Some Remarks on the Ontogenetic Development and Sexual Dimorphism in the Ammonoidea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Suture with Pointed Flank Lobe and ... -.: Palaeontologia Polonica
210 JERZY DZIK Genus Posttornoceras Wedekind, 1910 Type species: Posttornoceras balvei Wedekind, 1910 from the mid Famennian Platyclymenia annulata Zone of the Rhenisch Slate Mountains. Diagnosis. — Suture with pointed flank lobe and angular or pointed dorsolateral lobe. Remarks. — Becker (1993b) proposed Exotornoceras for the most primitive members of the lineage with a relatively shallow dorsolateral lobe. The difference seems too minor and continuity too apparent to make this taxonomical subdivision practical. Becker (2002) suggested that this lineage was rooted in Gundolficeras, which is supported by the data from the Holy Cross Mountains. The suture of Posttornoceras is similar to that of Sporadoceras, but these end−members of unrelated lin− eages differ rather significantly in the geometry of the septum (Becker 1993b; Korn 1999). In Posttornoceras the parts of the whorl in contact with the preceding whorl are much less extensive, the dorsolateral saddle is much shorter and of a somewhat angular appearance. This is obviously a reflection of the difference in the whorl expansion rate between the tornoceratids and cheiloceratids. Posttornoceras superstes (Wedekind, 1908) (Figs 154A and 159) Type horizon and locality: Early Famennian at Nehden−Schurbusch, Rhenish Slate Mountains (Becker 1993b). Diagnosis. — Suture with pointed tip of the flank lobe and roundedly angulate dorsolateral lobe. Remarks.—Gephyroceras niedzwiedzkii of Dybczyński (1913) from Sieklucki’s brickpit was repre− sented by a specimen (probably lost) significantly larger than those described by Becker (1993b). The differ− ence in proportions of suture seem to result from this ontogenetic difference, that is mostly from increase of the whorl compression with growth. Distribution. — Reworked at Sieklucki’s brickpit in Kielce. -
ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh
©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh. Geol. B.-A. ISSN 0016–7800 ISBN 3-85316-14-X Band 57 S. 167–180 Wien, Februar 2002 Cephalopods – Present and Past Editors: H. Summesberger, K. Histon & A. Daurer Morphometric Analyses and Taxonomy of Oxyconic Goniatites (Paratornoceratinae n. subfam.) from the Early Famennian of the Tafilalt (Anti-Atlas, Morocco) VOLKER EBBIGHAUSEN, RALPH THOMAS BECKER & JÜRGEN BOCKWINKEL*) 13 Text-Figures and 1 Table A contribution to IGCP 421 Morocco Upper Devonian Ammonoids Morphometry Taxonomy Contents Zusammenfassung ...................................................................................................... 167 Abstract ................................................................................................................. 167 1. Introduction ............................................................................................................. 169 2. Locality and Methods .................................................................................................... 169 3. Morphometric Analyses of Dar Kaoua Paratornoceratinae ................................................................. 170 3.1. Size Distribution .................................................................................................... 170 3.2. Shell Parameters ................................................................................................... 172 4. Systematics ............................................................................................................ -
Mississippian Cephalopods of Northern and Eastern Alaska
Mississippian Cephalopods of Northern and Eastern Alaska By MACKENZIE GORDON, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 283 Descr9tions and illustrations of nautiloids and ammonoids and correlation of the assemblages with European Carbonferous goniatite zones UNITED STATES GOVERNMENT PRINTING OF,FICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.50 (paper cover) CONTENTS Pane Page 1 Stratigraphic and geographic distribution-Continued Introduction - - - - - - .. - - - - ... - - - - - - - - - - - - .. - - - - - - - - - - - - - 1 Brooks Range-Continued Previous work-------------------------------------- 1 Kiruktagiak River basin--Chandler Lake area- - Composition of the cephalopod fauna ------------------ 2 Siksikpuk River basin ------- ---------- ------ Stratigraphic and geographic distribution of the cepha- Anaktuvuk River basin _------------..-..------ lopods------------------------------------------- Nanushuk River basin ...................... - Brooks Range---------------------------------- Echooka River basin --------- ----- - Cape Lisburne region ------- -- --- --------- - - - Eagle-Circle district ---__ _ -___ _- --- --- - - ---- - -- - - Lower Noatak Rlver basin -----------------..- Age and correlation of the cephalopod-bearing beds- ---- Western De Long Mountains_--__----- .------ Mississippian cephalopod-collecting localities in Alaska- - -
Paleontological Contributions
THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations. -
Back Matter (PDF)
Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Acadian Orogeny 224 Ancyrodelloides delta biozone 15 Acanthopyge Limestone 126, 128 Ancyrodelloides transitans biozone 15, 17,19 Acastella 52, 68, 69, 70 Ancyrodelloides trigonicus biozone 15, 17,19 Acastoides 52, 54 Ancyrospora 31, 32,37 Acinosporites lindlarensis 27, 30, 32, 35, 147 Anetoceras 82 Acrimeroceras 302, 313 ?Aneurospora 33 acritarchs Aneurospora minuta 148 Appalachian Basin 143, 145, 146, 147, 148–149 Angochitina 32, 36, 141, 142, 146, 147 extinction 395 annulata Events 1, 2, 291–344 Falkand Islands 29, 30, 31, 32, 33, 34, 36, 37 comparison of conodonts 327–331 late Devonian–Mississippian 443 effects on fauna 292–293 Prague Basin 137 global recognition 294–299, 343 see also Umbellasphaeridium saharicum limestone beds 3, 246, 291–292, 301, 308, 309, Acrospirifer 46, 51, 52, 73, 82 311, 321 Acrospirifer eckfeldensis 58, 59, 81, 82 conodonts 329, 331 Acrospirifer primaevus 58, 63, 72, 74–77, 81, 82 Tafilalt fauna 59, 63, 72, 74, 76, 103 ammonoid succession 302–305, 310–311 Actinodesma 52 comparison of facies 319, 321, 323, 325, 327 Actinosporites 135 conodont zonation 299–302, 310–311, 320 Acuticryphops 253, 254, 255, 256, 257, 264 Anoplia theorassensis 86 Acutimitoceras 369, 392 anoxia 2, 3–4, 171, 191–192, 191 Acutimitoceras (Stockumites) 357, 359, 366, 367, 368, Hangenberg Crisis 391, 392, 394, 401–402, 369, 372, 413 414–417, 456 agnathans 65, 71, 72, 273–286 and carbon cycle 410–413 Ahbach Formation 172 Kellwasser Events 237–239, 243, 245, 252 -
THE UNIVERSITY of Oklahœia GRADUATE COLLEGE the ATOKA FORMATION W the N Œ T H SIDE of the Mcalester BASIN a DISSERTATION SUBMI
THE UNIVERSITY OF OKlAHŒiA GRADUATE COLLEGE THE ATOKA FORMATION W THE N Œ T H SIDE OF THE McALESTER BASIN A DISSERTATION SUBMITTED TO THE ŒIADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY JACK GORDON BLYTHE Norman, Oklahoma 1957 THE ATOKA FORMATION ON THE NORTH SIDE OF THE McALESTER BASIN APPROVED BY j /•) • DISSERTATION CCMMITTEE ACKNOWLEDGMENTS Dr. Carl C. Branson directed this dissertation problem. Dr. George G. Huffman, Dr. E. L. Lucas, Dr. Doris Curtis, and Dr. Reginald Harris contributed helpful advice and information. The Oklahoma Geo logical Survey employed the author as field geologist during the summer of 1954. Assistance was rendered in the field by Richard Beveridge during the month of June in 1953; and Mr. A. H. Hanson of Muskogee, Oklahoma, spent a portion of one day in the field with the author, directing his attention to several fossil localities in the Atoka for mation. Mr. Irwin Gold photographed the thin sections and the fossils, Mr. June D. King took some of the field photographs, Mr. Raymond Kune instructed the author in certain procedures of drafting, and Mr. Roy Davis and Mr. Kent Gregg assisted with much of the drafting. The author's wife, Ruth, assisted in certain phases of the field work, typed preliminary drafts of the dissertation, and continually en couraged the author during all phases of the dissertation program. Ill TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS .................................... vi LIST OF MAPS xiii Chapter I . INTRODUCTION 1 II. STRATIGRAPHY 10 III. SEDIMENTATIOMAL ASPECTS AND ENVIRONMENTS OF DEPOSITION 52 IV. -
Biostratigraphy of the Morrow Group of Northern Arkansas James Harrison Quinn University of Arkansas, Fayetteville
Journal of the Arkansas Academy of Science Volume 23 Article 32 1969 Biostratigraphy of the Morrow Group of Northern Arkansas James Harrison Quinn University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Stratigraphy Commons Recommended Citation Quinn, James Harrison (1969) "Biostratigraphy of the Morrow Group of Northern Arkansas," Journal of the Arkansas Academy of Science: Vol. 23 , Article 32. Available at: http://scholarworks.uark.edu/jaas/vol23/iss1/32 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 23 [1969], Art. 32 183 Arkansas Academy of Science Proceedings, Vol. 23, 1969 BIOSTRATIGRAPHY OF THE MORROW GROUP OF NORTHERN ARKANSAS James Harrison Quinn Dept. of Geology, University of Arkansas The Morrow Group of northwest Arkansas (p. 184, fig. 1) is of early Pennsylvanian age (300 M. Y., Kulp et. al. 1961, p.lll, fig. 1) and includes the Hale and Bloyd Formations. The term Morrow was introduced by Adams (1904, p. -
Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda. -
Mississippian Cephalopods of Northern and Eastern Alaska
Mississippian Cephalopods of Northern and Eastern Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 283 Mississippian Cephalopods of Northern and Eastern Alaska By MACKENZIE GORDON, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 283 Descriptions and illustrations of 4.3 nautiloids and ammonoids and correlation of the assemblages with European Carboniferous goniatite zones UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.50 (paper cover) CONTENTS Page Page Abstract..__________________________________________ 1 Stratigraphic and^geographic distribution—Continued Introduction. ________________________________________ 1 Brooks Range—Continued Previous work____________________________________ 1 Kiruktagiak River basin—Chandler Lake area, 7 Composition of the cephalopod fauna_______________ 2 Siksikpuk River basin_____-----__--__-_____ 10 Stratigraphic and geographic distribution of the cepha- Anaktuvuk River basin_________------__-_ 10 lopods_________________________________________ 2 Nanushuk River basm____--_-___----------- 10 Brooks Range._________________________________ 2 Echooka River basin_--_---_-_-_-_---__-_-_ 10 Cape Lisburne region________________________ 4 Eagle-Circle district.___________________________ 10 Lower Noatak River basin_____-______..______ 4 Age and correlation of the cephalopod-bearing beds___. 13 Western -
Succession of the Famennian Ammonoid Faunas in Poland
304 JERZY DZIK Fig. 223. Stratigraphic distribution of species of the Cyrtoclymeniidae, Hexaclymeniidae, Glatziellidae, and Wocklumeriidae in the Polish Famennian. Position of samples not included in Figs. 2 and 3 on the geochronological scale is hypothetical. SUCCESSION OF THE FAMENNIAN AMMONOID FAUNAS IN POLAND The fossil record of the ammonoid faunal dynamics is much more complete in the Famennian of the Holy Cross Mountains than in the Frasnian of the same area (Dzik 2002). Still, it remains highly punctuated and in− complete. Even in the most fossiliferous localities (Jabłonna, Łagów), cephalopod conchs occur only in few ho− rizons. Their stratigraphic relationship is usually hard to determine because the strata were accessible to exploi− tation for a limited time and most of the material collected by myself is derived from the scree of exposures no longer accesible. Even in cases of the bed−by−bed collecting by previous authors (Sobolew 1912; Czarnocki 1989), the original descriptions and most of the specimens were lost as a result of historical turbulencies in this part of Europe. The review of the evolution of ammonoid faunas presented below has to be thus taken with cau− tion, as based on limited evidence and tentative stratigraphic attribution of many findings. Biogeographic affinities. — Perhaps the most surprising aspect of the Holy Cross Mountains Famennian ammonoid assemblages is their rather remote similarity to those from the Rhenish Slate Mountains in Ger− many. Polish assemblages are generally more diverse, as acutely shown by comparison of the species con− tents of the Platyclymenia annulata Zone fossil assemblages from Ostrówka (Czarnocki 1989) with the clas− sic Kattensiepen, quantitatively studied by Korn (2002), or Enkenberg (Korn 2004a). -
Package 'Paleotree'
Package ‘paleotree’ December 12, 2019 Type Package Version 3.3.25 Title Paleontological and Phylogenetic Analyses of Evolution Date 2019-12-12 Author David W. Bapst, Peter J. Wagner Depends R (>= 3.0.0), ape (>= 4.1) Imports phangorn (>= 2.0.0), stats, phytools (>= 0.6-00), jsonlite, graphics, grDevices, methods, png, RCurl, utils Suggests spelling, testthat Language en-US ByteCompile TRUE Encoding UTF-8 Maintainer David W. Bapst <[email protected]> BugReports https://github.com/dwbapst/paleotree/issues Description Provides tools for transforming, a posteriori time-scaling, and modifying phylogenies containing extinct (i.e. fossil) lineages. In particular, most users are interested in the functions timePaleoPhy, bin_timePaleoPhy, cal3TimePaleoPhy and bin_cal3TimePaleoPhy, which date cladograms of fossil taxa using stratigraphic data. This package also contains a large number of likelihood functions for estimating sampling and diversification rates from different types of data available from the fossil record (e.g. range data, occurrence data, etc). paleotree users can also simulate diversification and sampling in the fossil record using the function simFossilRecord, which is a detailed simulator for branching birth-death-sampling processes composed of discrete taxonomic units arranged in ancestor-descendant relationships. Users can use simFossilRecord to simulate diversification in incompletely sampled fossil records, under various models of morphological differentiation (i.e. the various patterns by which morphotaxa originate from one another), and with time-dependent, longevity-dependent and/or diversity-dependent rates of diversification, extinction and sampling. Additional functions allow users to translate simulated ancestor-descendant data from simFossilRecord into standard time-scaled phylogenies or unscaled cladograms that reflect the relationships among taxon units. -
Emergence and Collapse of the Frasnian Conodont and Ammonoid Communities in the Holy Cross Mountains, Poland
Emergence and collapse of the Frasnian conodont and ammonoid communities in the Holy Cross Mountains, Poland JERZY DZIK Dzik, J. 2002. Emergence and collapse of the Frasnian conodont and ammonoid communities in the Holy Cross Moun− tains, Poland. Acta Palaeontologica Polonica 47 (4): 565–650. The dominant factor in faunal succession of conodonts in the Frasnian of Poland is the apparent immigration of species originating allopatrically in other regions. Each immigration event usually changes the population variability of a local species (character displacement). Only a few lineages show their phyletic evolution within the studied area. Attempts to distinguish conodont species on the basis of platform element shape failed in some of the latest Frasnian palmatolepidids. Even at the apparatus−based generic level, certain ramiform elements of the apparatus appear much more diagnostic than the platforms. Correlative value of the late Frasnian palmatolepidids of unknown apparatus structure is thus questionable. The evolution of platform elements in Ancyrodella offers a more solid basis for age determination although their great population variability makes resolution rather low and requires the population approach. The panderodontids Belodella(?) tenuiserrata sp., B. minutidentata sp. nov., B. robustidentata sp. nov., prioniodontid Icriodus kielcensis sp. nov., enigmatic monospecific Playfordiidae fam. nov., prioniodinids Dyminodina planidentata gen. et sp. nov., D. anterodenticulata sp. nov., D. kovalensis sp. nov., Pluckidina kielcensis gen. et sp. nov., P. slupiensis sp. nov., P. robustipegmata sp. nov., and P. lagoviensis sp. nov., derived polygnathid Avignathus bifurcatus sp. nov., probably sec− ondarily simplified polygnathid Nicollidina gen. nov., and palmatolepidids Kielcelepis gen. nov., Lagovilepis gen. nov. and Klapperilepis gen.