Domestication of Honey Bees Was Associ- Ated With

Total Page:16

File Type:pdf, Size:1020Kb

Domestication of Honey Bees Was Associ- Ated With MEC 5641 Dispatch: 9.5.12 Journal: MEC CE: Sankara Rajan I. Journal Name Manuscript No. B Author Received: No. of pages: 3 PE: Punitha Molecular Ecology (2012) 1 2 3 NEWS AND VIEWS 4 5 6 7 PERSPECTIVE developed for other livestock (Foote 2002). There is a sig- 8 nificant industry that breeds and propagates bees for sale 9 Domestication of honey bees was associ- to honey producers and pollinators (Delaney et al. 2009; 10 ated with expansion of genetic diversity Laidlaw & Page 1997). Yet despite these advances and 11 some early attempts at stock certification (Witherell 1976), 12 BENJAMIN P. OLDROYD no specific breeds of bees have emerged that you could 13 Behaviour and Genetics of Social Insects Lab, School of reliably distinguish from other bees. Thus, instead of refer- 14 Biological Sciences, University of Sydney, Sydney, NSW 2006, ring to the breed they keep, beekeepers tend to describe 15 Australia their bees by subspecies, or perhaps the breeder they 16 bought their stock from. If a beekeeper tells you ‘I keep 17 2 Xxxx. Italians’, he or she means a yellow bee, probably from Cali- 18 fornia, that has some ancestry in Apis mellifera ligustica Keywords: Apis mellifera, domestication, genetic diversity, 19 from Italy. 3 SNP 20 In this issue, Harpur et al. (2012) delve deeply into the 21 Received 30 March 2012; revision received 17 April 2012; ancestry of the domestic honey bee and come up with fas- 22 accepted 23 April 2012 cinating and novel findings. Some previous studies of 23 commercial honey bees have suggested that, as with other 24 livestock, bee populations are characterized by low genetic 25 The domestic turkey is a different creature from its wild diversity and that low diversity has arisen as a result of 26 ancestors. It is much larger, and its growth rate is prodi- domestication (Schiff et al. 1994; Schiff & Sheppard 1996; 27 gious (Rose 1996). Famously, some breeds cannot even Delaney et al. 2009; vanEngelsdorp & Meixner 2010; Jaffe´ 28 mate because of the male’s large breast and must be artifi- et al. 2010; Meixner et al. 2010). Low genetic diversity is 4 29 cially inseminated. So, too most dog breeds are unrecogniz- of particular concern for honey bees, because intracolonial genetic diversity is essential to colony health (Seeley & 30 able as the wolves from which we once bred them (Vila` Tarpy 2007) and fitness (Mattila & Seeley 2007; Oldroyd & 31 et al. 1990; Wayne & vonHoldt 2012). This pattern of phe- notypic change in which domesticated plants and animals Fewell 2007; Page 1980). Indeed, some authors have specu- 32 differ strongly from their wild ancestors is common lated that recent declines in honey bee populations in 33 (Andersson & Georges 2004). Domestication is often associ- Europe and North America (vanEngelsdorp et al. 2009b; 34 ated with a reduction in additive genetic variance, fixation vanEngelsdorp & Meixner 2010) and the phenomenon of 35 of alleles associated with traits of economic importance, ‘Colony Collapse Disorder’ (CCD; vanEngelsdorp et al. 36 reduction in brain size, increased tameness, change in body 2009a) may be linked to declining genetic diversity 37 size and conformation, and the development of breed-spe- (Oldroyd 2007; vanEngelsdorp & Meixner 2010). 38 cific characteristics (Diamond 2002; Hall & Bradley 1995). Harpur et al. (2012) argue against this view, showing 39 Many breeds of domestic animals are incapable of living in that unlike other livestock breeding, honey bee breeding 40 the wild, and their recent wild ancestors are extinct. A case seems to have increased rather than decreased genetic 41 in point is the domestic silk worm, Bombyx mori (Yukuhiro diversity in commercial strains. Commercial honey bees 42 et al. 2002). are genetically diverse because, rather than breeding for 43 The honey bee, in contrast, has never been properly breed-specific characteristics within a defined population, 44 domesticated (Oxley & Oldroyd 2010). Instead, we have bee breeding is often characterized by bringing in new 45 learned to manage them—albeit in sophisticated ways—by genetic material from diverse sources. 46 providing them with hives that make it easier to rob them Most commercial honey bees are derived from Europe. 47 of their honey and wax (Crane 1999), or lug them around The honey bees of Europe arose from two independent 48 for pollination jobs. But in most respects, domestic bees migration events from source populations in Africa (Whit- 49 remain largely unchanged from their wild cousins. field et al. 2006). Each migration event occurred during a 50 The lack of domestication of bees is a bit strange. period of relatively mild climate that followed a period of 51 Humans have husbanded bees in hives for at least glaciation (Ruttner 1988). The result of these two coloniza- tions is that there are two major lineages of honey bee in 52 7000 years (Bloch et al. 2010)—far longer than turkeys have Europe: the M and the C (Franck et al. 1998; Garnery et al. 53 been domesticated. Reliable artificial insemination was invented in the 1940s (Laidlaw 1944), shortly after it was 1992; Whitfield et al. 2006). The honey bees of Western 54 Europe (lineage M) are (or at least were) dark and include 55 the subspecies A. m. mellifera (Ruttner 1988). The honey 56 Correspondence: Benjamin P. Oldroyd, Fax: (029) 351 4771; 1 bees of eastern Europe (lineage C) are variable in colour 57 E-mail: [email protected] Ó 2012 Blackwell Publishing Ltd 2 NEWS AND VIEWS: PERSPECTIVE 1 2 and behaviour and adapted to various climatic zones and wing, well away from their colony, with about 20 males 3 are classified in several subspecies including A. m. carnica drawn from a population sourced from every colony in a 3 A. m. ligustica et al. 4 (dark) and (yellow) (Ruttner 1988). to 4 km radius (Baudry 1998). This means that feral Harpur et al. (2012) show that the migrant honey bee colonies and the neighbour’s colonies all contribute to the 5 populations established in Canada are mixtures of most of potential pool of mates. 6 the subspecies of Europe and that, at a population level, Finally, it is interesting to consider whether the process 7 commercial honey bee populations are more diverse than of domestication of the honey bee is really all that differ- 8 the European populations from which they are derived. ent to the domestication of other species. Recent genomic 9 No doubt the same is true for the A. mellifera populations studies have revealed that many of our livestock breeds 10 that have been established in New Zealand and Australia are derived from multiple domestication events and show 11 (Chapman et al. 2008; Oxley & Oldroyd 2009). European remarkable phylogenetic complexity (Bruford et al. 2003; 12 populations are less diverse than African populations; no Andersson & Georges 2004; Vila` et al. 2005). Loss of 5 13 doubt the result of ancient population bottlenecks associ- diversity seems recent and may be a direct consequence 14 ated with the migration events. But the migratory activities of modern reproductive technologies and breeding. 15 of commercial beekeepers are stirring the bee population of Maybe beekeepers just have not gone down that road 16 Europe and starting to homogenize it—to the chagrin of yet. 17 some (De la Ru´ a et al. 2009). 18 Harpur et al. (2012) argue that low genetic diversity can- References 19 not be the cause of recent declines in honey bee popula- 20 tions, or the unusually high levels of colony losses Andersson L, Georges M (2004) Domestic-animal genomics: deci- 21 attributed to CCD. But does genetic diversity at a popula- phering the genetics of complex traits. Nature Reviews Genetics, 5, 22 tion scale equate with genetic diversity at an enterprise 202–212. Baudry E, Solignac M, Garnery L et al. (1998) Relatedness among 23 scale or a colony scale? In theory, the bee population of North America could be like the dog population: diverse honeybees (Apis mellifera) of a drone congregation. Proceedings of 24 265 over all, but characterized by subpopulations (breeds) that the Royal Society of London Series B: Biological Sciences, , 2009– 25 2014. are inbred. Certainly, there is the potential for this. Large 26 Bloch G, Francoy TM, Wachtel I et al. (2010) Industrial apiculture commercial queen producers can (and often do) raise thou- 27 in the Jordan valley during Biblical times with Anatolian honey- sands of queens from a single breeder queen (Fig. 1). The 28 bees. Proceedings of the National Academy of Sciences of the United offspring queens are usually mated within a few kilome- 29 States of America, 107, 11240–11244. tres of where they were raised to a selected population of Chapman NC, Lim J, Oldroyd BP (2008) Population genetics of 30 drones. Typically, therefore, all the queens in a commercial commercial and feral honey bees (Apis mellifera) in Western Aus- 31 apiary are sisters, and all the workers are cousins. How- tralia. Journal of Economic Entomology, 101, 272–277. 32 Crane E (1999) The World History of Beekeeping and Honey Hunting. ever, Harpur et al. (2012) show low FIS and genetic admix- 33 ture for the managed Canadian and French populations Routledge, New York. ´ ´ 34 they studied. It therefore seems to me that reduced genetic De la Rua P, Faffe R, Dall’Olio R, Mun˜oz I, Serrano J (2009) Biodi- versity, conservation and current threats to European honeybees. 35 diversity is unlikely to be contributing to CCD (or if CCD Apidologie, 40, 263–284. 36 exists at all—but that is another story). Delaney DA, Meixner MD, Schiff NM, Sheppard WS (2009) Genetic 37 Striking a blow for colony-level diversity is the honey characterization of commercial honey bee (Hymenoptera: Api- 38 bee’s extraordinary mating system.
Recommended publications
  • Sex-Linked Transcription Factor Involved in a Shift of Sex-Pheromone Preference in the Silkmoth Bombyx Mori
    Sex-linked transcription factor involved in a shift of sex-pheromone preference in the silkmoth Bombyx mori Tsuguru Fujiia, Takeshi Fujiib, Shigehiro Namikic, Hiroaki Abed, Takeshi Sakuraic, Akio Ohnumae, Ryohei Kanzakic, Susumu Katsumaa, Yukio Ishikawab, and Toru Shimadaa,1 aLaboratory of Insect Genetics and Bioscience, Department of Agricultural and Environmental Biology, University of Tokyo, Tokyo 113-8657, Japan; bLaboratory of Applied Entomology, Department of Agricultural and Environmental Biology, University of Tokyo, Tokyo 113-8657, Japan; cResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan; dLaboratory of Insect Functional Biochemistry, Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; and eInstitute of Sericulture, Ami, Ibaraki 300-0324, Japan Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved September 26, 2011 (received for review June 9, 2011) In the sex-pheromone communication systems of moths, odorant The silkmoth Bombyx mori has been used as a model for receptor (Or) specificity as well as higher olfactory information studying sex-pheromone communication systems in moths. B. mori processing in males should be finely tuned to the pheromone of females secrete an ∼11:1 mixture of bombykol [(E,Z)-10,12- conspecific females. Accordingly, male sex-pheromone preference hexadecadien-1-ol] and bombykal [(E,Z)-10,12-hexadecadien- should have diversified along with the diversification of female 1-al] from the pheromone gland (14). Bombykol alone elicits sex pheromones; however, the genetic mechanisms that facili- full courtship behavior in males, whereas bombykal alone shows tated the diversification of male preference are not well un- no apparent activity (14).
    [Show full text]
  • Oral Presentations
    ORAL PRESENTATIONS Listed in programme order Technical analysis of archaeological Andean painted textiles Rebecca Summerour1*, Jennifer Giaccai2, Keats Webb3, Chika Mori2, Nicole Little3 1National Museum of the American Indian, Smithsonian Institution (NMAI) 2Freer Gallery of Art and Arthur M. Sackler Gallery, Smithsonian Institution (FSG) 3Museum Conservation Institute, Smithsonian Institution (MCI) 1*[email protected] This project investigates materials and manufacturing techniques used to create twenty-one archaeological painted Andean textiles in the collection of the National Museum of the American Indian, Smithsonian Institution (NMAI). The textiles are attributed to Peru but have minimal provenience. Research and consultations with Andean textile scholars helped identify the cultural attributions for most of the textiles as Chancay and Chimu Capac or Ancón. Characterization of the colorants in these textiles is revealing previously undocumented materials and artistic processes used by ancient Andean textile artists. The project is conducted as part of an Andrew W. Mellon Postgraduate Fellowship in Textile Conservation at the NMAI. The textiles in the study are plain-woven cotton fabrics with colorants applied to one side. The colorants, which include pinks, reds, oranges, browns, blues, and black, appear to be paints that were applied in a paste form, distinguishing them from immersion dyes. The paints are embedded in the fibers on one side of the fabrics and most appear matte, suggesting they contain minimal or no binder. Some of the brown colors, most prominent as outlines in the Chancay-style fragments, appear thick and shiny in some areas. It is possible that these lines are a resist material used to prevent colorants from bleeding into adjacent design elements.
    [Show full text]
  • State-Of-The-Art on Use of Insects As Animal Feed
    State-of-the-art on use of insects as animal feed Harinder P.S. Makkar1, Gilles Tran2, Valérie Heuzé2 and Philippe Ankers1 1 Animal Production and Health Division, FAO, Rome 2 Association Française de Zootechnie, Paris, France Full reference of the paper: Animal Feed Science and Technology, Volume 197, November 2014, pages 1-33 Link: http://www.animalfeedscience.com/article/S0377-8401(14)00232-6/abstract http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008 Abstract A 60-70% increase in consumption of animal products is expected by 2050. This increase in the consumption will demand enormous resources, the feed being the most challenging because of the limited availability of natural resources, ongoing climatic changes and food-feed-fuel competition. The costs of conventional feed resources such as soymeal and fishmeal are very high and moreover their availability in the future will be limited. Insect rearing could be a part of the solutions. Although some studies have been conducted on evaluation of insects, insect larvae or insect meals as an ingredient in the diets of some animal species, this field is in infancy. Here we collate, synthesize and discuss the available information on five major insect species studied with respect to evaluation of their products as animal feed. The nutritional quality of black soldier fly larvae, the house fly maggots, mealworm, locusts- grasshoppers-crickets, and silkworm meal and their use as a replacement of soymeal and fishmeal in the diets of poultry, pigs, fish species and ruminants are discussed. The crude protein contents of these alternate resources are high: 42 to 63% and so are the lipid contents (up to 36% oil), which could possibly be extracted and used for various applications including biodiesel production.
    [Show full text]
  • Colophospermum Mopane – a Potential Host for Rearing Wild Silk Worm (Gonometa Rufobrunnea) in Arid Rajasthan
    Int.J.Curr.Microbiol.App.Sci (2017) 6(3): 549-560 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 3 (2017) pp. 549-560 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.603.064 Colophospermum mopane – A Potential Host for Rearing Wild Silk Worm (Gonometa rufobrunnea) in Arid Rajasthan V. Subbulakshmi*, N.D. Yadava, Birbal, M.L. Soni, K.R. Sheetal and P.S. Renjith ICAR-Central Arid Zone Research Institute, Regional Research Station, Bikaner-334004, Rajasthan, India *Corresponding author ABSTRACT India is the biggest consumer of raw silk and silk fabrics and second largest K e yw or ds producer of raw silk after China. There are two types of silk viz., mulberry silk Mopane; and vanya silk (non-mulberry silk). India has vast potential for production of wild silkworm; Gonometa vanya silks which plays a major role in rural livelihood security. Vanya silk rufobrunnea, can also be produced from the cocoons of wild silkworm, Gonometa vanya silk. rufobrunnea insect. The main food plant of Gonometa rufobrunnea is Article Info Colophospermum mopane commonly called as mopane. Mopane is a xeric species of South Africa and introduced in India for sand dune stabilization. Accepted: The review discuss about the possibility of rearing Gonometa rufobrunnea in 10 February 2017 already available mopane plantations in arid regions of the country to increase Available Online: 10 March 2017 production of vanya silk and to improve the rural economy in arid regions of India. Introduction Silk is a textile fibre produced by insects and (Ahmed and Rajan, 2011).
    [Show full text]
  • Extraction and Characterization of Silkworm Bombyx Mori Pupae Protein
    International Journal of Chemical Studies 2020; SP-9(1): 272-278 P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com Extraction and characterization of silkworm IJCS 2021; SP-9(1): 272-278 © 2021 IJCS Bombyx mori pupae protein Received: 10-11-2020 Accepted: 26-12-2020 Niveditha H, Akshay R Patil, Janani D and R Meenatchi Niveditha H Indian Institute of Food DOI: https://doi.org/10.22271/chemi.2021.v9.i1e.11729 Processing Technology, Thanjavur, Tamil Nadu, India Abstract Akshay R Patil Entomophagy is a re-emerging terminology used to describe the practice of consuming insects as a Indian Institute of Food source of nutrition by human beings. In present study 4-6 days old silk cocoons were procured, pupae Processing Technology, were collected and subjected for drying at 70oC for 48 hours, grounded and defatted (N hexane). Protein Thanjavur, Tamil Nadu, India (crude) was extracted by acid- alkali pH (5.7) shift method. The results revealed that, dried pupae consist of 38.13% of protein, the true protein content of crude protein was 81.02%. proximate (AOAC), colour, Janani D water activity, protein solubility were analysed and characterized by analysing functional properties viz., Indian Institute of Food water absorption capacity (3.08± 0.02 gwater/gDM), oil absorption capacity (4.05±0.03 goil/gDM), Processing Technology, emulsifying activity (1.93±0.09%), emulsifying stability (1.85±0.108%), foaming capacity Thanjavur, Tamil Nadu, India (7.67±0.47%), foaming stability (5.83±0.23%) least gelation capacity (10.67±0.94w/v), bulk density R Meenatchi (0.38±0.01g/ml) and tap density (0.46±0.008g/ml).
    [Show full text]
  • Wax, Wings, and Swarms: Insects and Their Products As Art Media
    Wax, Wings, and Swarms: Insects and their Products as Art Media Barrett Anthony Klein Pupating Lab Biology Department, University of Wisconsin—La Crosse, La Crosse, WI 54601 email: [email protected] When citing this paper, please use the following: Klein BA. Submitted. Wax, Wings, and Swarms: Insects and their Products as Art Media. Annu. Rev. Entom. DOI: 10.1146/annurev-ento-020821-060803 Keywords art, cochineal, cultural entomology, ethnoentomology, insect media art, silk 1 Abstract Every facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly, but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually, or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest paper), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts, and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of “insect media art” are topics relevant at a time when the natural world is at unprecedented risk. INTRODUCTION The value of studying cultural entomology and insect art No review of human culture would be complete without art, and no review of art would be complete without the inclusion of insects. Cultural entomology, a field of study formalized in 1980 (43), and ambitiously reviewed 35 years ago by Charles Hogue (44), clearly illustrates that artists have an inordinate fondness for insects.
    [Show full text]
  • An Assessment of the Potential of Edible Insect Consumption In
    An assessment of the potential of edible insect consumption in reducing human nutritional deficiencies in South Africa while considering food and nutrition security aspects. by Anja Lategan Research assignment presented in partial fulfilment of the requirements for the degree of Master of Science in Food and Nutrition Security In the Department of Food Science, Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. G.O. Sigge Co-supervisor: Ms. M. L. Marais April 2019 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Anja Lategan Date Copyright © 2019 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Between 2012 and 2014, more than 2 000 new cases of severe malnutrition in South Africa have been reported. Staple food products are viewed as having insufficient micronutrient contents and limiting amino acids (lysine, tryptophan and threonine). Therefore, in following a monotonous diet of maize and wheat products, the risk of micronutrient deficiencies increases. Even after mandatory fortification of staple food products in South Africa in 2003, high levels of micronutrient deficiencies still exist. In this research assignment, the potential of edible insects frequently consumed in South Africa, in ameliorating South Africa’s most prevalent nutrient deficiencies (iron, zinc, folate, vitamin A and iodine) was assessed.
    [Show full text]
  • The Silkworm, Bombyx Mori: a Promising Model Organism to Study the Longevity - a Review
    Int.J.Curr.Microbiol.App.Sci (2018) 7(11): 3433-3442 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 11 (2018) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2018.711.394 The Silkworm, Bombyx mori: A Promising Model Organism to Study the Longevity - A Review M.N. Ramya1*, Shivkumar2 and T.S. Jagadeesh Kumar1 1Silkworm Physiology and Biochemistry Laboratory, Department of Studies in Sericulture Science, Manasagangothri, University of Mysore, Mysore–570006, Karnataka, India 2Central Sericultural Research and Training Institute, Central Silk Board, Pampore, Jammu and Kashmir-192121, India *Corresponding author ABSTRACT The silkworm Bombyx mori being a typical representative of lepidopteron insects is of great economic importance in terms of longevity having short generation time, wherein physiological, genetical, molecular and biological aspects are playing an important role. But, the mechanism of longevity has been gradually unraveled due to not realizing in- depth in basic theoretical and practical fundamentals for the several above said aspects of K e y w or ds insects in particularly silkworm Bombyx mori. In spite of the fact, application of several biotechnological methods have been implementing in the era of advanced biology. Bombyx mori, Silkworm has to be a model organism to study the longevity, because it is an economically Longevity (aging), Intrinsic and important insect for the silk production, wherein longevity play an important role in extrinsic factors. metabolic activities during its life cycle and understanding of its durability to reduce still shorter is the need of hour for the benefit of rearer, breeders, physiologist, biochemist, Article Info geneticist, farmers, etc in economic & scientific point of view.
    [Show full text]
  • Insects in Production – an Introduction Ljubinka Francuski & Leo W
    University of Groningen Insects in production Francuski, Ljubinka; Beukeboom, Leo W. Published in: Entomologia Experimentalis et Applicata DOI: 10.1111/eea.12935 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Version created as part of publication process; publisher's layout; not normally made publicly available Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Francuski, L., & Beukeboom, L. W. (2020). Insects in production: An introduction. Entomologia Experimentalis et Applicata, 168(6-7), 422-431. https://doi.org/10.1111/eea.12935 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Global Entomologies: Insects, Empires, and the ‘Synthetic Age’ *
    Downloaded from http://past.oxfordjournals.org/ at Amherst College Library, Serials Section on October 31, 2013 , new edn charts in the 1 The Last Loop of the * Billboard ThePastandPresentSociety,Oxford,2013 I Oriental Rugs Today: A Guide to the Best New ß lu and Oktay Aslanapa, d o ´ (Istanbul, 2006). On the different materials used in lmecid I (1839–61) founded the Hereke ¨ Ella Fitzgerald: A Biography of the First Lady of Jazz British Military Spectacle: From the Napoleonic Wars through the , 2nd edn (Berkeley, 2003), 80; for more on the Hereke Imperial IN WORLD HISTORY (2013) (Cambridge, Mass., 1996), 68. Stuart Nicholson, GLOBAL ENTOMOLOGIES: INSECTS, A trio of more incongruous events, spanning three centuries, * Thanks to Nina Gordon, Steven Gray, Hannah Greenwald, Ken Kopp, Tricia 1 EMPIRES, AND THE ‘SYNTHETIC AGE’ doi:10.1093/pastj/gtt026 In November 1944, Decca RecordsElla released Fitzgerald an and album The Ink featuring Spots.‘I’m The Making two Believe’ tracks and on ‘Into the Eachspent record, Life seventeen Some Rain weeks Must at Fall’, United the States top and oftween inaugurated the the ‘First a Lady long-termMilt of collaboration Song’ Gabler. and be- Ottoman the A Sultan fabled Abdu century record producer before this musical milestone, the (New York, 1995), 81. EmmettCarpets Eiland, from the East Carpet Manufacture, see Ayt¸eFazly Past and Present Lipton, Benjamin Madley, JerryPeterson, Melillo, Khary Lalise Polk, Melillo, Elizabeth Michaelearlier Pryor O’Connor, versions and of Dawn this Theodore article. Waddelow for their input on might seem difficult totonishing imagine, feature. They yet depended these on the episodes tremendous share productive an as- Imperial Carpet Manufacture tohis produce Palace elaborate Dolmabahc¸e on silk the rugs Seagant for of carpets, Marmara.
    [Show full text]
  • THE EMPEROR MOTHS of EASTERN AFRICA the Purpose Of
    THE EMPEROR MOTHS OF EASTERN AFRICA By E. C. G. Pinhey. (The National Museum, Bulawayo.) The purpose of this article on Emperor Moths is to introduce people, in East and Central Africa, to this spectacular family and to give them some means of identifying the species. It is unfortunate that we cannot afford colour plates. Mr. Bally has aided in the production of half-tone photo• graphs, which should help considerably in the recognition of species, if not with the same facility as with colour plates. There is, of course, available, at a price, volume XIV of Seitz' Macrole• pidoptera, which includes coloured illustrations of most of the African Emperors. In tropical countries Emperor Moths and Hawk Moths are the most popular families of the moths among amateurs, the former largely for their size and colourfulness, the latter more perhaps for their streamlined elegance and rapidity of flight. Furthermore, compared to some other families, both these groups are reasonably small in number of species and, despite their bulk, they can be incorporated in a moderately limited space if not too many examples of each species are retained. Admittedly some of the larger Emperors take up a disproportionate amount of room and it is advisable to make them overlap in the collection. If we consider, however, that the amateur is concentrating on this family to the exclusion of other moth groups, the position is not too alarming. There are somewhat over a hundred species of Emperors in East Africa. What are Emperor Moths? Some people call them Silk moths, because the caterpillars of some species spin silk cocoons.
    [Show full text]
  • Materials Fabrication from Bombyx Mori Silk Fibroin
    PROTOCOL Materials fabrication from Bombyx mori silk fibroin Danielle N Rockwood, Rucsanda C Preda, Tuna Yücel, Xiaoqin Wang, Michael L Lovett & David L Kaplan Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA. Correspondence should be addressed to D.L.K. ([email protected]). Published online 22 September 2011; doi:10.1038/nprot.2011.379 Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years and can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent-processing methods can be used to generate silk biomaterials for a range of applications. In this protocol, we include methods to extract silk from B. mori cocoons to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, as well as for drug delivery. INTRODUCTION Bombyx mori (silkworm) silk is a unique material, which has his- blocks linked by small hydrophilic linker segments or spacers. torically been highly regarded for its strength and luster. Physicians The crystalline regions are primarily composed of glycine-X have used silk as a suture material for centuries, and it has recently repeats, where X is alanine, serine, threonine or valine. Within gained attention as a biomaterial because of several desirable prop- these domains lie subdomains that are rich in glycine, alanine, erties.
    [Show full text]