Sex, Race, Religion, Age, and Education Homophily Among Confidants, 1985 to 2004 Jeffrey A

Total Page:16

File Type:pdf, Size:1020Kb

Sex, Race, Religion, Age, and Education Homophily Among Confidants, 1985 to 2004 Jeffrey A University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Sociology Department, Faculty Publications Sociology, Department of 4-2014 Social Distance in the United States: Sex, Race, Religion, Age, and Education Homophily among Confidants, 1985 to 2004 Jeffrey A. Smith University of Nebraska-Lincoln, [email protected] Miller McPherson Duke University, [email protected] Lynn Smith-Lovin Duke University, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/sociologyfacpub Part of the Demography, Population, and Ecology Commons, Race and Ethnicity Commons, Social Psychology and Interaction Commons, and the Social Statistics Commons Smith, Jeffrey A.; McPherson, Miller; and Smith-Lovin, Lynn, "Social Distance in the United States: Sex, Race, Religion, Age, and Education Homophily among Confidants, 1985 to 2004" (2014). Sociology Department, Faculty Publications. 246. http://digitalcommons.unl.edu/sociologyfacpub/246 This Article is brought to you for free and open access by the Sociology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Sociology Department, Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in American Sociological Review 79:3 (2014), pp. 432-456. doi: 10.1177/0003122414531776 Copyright © 2014 American Sociological Review. Used by permission. digitalcommons.unl.edu Published online April 24, 2014. Social Distance in the United States: Sex, Race, Religion, Age, and Education Homophily among Confidants, 1985 to 2004 Jeffrey A. Smith,1 Miller McPherson,2 and Lynn Smith-Lovin2 1. University of Nebraska-Lincoln 2. Duke University Corresponding author – Jeffrey A. Smith, Department of Sociology, University of Nebraska-Lincoln, 711 Oldfather Hall, Lincoln, NE 68588-0324, email [email protected] Abstract Homophily, the tendency for similar actors to be connected at a higher rate than dissimi- lar actors, is a pervasive social fact. In this article, we examine changes over a 20-year pe- riod in two types of homophily—the actual level of contact between people in different so- cial categories and the level of contact relative to chance. We use data from the 1985 and 2004 General Social Surveys to ask whether the strengths of five social distinctions—sex, race/ethnicity, religious affiliation, age, and education—changed over the past two decades in core discussion networks. Changes in the actual level of homophily are driven by the de- mographic composition of the United States. As the nation has become more diverse, cross- category contacts in race/ethnicity and religion have increased. After describing the raw homophily rates, we develop a case-control model to assess homophily relative to chance mixing. We find decreasing rates of homophily for gender but stability for race and age, al- though the young are increasingly isolated from older cohorts outside of the family. We also find some weak evidence for increasing educational and religious homophily. These rela- tional trends may be explained by changes in demographic heterogeneity, institutional seg- regation, economic inequality, and symbolic boundaries. Keywords: social distance, social networks, homophily, social structure, social change Birds of a feather have always flocked to- tions about the acceptability of marriage, en- gether. Building on classic works by Simmel tertainment in the home, co-residence in and Park, Borgardus (1925) coined the term neighborhoods, and other sorts of affilia- “social distance” to indicate whether peo- tions. Decades of research that followed have ple in one social category were willing to be informed our understanding of the cognitive closely associated with members of another prejudices present in the population (e.g., category. His social distance scale used ques- Hughes and Tuch 2003). With the increasing 432 Social Distance in the U.S.A.: Sex, Race, Religion, Age, and Education 433 availability of network data, however, more fluence us directly through their supportive recent work has increasingly employed actual interactions (House, Umberson, and Landis patterns of interaction to measure social dis- 1988; Wellman and Wortley 1990) and indi- tance (McPherson, Smith-Lovin, and Cook rectly by shaping the kinds of people we be- 2001). The question of social distance has come (Smith-Lovin and McPherson 1993). If thus become more structural, reflecting the we are connected mainly to people much like social acceptability of affiliation and the phys- ourselves, we can see a very limited social hori- ical opportunities for interacting. zon. Homophily thus plays a key role in repro- This article follows the behavioral trend and ducing the economic and cultural differences uses homophily as a summary measure of so- between demographic groups (DiMaggio and cial distance across time and demographic di- Garip 2011). Everything from cultural tastes mensions. Homophily captures the tendency (Mark 1998) to attitudes (McPherson 2004) to for similar actors to be socially connected at a voluntary affiliations (Popielarz and McPher- higher rate than dissimilar actors; it is one of son 1995) become localized in social space to our best established social facts (Lazarsfeld the extent that we surround ourselves with and Merton 1954; McPherson et al. 2001). Ar- demographically similar others (McPherson guably, it is one of our most important. The 1983). In a real sense, you are who you know. top two most-cited articles in the Annual Re- Given homophily’s central importance, it view of Sociology both deal with networks, is surprising that we have so little knowledge their structure, and their impact on the flow of of whether this fundamental social fact has resources (i.e., Portes 1998 and McPherson et changed over time. Here, we ask whether the al. 2001, as reported by Annual Review of Soci- strength of homophily in close personal ties ology 2013). (defined as discussing important matters) Homophily is important because it mea- has changed over the period 1985 to 2004. sures the salience of sociodemographic fea- We use data from the 1985 and 2004 General tures in our social system (Blau and Schwartz Social Surveys (GSS) to examine five impor- 1984; Laumann 1966). A socially unimportant tant sociodemographic characteristics—sex, demographic dimension will exhibit low levels race/ethnicity, religion, age, and education— of homophily: social boundaries will be porous to see if the degree of homophily has changed and individuals will be free to form intimate in U.S. society. social ties with members of another group. Homophily can be seen as a behavioral expres- Change in Social Distance and Homophily sion of the larger differentiating forces in so- ciety—such as demographic availability, insti- Researchers have studied homophily in net- tutional segregation, and affective acceptance work ties that range from the closest ties of among categories of people. The size of demo- marriage (Mare 1991; Qian and Lichter 2007), graphic groups, for example, influences the the strong confidant relationships of “dis- probability that individuals will come into con- cussing important matters” (Marsden 1987, tact with each other by chance, and potentially 1988), and the intermediate ties of friendship overcomes the propensity for in-group associ- and trust (Moody 2001; Verbrugge 1977), to ation (Blau 1977). Demographic change is lim- the more circumscribed relationships of ca- ited as an integrating force, however, by resi- reer support at work (Ibarra 1992, 1995), ac- dential and occupational segregation, as well quaintance (DiPrete et al. 2010), appearing as status differences across a population. with others in a public place (Mayhew et al. Homophily in networks is also important 1995), mere contact (Wellman 1996), “know- because ideas, resources, and group affiliations ing about” someone (Hampton and Wellman flow through networks (McPherson, Popie- 2001), and even the negative ties of victimiza- larz, and Drobnic 1992). Close confidants in- tion (Sampson 1984). 434 Smith, McPherson, & Smith-Lovin in American Sociological Review 79 (2014) Most of the information we have about nomic inequality, and symbolic/cultural changes over significant periods of time in boundaries. We then describe how our five de- the network structure of our society come mographic dimensions should change in social from either the exclusive, close ties of mar- salience, given the observed changes in macro riage (Kalmijn 1998) or the much weaker ties level features. of co-employment (Tomaskovic-Devey 1993), co-residence (Massey and Denton 1993), or Demographic Change co-matriculation (Shrum, Cheek, and Hunter 1988). This is largely because these relations Demographic change can influence the tend to leave official records that researchers raw, or absolute, rate of contact between de- can access. Scholars have been able to track mographic groups. A long line of empirical the close but unofficial contacts among people and theoretical work (Blau 1977; Blau et al. over time only within relatively captive pop- 1984) demonstrates that increased hetero- ulations like schools, and then only for rel- geneity leads to more out-group ties. If there atively short periods (Kossinets and Watts are more Hispanics (or more members of any 2009; Moody 2001). other minority group), then the opportunity The best information comes from studies for Whites (the majority) to interact with that of marital homogamy (see review in Kalmijn
Recommended publications
  • Geodesic Distance Descriptors
    Geodesic Distance Descriptors Gil Shamai and Ron Kimmel Technion - Israel Institute of Technologies [email protected] [email protected] Abstract efficiency of state of the art shape matching procedures. The Gromov-Hausdorff (GH) distance is traditionally used for measuring distances between metric spaces. It 1. Introduction was adapted for non-rigid shape comparison and match- One line of thought in shape analysis considers an ob- ing of isometric surfaces, and is defined as the minimal ject as a metric space, and object matching, classification, distortion of embedding one surface into the other, while and comparison as the operation of measuring the discrep- the optimal correspondence can be described as the map ancies and similarities between such metric spaces, see, for that minimizes this distortion. Solving such a minimiza- example, [13, 33, 27, 23, 8, 3, 24]. tion is a hard combinatorial problem that requires pre- Although theoretically appealing, the computation of computation and storing of all pairwise geodesic distances distances between metric spaces poses complexity chal- for the matched surfaces. A popular way for compact repre- lenges as far as direct computation and memory require- sentation of functions on surfaces is by projecting them into ments are involved. As a remedy, alternative representa- the leading eigenfunctions of the Laplace-Beltrami Opera- tion spaces were proposed [26, 22, 15, 10, 31, 30, 19, 20]. tor (LBO). When truncated, the basis of the LBO is known The question of which representation to use in order to best to be the optimal for representing functions with bounded represent the metric space that define each form we deal gradient in a min-max sense.
    [Show full text]
  • Homophily and Polarization in the Age of Misinformation
    Eur. Phys. J. Special Topics 225, 2047–2059 (2016) © EDP Sciences, Springer-Verlag 2016 THE EUROPEAN DOI: 10.1140/epjst/e2015-50319-0 PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Homophily and polarization in the age of misinformation Alessandro Bessi1,2, Fabio Petroni3, Michela Del Vicario2, Fabiana Zollo2, Aris Anagnostopoulos3, Antonio Scala4, Guido Caldarelli2,and Walter Quattrociocchi1,a 1 IUSS, Pavia, Italy 2 IMT Institute for Advanced Studies, Lucca, Italy 3 Sapienza University, Roma, Italy 4 ISC-CNR, Roma, Italy Received 1 December 2015 / Received in final form 30 January 2016 Published online 26 October 2016 Abstract. The World Economic Forum listed massive digital misin- formation as one of the main threats for our society. The spreading of unsubstantiated rumors may have serious consequences on public opin- ion such as in the case of rumors about Ebola causing disruption to health-care workers. In this work we target Facebook to characterize information consumption patterns of 1.2 M Italian users with respect to verified (science news) and unverified (conspiracy news) contents. Through a thorough quantitative analysis we provide important in- sights about the anatomy of the system across which misinformation might spread. In particular, we show that users’ engagement on veri- fied (or unverified) content correlates with the number of friends hav- ing similar consumption patterns (homophily). Finally, we measure how this social system responded to the injection of 4, 709 false information. We find that the frequent (and selective) exposure to specific kind of content (polarization) is a good proxy for the detection of homophile clusters where certain kind of rumors are more likely to spread.
    [Show full text]
  • Perceptions of Social Support Within the Context of Religious Homophily: A
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2003 Perceptions of social support within the context of religious homophily: a social network analysis Sally Robicheaux Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Sociology Commons Recommended Citation Robicheaux, Sally, "Perceptions of social support within the context of religious homophily: a social network analysis" (2003). LSU Master's Theses. 166. https://digitalcommons.lsu.edu/gradschool_theses/166 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. PERCEPTIONS OF SOCIAL SUPPORT WITHIN THE CONTEXT OF RELIGIOUS HOMOPHILY: A SOCIAL NETWORK ANALYSIS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Arts in The Department of Sociology by Sally Robicheaux B.A., University of Southwestern Louisiana, 1998 May 2003 ACKNOWLEDGEMENTS I would like to take this opportunity to thank several people who accompanied me through this process. First, I am deeply indebted to the members of my examining committee, Jeanne S. Hurlbert, John J. Beggs, and Yang Cao, for their keen insight, direction, and contributions to this thesis. I especially wish to thank my committee chair, and advisor, Jeanne S. Hurlbert, for all the invaluable guidance, instruction, and encouragement in helping me design and carry out this project.
    [Show full text]
  • Network Science
    This is a preprint of Katy Börner, Soma Sanyal and Alessandro Vespignani (2007) Network Science. In Blaise Cronin (Ed) Annual Review of Information Science & Technology, Volume 41. Medford, NJ: Information Today, Inc./American Society for Information Science and Technology, chapter 12, pp. 537-607. Network Science Katy Börner School of Library and Information Science, Indiana University, Bloomington, IN 47405, USA [email protected] Soma Sanyal School of Library and Information Science, Indiana University, Bloomington, IN 47405, USA [email protected] Alessandro Vespignani School of Informatics, Indiana University, Bloomington, IN 47406, USA [email protected] 1. Introduction.............................................................................................................................................2 2. Notions and Notations.............................................................................................................................4 2.1 Graphs and Subgraphs .........................................................................................................................5 2.2 Graph Connectivity..............................................................................................................................7 3. Network Sampling ..................................................................................................................................9 4. Network Measurements........................................................................................................................11
    [Show full text]
  • Latent Distance Estimation for Random Geometric Graphs ∗
    Latent Distance Estimation for Random Geometric Graphs ∗ Ernesto Araya Valdivia Laboratoire de Math´ematiquesd'Orsay (LMO) Universit´eParis-Sud 91405 Orsay Cedex France Yohann De Castro Ecole des Ponts ParisTech-CERMICS 6 et 8 avenue Blaise Pascal, Cit´eDescartes Champs sur Marne, 77455 Marne la Vall´ee,Cedex 2 France Abstract: Random geometric graphs are a popular choice for a latent points generative model for networks. Their definition is based on a sample of n points X1;X2; ··· ;Xn on d−1 the Euclidean sphere S which represents the latent positions of nodes of the network. The connection probabilities between the nodes are determined by an unknown function (referred to as the \link" function) evaluated at the distance between the latent points. We introduce a spectral estimator of the pairwise distance between latent points and we prove that its rate of convergence is the same as the nonparametric estimation of a d−1 function on S , up to a logarithmic factor. In addition, we provide an efficient spectral algorithm to compute this estimator without any knowledge on the nonparametric link function. As a byproduct, our method can also consistently estimate the dimension d of the latent space. MSC 2010 subject classifications: Primary 68Q32; secondary 60F99, 68T01. Keywords and phrases: Graphon model, Random Geometric Graph, Latent distances estimation, Latent position graph, Spectral methods. 1. Introduction Random geometric graph (RGG) models have received attention lately as alternative to some simpler yet unrealistic models as the ubiquitous Erd¨os-R´enyi model [11]. They are generative latent point models for graphs, where it is assumed that each node has associated a latent d point in a metric space (usually the Euclidean unit sphere or the unit cube in R ) and the connection probability between two nodes depends on the position of their associated latent points.
    [Show full text]
  • Average D-Distance Between Vertices of a Graph
    italian journal of pure and applied mathematics { n. 33¡2014 (293¡298) 293 AVERAGE D-DISTANCE BETWEEN VERTICES OF A GRAPH D. Reddy Babu Department of Mathematics Koneru Lakshmaiah Education Foundation (K.L. University) Vaddeswaram Guntur 522 502 India e-mail: [email protected], [email protected] P.L.N. Varma Department of Science & Humanities V.F.S.T.R. University Vadlamudi Guntur 522 237 India e-mail: varma [email protected] Abstract. The D-distance between vertices of a graph G is obtained by considering the path lengths and as well as the degrees of vertices present on the path. The average D-distance between the vertices of a connected graph is the average of the D-distances between all pairs of vertices of the graph. In this article we study the average D-distance between the vertices of a graph. Keywords: D-distance, average D-distance, diameter. 2000 Mathematics Subject Classi¯cation: 05C12. 1. Introduction The concept of distance is one of the important concepts in study of graphs. It is used in isomorphism testing, graph operations, hamiltonicity problems, extremal problems on connectivity and diameter, convexity in graphs etc. Distance is the basis of many concepts of symmetry in graphs. In addition to the usual distance, d(u; v) between two vertices u; v 2 V (G) we have detour distance (introduced by Chartrand et al, see [2]), superior distance (introduced by Kathiresan and Marimuthu, see [6]), signal distance (introduced by Kathiresan and Sumathi, see [7]), degree distance etc. 294 d. reddy babu, p.l.n. varma In an earlier article [9], the authors introduced the concept of D-distance be- tween vertices of a graph G by considering not only path length between vertices, but also the degrees of all vertices present in a path while de¯ning the D-distance.
    [Show full text]
  • Semantic Homophily in Online Communication: Evidence from Twitter
    A Semantic homophily in online communication: evidence from Twitter SANjA Sˇ CEPANOVI´ C´ , Aalto University IGOR MISHKOVSKI, University Ss. Cyril and Methodius BRUNO GONC¸ALVES, New York University NGUYEN TRUNG HIEU, University of Tampere PAN HUI, Hong Kong University of Science and Technology People are observed to assortatively connect on a set of traits. This phenomenon, termed assortative mixing or sometimes homophily, can be quantified through assortativity coefficient in social networks. Uncovering the exact causes of strong assortative mixing found in social networks has been a research challenge. Among the main suggested causes from sociology are the tendency of similar individuals to connect (often itself referred as homophily) and the social influence among already connected individuals. Distinguishing between these tendencies and other plausible causes and quantifying their contribution to the amount of assortative mixing has been a difficult task, and proven not even possible from observational data. However, another task of similar importance to researchers and in practice can be tackled, as we present here: understanding the exact mechanisms of interplay between these tendencies and the underlying social network structure. Namely, in addition to the mentioned assortativity coefficient, there are several other static and temporal network properties and substructures that can be linked to the tendencies of homophily and social influence in the social network and we herein investigate those. Concretely, we tackle a computer-mediated communication network (based on Twitter mentions) and a particular type of assortative mixing that can be inferred from the semantic features of communication content that we term semantic homophily. Our work, to the best of our knowledge, is the first to offer an in-depth analysis on semantic homophily in a communication network and the interplay between them.
    [Show full text]
  • "Distance Measures for Graph Theory"
    Distance measures for graph theory : Comparisons and analyzes of different methods Dissertation presented by Maxime DUYCK for obtaining the Master’s degree in Mathematical Engineering Supervisor(s) Marco SAERENS Reader(s) Guillaume GUEX, Bertrand LEBICHOT Academic year 2016-2017 Acknowledgments First, I would like to thank my supervisor Pr. Marco Saerens for his presence, his advice and his precious help throughout the realization of this thesis. Second, I would also like to thank Bertrand Lebichot and Guillaume Guex for agreeing to read this work. Next, I would like to thank my parents, all my family and my friends to have accompanied and encouraged me during all my studies. Finally, I would thank Malian De Ron for creating this template [65] and making it available to me. This helped me a lot during “le jour et la nuit”. Contents 1. Introduction 1 1.1. Context presentation .................................. 1 1.2. Contents .......................................... 2 2. Theoretical part 3 2.1. Preliminaries ....................................... 4 2.1.1. Networks and graphs .............................. 4 2.1.2. Useful matrices and tools ........................... 4 2.2. Distances and kernels on a graph ........................... 7 2.2.1. Notion of (dis)similarity measures ...................... 7 2.2.2. Kernel on a graph ................................ 8 2.2.3. The shortest-path distance .......................... 9 2.3. Kernels from distances ................................. 9 2.3.1. Multidimensional scaling ............................ 9 2.3.2. Gaussian mapping ............................... 9 2.4. Similarity measures between nodes .......................... 9 2.4.1. Katz index and its Leicht’s extension .................... 10 2.4.2. Commute-time distance and Euclidean commute-time distance .... 10 2.4.3. SimRank similarity measure .........................
    [Show full text]
  • Identifying the Roles of Race-Based Choice and Chance in High School Friendship Network Formation
    Identifying the roles of race-based choice and chance in high school friendship network formation Sergio Currarinia, Matthew O. Jacksonb,c,1, and Paolo Pind aDipartimento di Scienze Economiche, Università Ca′ Foscari di Venezia, and School for Advanced Studies in Venice, 30123 Venice, Italy; bDepartment of Economics, Stanford University, Stanford, CA 94305; cSanta Fe Institute, Santa Fe, NM 87501; and dDipartimento di Economia Politica, Università degli Studi di Siena, 53100 Siena, Italy Edited* by Christos Papadimitriou, University of California, Berkeley, CA, and approved January 13, 2010 (received for review October 12, 2009) Homophily, the tendency of people to associate with others similar preferences of the individual by careful observation of the choices to themselves, is observed in many social networks, ranging from that they make based on the opportunities that they have. We adapt friendships to marriages to business relationships, and is based on a these techniques for the analysis of social behavior and friendship variety of characteristics, including race, age, gender, religion, and formation. Here we infer students’ preferences by observing how the education. We present a technique for distinguishing two primary number of friendships they have changes with the racial composition sources of homophily: biases in the preferences of individuals over of their school. We employ the friendship formation model (3), here the types of their friends and biases in the chances that people meet extended to allow for differentbiases across race in both preferences individuals of other types. We use this technique to analyze racial and opportunities. Using a parameterized version of this model, we patterns in friendship networks in a set of American high schools are able to distinguish between the two primary sources of homo- from the Add Health dataset.
    [Show full text]
  • Percolation Theory Are Well-Suited To
    Models of Disordered Media and Predictions of Associated Hydraulic Conductivity A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By L AARON BLANK B.S., Wright State University, 2004 2006 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Novermber 6, 2006 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY L Blank ENTITLED Models of Disordered Media and Predictions of Associated Hydraulic Conductivity BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. _______________________ Allen Hunt, Ph.D. Thesis Advisor _______________________ Lok Lew Yan Voon, Ph.D. Department Chair _______________________ Joseph F. Thomas, Jr., Ph.D. Dean of the School of Graduate Studies Committee on Final Examination ____________________ Allen Hunt, Ph.D. ____________________ Brent D. Foy, Ph.D. ____________________ Gust Bambakidis, Ph.D. ____________________ Thomas Skinner, Ph.D. Abstract In the late 20th century there was a spill of Technetium in eastern Washington State at the US Department of Energy Hanford site. Resulting contamination of water supplies would raise serious health issues for local residents. Therefore, the ability to predict how these contaminants move through the soil is of great interest. The main contribution to contaminant transport arises from being carried along by flowing water. An important control on the movement of the water through the medium is the hydraulic conductivity, K, which defines the ease of water flow for a given pressure difference (analogous to the electrical conductivity). The overall goal of research in this area is to develop a technique which accurately predicts the hydraulic conductivity as well as its distribution, both in the horizontal and the vertical directions, for media representative of the Hanford subsurface.
    [Show full text]
  • Virality Prediction and Community Structure in Social Networks
    Virality Prediction and Community Structure in Social Networks Yong-Yeol “YY” Ahn @yy Most populated countries 1,300,000,000+ 1,200,000,000+ 300,000,000+ Most populated countries 1,300,000,000+ 1,200,000,000+ 1,100,000,000+ 500,000,000+ 300,000,000+ Social media can amplify messages. “Casually pepper spraying everything cop” meme Companies are desperately trying to leverage social media to make their products and ads viral. Original, useful ideas - hard “viral marketing” ‘Astroturfing’ may change election results. “1/3 of online reviews may be fake.” - Bing Liu (UIC) How can we understand virality? Can we predict viral memes? Clue #1: Complex contagion Memes = Infectious diseases? Germs spread through the “social” network Memes, ideas and behaviors also spread through social network. Memes = Infectious diseases? Maybe not. “Large” world “Small” world D. Centola, Science 2010 Which network is better at spreading information quickly? “Large” world “Small” world D. Centola, Science 2010 Multiple exposures are crucial. Social reinforcement Complex Contagion 三人成虎 三人成虎 three 三人成虎 three people construct 三人成虎 three people construct 三人成虎 three people tiger ? ? ! Complex Contagion needs multiple exposures. & Social contagion seems to be complex contagions. Clustering should be important. (B) Social Reinforcement Multiple Exposures Multiple Exposures A High Clustering Low Clustering (D) Retweet Network (E) Follower Network Figure 1: The importance of community structure in the spreading of social contagions. (A) Structural trapping: dense communities with few outgoing links naturally trap informa- tion flow. (B) Social reinforcement: people who have adopted a meme (black nodes) trigger multiple exposures to others (red nodes). In the presence of high clustering, any additional adoption is likely to produce more multiple exposures than in the case of low clustering, in- ducing cascades of additional adoptions.
    [Show full text]
  • Social Network Analysis: Homophily
    Social Network Analysis: homophily Donglei Du ([email protected]) Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2 Donglei Du (UNB) Social Network Analysis 1 / 41 Table of contents 1 Homophily the Schelling model 2 Test of Homophily 3 Mechanisms Underlying Homophily: Selection and Social Influence 4 Affiliation Networks and link formation Affiliation Networks Three types of link formation in social affiliation Network 5 Empirical evidence Triadic closure: Empirical evidence Focal Closure: empirical evidence Membership closure: empirical evidence (Backstrom et al., 2006; Crandall et al., 2008) Quantifying the Interplay Between Selection and Social Influence: empirical evidence—a case study 6 Appendix A: Assortative mixing in general Quantify assortative mixing Donglei Du (UNB) Social Network Analysis 2 / 41 Homophily: introduction The material is adopted from Chapter 4 of (Easley and Kleinberg, 2010). "love of the same"; "birds of a feather flock together" At the aggregate level, links in a social network tend to connect people who are similar to one another in dimensions like Immutable characteristics: racial and ethnic groups; ages; etc. Mutable characteristics: places living, occupations, levels of affluence, and interests, beliefs, and opinions; etc. A.k.a., assortative mixing Donglei Du (UNB) Social Network Analysis 4 / 41 Homophily at action: racial segregation Figure: Credit: (Easley and Kleinberg, 2010) Donglei Du (UNB) Social Network Analysis 5 / 41 Homophily at action: racial segregation Credit: (Easley and Kleinberg, 2010) Figure: Credit: (Easley and Kleinberg, 2010) Donglei Du (UNB) Social Network Analysis 6 / 41 Homophily: the Schelling model Thomas Crombie Schelling (born 14 April 1921): An American economist, and Professor of foreign affairs, national security, nuclear strategy, and arms control at the School of Public Policy at University of Maryland, College Park.
    [Show full text]