Insects in Production – an Introduction Ljubinka Francuski & Leo W

Total Page:16

File Type:pdf, Size:1020Kb

Insects in Production – an Introduction Ljubinka Francuski & Leo W University of Groningen Insects in production Francuski, Ljubinka; Beukeboom, Leo W. Published in: Entomologia Experimentalis et Applicata DOI: 10.1111/eea.12935 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Version created as part of publication process; publisher's layout; not normally made publicly available Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Francuski, L., & Beukeboom, L. W. (2020). Insects in production: An introduction. Entomologia Experimentalis et Applicata, 168(6-7), 422-431. https://doi.org/10.1111/eea.12935 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 DOI: 10.1111/eea.12935 SPECIAL ISSUE: INSECTS IN PRODUCTION Insects in production – an introduction Ljubinka Francuski & Leo W. Beukeboom* Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands Accepted: 23 April 2020 Key words: biological control, diet, feed and food, fitness, insect industry, mass rearing, microbiome, pathogens, sterile insect technique, symbionts, insect production Abstract Insects have been on the menu of humans for centuries, but only recently we have begun to mass pro- duce them for human food and animal feed. This introduction first paints a synopsis of mass cul- tured insects and their application. The new insect production industry raises many interesting fundamental and applied questions about insect biology and fitness. The second part of the introduc- tion to this special issue addresses the 13 articles dealing with the improvement of mass-rearing efforts for a range of insects. The various studies focus on the effects of diet and microorganisms on relevant life-history traits and economic value of the insects. They reflect the current rapid develop- ments in the insect production industry. Introduction Insects in production: an overview Insects have been on the menu for centuries, but only Although contemporary agriculture is undergoing rapid recently their mass production for human food and ani- technological development, worldwide insect farming is mal feed has started to take off. Both fundamental and still largely manual and run by smallholder farmers (Kenis applied research is of importance for mass production of et al., 2018). Besides rearing for human consumption and insects. More general knowledge about insect biology is for the animal food market, small-scale businesses involve needed as basis for insect rearing. In addition, various production of fish baits, prey for insectivorous pets, medi- applied aspects make research on production insects of cal applications, and culturing insects by hobbyists and for particular interest. For instance, as production insects are educational purposes. These operations require manual typically bred in large numbers and under artificial condi- labour and contribute to local economies. In order to tions, much applied research focuses on traits related to address scientific need, production of standardized insect their breeding efficacy and economic value. An important models has been established in stock centres. For example, aim is how the culturing conditions can be optimized to a broad range of wild-type and mutant strains of Droso- gain maximum yield and quality of the insect products. phila melanogaster Meigen (Diptera: Drosophilidae) can For example, the effect of diet on the growth and health be purchased for research purposes, and more than 1 000 of the insect is receiving a lot of attention. Another strains of silkworms are maintained at stock centres in research topic is the role of microorganisms, not just in silk-producing countries (Goldsmith et al., 2005). The terms of risk of infection and diseases, but also their increasing demand for large numbers of specimens led to potential benefit in the production process. The articles up-scaling of insect breeding facilities and developing in this special journal issue address these and other topics more efficient and economical production methods. One in a variety of insect species that are in different phases of successful example are the 20 000 cricket farms in Thai- commercialization. Before considering these studies in land that increased their production capacities to medium more detail, we briefly inventory the most important and large scale (Hanboonsong et al., 2013). We currently commercial insect species and indicate for what purpose witness an exponential growth in companies that establish they are bred. standardized pipelines to mass produce insects for com- mercial use (Fanson et al., 2014; Orzoco-Davila et al., 2017). Insect-based food and feed industry already pro- duces tons of insects daily (van Huis, 2016), but the variety *Correspondence: E-mail: [email protected] of insect species and their production amounts are © 2020 The Authors. Entomologia Experimentalis et Applicata published by John Wiley & Sons Ltd 1 on behalf of Netherlands Entomological Society Entomologia Experimentalis et Applicata 1–10, 2020 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2 Francuski & Beukeboom expected to increase rapidly. These industrial-scale facili- as polyphagous predators that feed on a wide array of ties present a constant and reliable source of insects. arthropod prey. The predatory mite species Amblyseius Nutritional and other health benefits of edible insects swirskii Athias-Henriot and Neoseiulus cucumeris (Oude- have been documented by many authors (e.g., Di Mattia mans) (both Acari: Phytoseiidae) are among the economi- et al., 2019). As global interest in entomophagy is rising, cally most important control agents (van Lenteren, 2012). the availability of products generated from the harvested The sterile insect technique (SIT), which is based on insects is increasing as well. Crickets and mealworms are mass release of factory-bred specimens, has proven suc- among the most commonly consumed taxa (Table 1), and cessful for irradiating a range of insect pests. One of the their production operations range from small-scale ‘sub- best examples is the screwworm Cochliomyia hominivorax sistence’ to large industrial factories (Oonincx & de Boer, (Coquerel) (Diptera: Calliphoridae) that has been reared 2012; Hanboonsong et al., 2013). Moreover, insects are on a massive scale in Mexico since 1976. Additional exam- increasingly considered as suitable protein source for ples of SIT success include the area-wide release of sterile incorporation into animal feed. Within the insect-as-feed fruit flies (Tephritidae), such as the Mexican fruit fly, sector, research and innovation efforts are mostly concen- Anastrepha ludens (Loew) (Rull et al., 2005) and the trated on the production of the black soldier fly (BSF), Mediterranean fruit fly, Ceritatis capitata (Wiedemann) Hermetia illucens L. (Diptera: Stratiomyidae), at an indus- (Robinson, 2002), mosquitoes, such as Aedes aegypti (L.) trial scale (Gobbi et al., 2013; Chia et al., 2018). In addi- (Diptera: Culicidae) (Puggioli et al., 2013; Zheng et al., tion, technological and ecological aspects of waste 2015), and tsetse flies (Glossina spp.) (Vreysen et al., 2000). processing by fly larvae and their commercial potential are There are additional purposes for breeding insects, such receiving renewed interest (Barnard et al., 1998; Zhang as medical applications and other human benefits et al., 2012; Wang et al., 2013). Use of larvae of BSF and (Table 1). Although the European honey bee, Apis mellif- the common housefly, Musca domestica L. (Diptera: Mus- era L. (Hymenoptera: Apidae), plays an important role in cidae), to treat organic wastes or livestock manure is pro- the food industry with the annual production of around posed as a promising and effective technology (Sheppard 1.2 million tons of commercial honey (FAO, 2009), it is et al., 1994; Wang et al., 2013). As such, various also managed for pollination service (Brittain et al., 2013). approaches and rearing systems are being developed In addition, together with the common green bottle fly, worldwide, ranging from small-scale rearing operations Lucilia sericata (Meigen) (Diptera: Calliphoridae), and the on locally available substrates (Kone et al., 2017; Mafwila American cockroach, Periplaneta americana (L.) (Blat- et al., 2019), to large-scale composting systems with capac- todea: Blattidae),
Recommended publications
  • Sunday, March 4, 2012
    Joint Meeting of the Southeastern and Southwestern Branches Entomological Society of America 4-7 March 2012 Little Rock, Arkansas 0 Dr. Norman C. Leppla President, Southeastern Branch of the Entomological Society of America, 2011-2012 Dr. Allen E. Knutson President, Southwestern Branch of the Entomological Society of America, 2011-2012 1 2 TABLE OF CONTENTS Presidents Norman C. Leppla (SEB) and Allen E. 1 Knutson (SWB) ESA Section Names and Acronyms 5 PROGRAM SUMMARY 6 Meeting Notices and Policies 11 SEB Officers and Committees: 2011-2012 14 SWB Officers and Committees: 2011-2012 16 SEB Award Recipients 19 SWB Award Recipients 36 SCIENTIFIC PROGRAM SATURDAY AND SUNDAY SUMMARY 44 MONDAY SUMMARY 45 Plenary Session 47 BS Student Oral Competition 48 MS Student Oral Competition I 49 MS Student Oral Competition II 50 MS Student Oral Competition III 52 MS Student Oral Competition IV 53 PhD Student Oral Competition I 54 PhD Student Oral Competition II 56 BS Student Poster Competition 57 MS Student Poster Competition 59 PhD Student Poster Competition 62 Linnaean Games Finals/Student Awards 64 TUESDAY SUMMARY 65 Contributed Papers: P-IE (Soybeans and Stink Bugs) 67 Symposium: Spotted Wing Drosophila in the Southeast 68 Armyworm Symposium 69 Symposium: Functional Genomics of Tick-Pathogen 70 Interface Contributed Papers: PBT and SEB Sections 71 Contributed Papers: P-IE (Cotton and Corn) 72 Turf and Ornamentals Symposium 73 Joint Awards Ceremony, Luncheon, and Photo Salon 74 Contributed Papers: MUVE Section 75 3 Symposium: Biological Control Success
    [Show full text]
  • Use of Insect Evidence in Criminal Investigations
    Pakistan Journal of Criminology Vol. 9, Issue 4, October 2017 (1-11) Use of Insect Evidence in Criminal Investigations: Developing a Framework for Strengthening of the Justice System Farrah Zaidi Abstract Forensic entomology is the utility of arthropods/ insects in legal investigations. Insects are an important component of cadavers feeding on the nutrient rich resource provided to them by nature. In doing so they are performing the important ecological service of decomposition. Blow flies are among the first insects arriving at the body and laying their eggs. The larvae that hatch out of the eggs are necrophagous i.e. they feed on flesh. The flies pupate in soil/dirt beneath the body. The development time of flies is specific for instance 9-10 days for oriental latrine fly. This time period allows the entomologists to calculate the time of death roughly corresponding with the time of egg laying. Besides estimating the time of death, forensic entomology in some cases can also determine child neglect, drug use prior to death and identifying potential assailants. In order to strengthen our justice system training workshops in the discipline should be made mandatory for the law enforcement agencies. A frame work should be developed to gradually incorporate the discipline in the legal system. For this purpose the science should be given its due share in the curricula of institutes of higher education and collaborative efforts must be taken to educate the current and future law enforcement professionals. Key Words: Forensic entomology, blow flies, Pakistan, time of death 1. Introduction Forensic entomology describes utility of insects and other arthropods in legal matters, especially in a court of law (Catts and Goff 1992).
    [Show full text]
  • Next Meeting Wednesday 20Th September 2017 @ 7.00 Pm—9.30
    DE VOLUME 3 ISSUE 9 SEPTEMBER 2017 Next Meeting Meetings of our Association are conducted on the 3rd Wednesday of each month INSIDE THIS (except January) Old Tote rooms in the Gosford Showground. ISSUE: About Our Club 2 Wednesday 20th September 2017 Committee 4 @ 7.00 pm—9.30 pm Members Library President’s 7 Newbees session will commence from 6.00pm - report 6.45pm Club Report 8 Club Equipment 10 Classifies 11 Weblinks 14 Editor’s Last 15 DPI and extras 17 Manuka Honey 18 Swarm List 20 DPI—AFB 21 Photos of Forest Red Gums that are starting to flower around the Wyong Golf course http://www.florabank.org.au/lucid/key/species%20navigator/ P A G E 2 About Our Club The Central Coast Amateur Beekeepers Association is a non for profit organi- sation, run completely by a volunteer community. These members believe in education, community sharing and working to bring about a deeper under- standing of apiarist or beekeeping into the community. The Central Coast Amateur Beekeepers – CCABA is a sub branch of the NSW Amateur Beekeepers Association. There are 17 branch members. The Central Coast Amateur Beekeepers are a diverse group of like-minded individuals that run a variety of beekeeping forms from Langstroth, Warre, Flow and Top Bar Hives as well as native beekeeping. People interested in natural beekeeping or native beekeeping are also wel- come to attend. We have additional meetings for the natural beekeepers, who usually meet on the last Tuesday of each month. Potential beekeepers with honey flow kits and those who want to simply know more about beekeeping are welcomed to join our strong club.
    [Show full text]
  • Sex-Linked Transcription Factor Involved in a Shift of Sex-Pheromone Preference in the Silkmoth Bombyx Mori
    Sex-linked transcription factor involved in a shift of sex-pheromone preference in the silkmoth Bombyx mori Tsuguru Fujiia, Takeshi Fujiib, Shigehiro Namikic, Hiroaki Abed, Takeshi Sakuraic, Akio Ohnumae, Ryohei Kanzakic, Susumu Katsumaa, Yukio Ishikawab, and Toru Shimadaa,1 aLaboratory of Insect Genetics and Bioscience, Department of Agricultural and Environmental Biology, University of Tokyo, Tokyo 113-8657, Japan; bLaboratory of Applied Entomology, Department of Agricultural and Environmental Biology, University of Tokyo, Tokyo 113-8657, Japan; cResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan; dLaboratory of Insect Functional Biochemistry, Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; and eInstitute of Sericulture, Ami, Ibaraki 300-0324, Japan Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved September 26, 2011 (received for review June 9, 2011) In the sex-pheromone communication systems of moths, odorant The silkmoth Bombyx mori has been used as a model for receptor (Or) specificity as well as higher olfactory information studying sex-pheromone communication systems in moths. B. mori processing in males should be finely tuned to the pheromone of females secrete an ∼11:1 mixture of bombykol [(E,Z)-10,12- conspecific females. Accordingly, male sex-pheromone preference hexadecadien-1-ol] and bombykal [(E,Z)-10,12-hexadecadien- should have diversified along with the diversification of female 1-al] from the pheromone gland (14). Bombykol alone elicits sex pheromones; however, the genetic mechanisms that facili- full courtship behavior in males, whereas bombykal alone shows tated the diversification of male preference are not well un- no apparent activity (14).
    [Show full text]
  • Medical and Veterinary Entomology (2009) 23 (Suppl
    Medical and Veterinary Entomology (2009) 23 (Suppl. 1), 1–7 Enabling technologies to improve area-wide integrated pest management programmes for the control of screwworms A. S. ROBINSON , M. J. B. VREYSEN , J. HENDRICHS and U. FELDMANN Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency (FAO/IAEA) Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria Abstract . The economic devastation caused in the past by the New World screwworm fly Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) to the livestock indus- try in the U.S.A., Mexico and the rest of Central America was staggering. The eradication of this major livestock pest from North and Central America using the sterile insect tech- nique (SIT) as part of an area-wide integrated pest management (AW-IPM) programme was a phenomenal technical and managerial accomplishment with enormous economic implications. The area is maintained screwworm-free by the weekly release of 40 million sterile flies in the Darien Gap in Panama, which prevents migration from screwworm- infested areas in Columbia. However, the species is still a major pest in many areas of the Caribbean and South America and there is considerable interest in extending the eradica- tion programme to these countries. Understanding New World screwworm fly popula- tions in the Caribbean and South America, which represent a continuous threat to the screwworm-free areas of Central America and the U.S.A., is a prerequisite to any future eradication campaigns. The Old World screwworm fly Chrysomya bezziana Villeneuve (Diptera: Calliphoridae) has a very wide distribution ranging from Southern Africa to Papua New Guinea and, although its economic importance is assumed to be less than that of its New World counterpart, it is a serious pest in extensive livestock production and a constant threat to pest-free areas such as Australia.
    [Show full text]
  • General News
    Biocontrol News and Information 27(4), 63N–79N pestscience.com General News David Greathead hoods. Both broom and tagasaste pods can be a seasonally important food source for kererū (an As this issue went to press we received the sad news endemic pigeon, Hemiphaga novaeseelandiae), par- of the untimely death of Dr David Greathead at the ticularly in regions where its native food plants have age of 74. declined. A previous petition for the release of G. oli- vacea into New Zealand was rejected by the New Besides being a dedicated and popular Director of Zealand Ministry of Agriculture and Forestry in CABI’s International Institute of Biological Control 1998 on the grounds that there was insufficient (IIBC), David was the driving force behind the estab- information to assess the relative beneficial and lishment and development of Biocontrol News and harmful effects of the proposed introduction. Information. He was an active member of its Edito- rial Board, providing advice and ideas right up to his As part of the submission to ERMA, Landcare death. Research quantified the expected costs and benefits associated with the introduction of additional biolog- We plan that the next issue will carry a full obituary. ical control agents for broom1. Due to uncertainties Please contact us if you would be willing to con- regarding the costs, a risk-averse approach was tribute information: commentary, personal adopted by assuming a worse-case scenario where memories or anecdotes on the contribution that tagasaste was planted to its maximum potential David made. extent in New Zealand (10,000 ha), levels of non- target damage to tagasaste were similar to those on Contact: Matthew Cock & Rebecca Murphy C.
    [Show full text]
  • Myiasis During Adventure Sports Race
    DISPATCHES reexamined 1 day later and was found to be largely healed; Myiasis during the forming scar remained somewhat tender and itchy for 2 months. The maggot was sent to the Finnish Museum of Adventure Natural History, Helsinki, Finland, and identified as a third-stage larva of Cochliomyia hominivorax (Coquerel), Sports Race the New World screwworm fly. In addition to the New World screwworm fly, an important Old World species, Mikko Seppänen,* Anni Virolainen-Julkunen,*† Chrysoimya bezziana, is also found in tropical Africa and Iiro Kakko,‡ Pekka Vilkamaa,§ and Seppo Meri*† Asia. Travelers who have visited tropical areas may exhibit aggressive forms of obligatory myiases, in which the larvae Conclusions (maggots) invasively feed on living tissue. The risk of a Myiasis is the infestation of live humans and vertebrate traveler’s acquiring a screwworm infestation has been con- animals by fly larvae. These feed on a host’s dead or living sidered negligible, but with the increasing popularity of tissue and body fluids or on ingested food. In accidental or adventure sports and wildlife travel, this risk may need to facultative wound myiasis, the larvae feed on decaying tis- be reassessed. sue and do not generally invade the surrounding healthy tissue (1). Sterile facultative Lucilia larvae have even been used for wound debridement as “maggot therapy.” Myiasis Case Report is often perceived as harmless if no secondary infections In November 2001, a 41-year-old Finnish man, who are contracted. However, the obligatory myiases caused by was participating in an international adventure sports race more invasive species, like screwworms, may be fatal (2).
    [Show full text]
  • The Old World Screwworm, Chrysomya Sardinia, Sicily, Southern Greece, Bezziana
    Food and Agriculture ~;~~::ization Nations • 'fl-IE i'IE'1V '1VORlD SCRE'1V'1VORJ'1\ ERf\DICf\flOi'I PROGRf\J'1\J'1\E FOOD AND AGRICUUURE ORGANIZATION Of HIE UNITED NATIONS Text prepared by Helen Gillman under the supervision of Dr E.P. Cunningham, Director, FAO Animal Production and Health Division and Dr A.E. Sidahmed, Senior Operations Officer, Screwworm Emergency Centre for North Africa. The designations employed and the presentation of material in this pub­ lication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-27 ISBN 92-5-103200-9 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, me­ chanical, photocopying or otherwise, without the prior permission of the copy­ right owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publica­ tions Division, Food and Agriculture Organization of the United Nations, Viale de/le Terme di Caracalla 00100 Rome, Italy. Printed in Italy © FAO 1992 Contents Preface 7 Introduction 9 Acronyms 12 Chapter one The New World screwworm 14 Chapter two The North African emergency 42 Chapter three Preparing for eradication 70 Chapter four The eradication programme 80 Chapter five Managing the campaign 124 Chapter six Money matters 142 Chapter seven Involving the public 150 Chapter eight Activities in neighbouring countries 164 Chapter nine Support organizations 170 Conclusion 178 Annex one FAQ chronology of events 181 Annex two SECNA documents 187 Annex three Coordination Committee 189 While the great majority of our work in Preface FAO is aimed at the steady improve­ ment of the world's capacity to feed its people, we are also on occasion chal­ lenged to respond to situations of great and immediate danger.
    [Show full text]
  • Oral Presentations
    ORAL PRESENTATIONS Listed in programme order Technical analysis of archaeological Andean painted textiles Rebecca Summerour1*, Jennifer Giaccai2, Keats Webb3, Chika Mori2, Nicole Little3 1National Museum of the American Indian, Smithsonian Institution (NMAI) 2Freer Gallery of Art and Arthur M. Sackler Gallery, Smithsonian Institution (FSG) 3Museum Conservation Institute, Smithsonian Institution (MCI) 1*[email protected] This project investigates materials and manufacturing techniques used to create twenty-one archaeological painted Andean textiles in the collection of the National Museum of the American Indian, Smithsonian Institution (NMAI). The textiles are attributed to Peru but have minimal provenience. Research and consultations with Andean textile scholars helped identify the cultural attributions for most of the textiles as Chancay and Chimu Capac or Ancón. Characterization of the colorants in these textiles is revealing previously undocumented materials and artistic processes used by ancient Andean textile artists. The project is conducted as part of an Andrew W. Mellon Postgraduate Fellowship in Textile Conservation at the NMAI. The textiles in the study are plain-woven cotton fabrics with colorants applied to one side. The colorants, which include pinks, reds, oranges, browns, blues, and black, appear to be paints that were applied in a paste form, distinguishing them from immersion dyes. The paints are embedded in the fibers on one side of the fabrics and most appear matte, suggesting they contain minimal or no binder. Some of the brown colors, most prominent as outlines in the Chancay-style fragments, appear thick and shiny in some areas. It is possible that these lines are a resist material used to prevent colorants from bleeding into adjacent design elements.
    [Show full text]
  • State-Of-The-Art on Use of Insects As Animal Feed
    State-of-the-art on use of insects as animal feed Harinder P.S. Makkar1, Gilles Tran2, Valérie Heuzé2 and Philippe Ankers1 1 Animal Production and Health Division, FAO, Rome 2 Association Française de Zootechnie, Paris, France Full reference of the paper: Animal Feed Science and Technology, Volume 197, November 2014, pages 1-33 Link: http://www.animalfeedscience.com/article/S0377-8401(14)00232-6/abstract http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008 Abstract A 60-70% increase in consumption of animal products is expected by 2050. This increase in the consumption will demand enormous resources, the feed being the most challenging because of the limited availability of natural resources, ongoing climatic changes and food-feed-fuel competition. The costs of conventional feed resources such as soymeal and fishmeal are very high and moreover their availability in the future will be limited. Insect rearing could be a part of the solutions. Although some studies have been conducted on evaluation of insects, insect larvae or insect meals as an ingredient in the diets of some animal species, this field is in infancy. Here we collate, synthesize and discuss the available information on five major insect species studied with respect to evaluation of their products as animal feed. The nutritional quality of black soldier fly larvae, the house fly maggots, mealworm, locusts- grasshoppers-crickets, and silkworm meal and their use as a replacement of soymeal and fishmeal in the diets of poultry, pigs, fish species and ruminants are discussed. The crude protein contents of these alternate resources are high: 42 to 63% and so are the lipid contents (up to 36% oil), which could possibly be extracted and used for various applications including biodiesel production.
    [Show full text]
  • Colophospermum Mopane – a Potential Host for Rearing Wild Silk Worm (Gonometa Rufobrunnea) in Arid Rajasthan
    Int.J.Curr.Microbiol.App.Sci (2017) 6(3): 549-560 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 3 (2017) pp. 549-560 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.603.064 Colophospermum mopane – A Potential Host for Rearing Wild Silk Worm (Gonometa rufobrunnea) in Arid Rajasthan V. Subbulakshmi*, N.D. Yadava, Birbal, M.L. Soni, K.R. Sheetal and P.S. Renjith ICAR-Central Arid Zone Research Institute, Regional Research Station, Bikaner-334004, Rajasthan, India *Corresponding author ABSTRACT India is the biggest consumer of raw silk and silk fabrics and second largest K e yw or ds producer of raw silk after China. There are two types of silk viz., mulberry silk Mopane; and vanya silk (non-mulberry silk). India has vast potential for production of wild silkworm; Gonometa vanya silks which plays a major role in rural livelihood security. Vanya silk rufobrunnea, can also be produced from the cocoons of wild silkworm, Gonometa vanya silk. rufobrunnea insect. The main food plant of Gonometa rufobrunnea is Article Info Colophospermum mopane commonly called as mopane. Mopane is a xeric species of South Africa and introduced in India for sand dune stabilization. Accepted: The review discuss about the possibility of rearing Gonometa rufobrunnea in 10 February 2017 already available mopane plantations in arid regions of the country to increase Available Online: 10 March 2017 production of vanya silk and to improve the rural economy in arid regions of India. Introduction Silk is a textile fibre produced by insects and (Ahmed and Rajan, 2011).
    [Show full text]
  • Extraction and Characterization of Silkworm Bombyx Mori Pupae Protein
    International Journal of Chemical Studies 2020; SP-9(1): 272-278 P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com Extraction and characterization of silkworm IJCS 2021; SP-9(1): 272-278 © 2021 IJCS Bombyx mori pupae protein Received: 10-11-2020 Accepted: 26-12-2020 Niveditha H, Akshay R Patil, Janani D and R Meenatchi Niveditha H Indian Institute of Food DOI: https://doi.org/10.22271/chemi.2021.v9.i1e.11729 Processing Technology, Thanjavur, Tamil Nadu, India Abstract Akshay R Patil Entomophagy is a re-emerging terminology used to describe the practice of consuming insects as a Indian Institute of Food source of nutrition by human beings. In present study 4-6 days old silk cocoons were procured, pupae Processing Technology, were collected and subjected for drying at 70oC for 48 hours, grounded and defatted (N hexane). Protein Thanjavur, Tamil Nadu, India (crude) was extracted by acid- alkali pH (5.7) shift method. The results revealed that, dried pupae consist of 38.13% of protein, the true protein content of crude protein was 81.02%. proximate (AOAC), colour, Janani D water activity, protein solubility were analysed and characterized by analysing functional properties viz., Indian Institute of Food water absorption capacity (3.08± 0.02 gwater/gDM), oil absorption capacity (4.05±0.03 goil/gDM), Processing Technology, emulsifying activity (1.93±0.09%), emulsifying stability (1.85±0.108%), foaming capacity Thanjavur, Tamil Nadu, India (7.67±0.47%), foaming stability (5.83±0.23%) least gelation capacity (10.67±0.94w/v), bulk density R Meenatchi (0.38±0.01g/ml) and tap density (0.46±0.008g/ml).
    [Show full text]