonderful job JanaRuth Ford and her program committee is doing to arrange the programs for our monthly membership meeting and the fact that Steve Wheeler is now the BSAS coordinator of Star Parties. This month I want to talk about the TNSP07 and the job Board Member, Keith Burneson is working to cause this event to happen.
    [Show full text]