Studies in Multicyclic Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights
Taylor University Pillars at Taylor University Student Scholarship: Chemistry Chemistry and Biochemistry Fall 2019 Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights David Joshua Ferguson Follow this and additional works at: https://pillars.taylor.edu/chemistry-student Part of the Analytical Chemistry Commons, Inorganic Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, and the Physical Chemistry Commons CHEMISTRY THESIS SIGNIFICANCE AND IMPLICATIONS OF VITAMIN B-12 REACTION SCHEMA- ETH ZURICH VARIANT: MECHANISMS AND INSIGHTS DAVID JOSHUA FERGUSON 2019 2 Table of Contents: Chapter 1 6 Chapter 2 17 Chapter 3 40 Chapter 4 59 Chapter 5 82 Chapter 6 118 Chapter 7 122 Appendix References 3 Chapter 1 A. INTRODUCTION. Vitamin B-12 otherwise known as cyanocobalamin is a compound with synthetic elegance. Considering how it is composed of an aromatic macrocyclic corrin there are key features of this molecule that are observed either in its synthesis of in the biochemical reactions it plays a role in whether they be isomerization reactions or transfer reactions. In this paper the focus for the discussion will be on the history, chemical significance and total synthesis of vitamin B12. Even more so the paper will be concentrated one of the two variants of the vitamin B-12 synthesis, namely the ETH Zurich variant spearheaded by Albert Eschenmoser.Examining the structure as a whole it is observed that a large portion of the vitamin B12 is a corrin structure with a cobalt ion in the center of the macrocyclic part, and that same cobalt ion has cyanide ligands. -
Rare-Earth Metal Methylidene Complexes with Ln3 (Μ3-CH2)(Μ3
Dalton Transactions View Article Online PAPER View Journal | View Issue Rare-earth metal methylidene complexes with Ln3(μ3-CH2)(μ3-Me)(μ2-Me)3 core structure† Cite this: Dalton Trans., 2015, 44, 18101 Dorothea Schädle,a Melanie Meermann-Zimmermann,b Cäcilia Maichle-Mössmer,a Christoph Schädle,a Karl W. Törnroosc and Reiner Anwander*a Trinuclear rare-earth metal methylidene complexes with a Ln3(µ3-CH2)(µ3-Me)(µ2-Me)3 structural motif were synthesized by applying three protocols. Polymeric [LuMe3]n (1-Lu) reacts with the sterically demand- ing amine H[NSiMe3(Ar)] (Ar = C6H3iPr2-2,6) in tetrahydrofuran via methane elimination to afford isolable monomeric [NSiMe3(Ar)]LuMe2(thf)2 (4-Lu). The formation of trinuclear rare-earth metal tetramethyl methylidene complexes [NSiMe3(Ar)]3Ln3(µ3-CH2)(µ3-Me)(µ2-Me)3(thf)3 (7-Ln; Ln = Y, Ho, Lu) via reaction of [LnMe3]n (1-Ln; Ln = Y, Ho, Lu) with H[NSiMe3(Ar)] is proposed to occur via an “intermediate” species of the type [NSiMe3(Ar)]LnMe2(thf)x and subsequent C−H bond activation. Applying Lappert’s concept of Lewis base-induced methylaluminate cleavage, compounds [NSiMe3(Ar)]Ln(AlMe4)2 (5-Ln; Ln = Y, La, Nd, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Ho) were converted into methylidene complexes 7-Ln (Ln = Y, Nd, Ho) in the presence of tetrahydrofuran. Similarly, tetramethylgallate complex [NSiMe3(Ar)]Y(GaMe4)2 (6-Y) could be employed as a synthesis pre- cursor for 7-Y. The molecular composition of complexes 4-Ln, 5-Ln, 6-Y and 7-Ln was confirmed by elemental analyses, FTIR spectroscopy, 1H and 13C NMR spectroscopy (except for holmium derivatives) Received 30th July 2015, and single-crystal X-ray diffraction. -
Identification of a Novel Substrate-Derived Spermine
ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ UDK 577.152.1 Identification of a Novel Substrate- Derived Spermine Oxidase Inhibitor T. T. Dunston1, M. A. Khomutov2, S. B. Gabelli1,3,4, T. M. Stewart1, J. R. Foley1, S. N. Kochetkov2, A. R. Khomutov2*, R. A. Casero Jr.1* 1Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA 2Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia 3Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 4Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA *E-mail: [email protected], [email protected] Received May 08, 2020; in final form, July 07, 2020 DOI: 10.32607/actanaturae.10992 ABSTRACT Homeostasis of the biogenic polyamines spermine (Spm) and spermidine (Spd), present in μM-mM concentrations in all eukaryotic cells, is precisely regulated by coordinated activities of the enzymes of poly- amine synthesis, degradation, and transport, in order to sustain normal cell growth and viability. Spermine oxidase (SMOX) is the key and most recently discovered enzyme of polyamine metabolism that plays an es- sential role in regulating polyamine homeostasis by catalyzing the back-conversion of Spm to Spd. The deve- lopment of many types of epithelial cancer is associated with inflammation, and disease-related inflammatory stimuli induce SMOX. MDL72527 is widely used in vitro and in vivo as an irreversible inhibitor of SMOX, but it is also potent towards N1-acetylpolyamine oxidase. Although SMOX has high substrate specificity, Spm analogues have not been systematically studied as enzyme inhibitors. -
S41467-018-04983-2.Pdf
ARTICLE DOI: 10.1038/s41467-018-04983-2 OPEN Novofumigatonin biosynthesis involves a non- heme iron-dependent endoperoxide isomerase for orthoester formation Yudai Matsuda 1,2,3, Tongxuan Bai2, Christopher B.W. Phippen1, Christina S. Nødvig1, Inge Kjærbølling1, Tammi C. Vesth1, Mikael R. Andersen 1, Uffe H. Mortensen 1, Charlotte H. Gotfredsen 4, Ikuro Abe 2 & Thomas O. Larsen 1 1234567890():,; Novofumigatonin (1), isolated from the fungus Aspergillus novofumigatus, is a heavily oxy- genated meroterpenoid containing a unique orthoester moiety. Despite the wide distribution of orthoesters in nature and their biological importance, little is known about the biogenesis of orthoesters. Here we show the elucidation of the biosynthetic pathway of 1 and the identification of key enzymes for the orthoester formation by a series of CRISPR-Cas9-based gene-deletion experiments and in vivo and in vitro reconstitutions of the biosynthesis. The novofumigatonin pathway involves endoperoxy compounds as key precursors for the orthoester synthesis, in which the Fe(II)/α-ketoglutarate-dependent enzyme NvfI performs the endoperoxidation. NvfE, the enzyme catalyzing the orthoester synthesis, is an Fe(II)- dependent, but cosubstrate-free, endoperoxide isomerase, despite the fact that NvfE shares sequence homology with the known Fe(II)/α-ketoglutarate-dependent dioxygenases. NvfE thus belongs to a class of enzymes that gained an isomerase activity by losing the α- ketoglutarate-binding ability. 1 Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark. 2 Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 3 Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China. -
Publikationsliste Internet
Professor Dr. Alois Fürstner List of Publications 2020 F. Caló, A. Fürstner A Heteroleptic Dirhodium Catalyst for Asymmetric Cyclopropanation with -Stannyl -Diazoacetate. ‘Stereoretentive’ Stille Coupling with Formation of Chiral Quarternary Carbon Centers Angew. Chem. 2020, 132; 14004-14011, Angew. Chem. Int. Ed. 2020, 59, 13900-13907 H. Jin, A. Fürstner Modular Synthesis of Furans with up to Four Different Substituents by a trans‐Carboboration Strategy Angew. Chem. 2020, 132; 13720-13724, Angew. Chem. Int. Ed. 2020, 29, 1316-13622 Z. Meng, A. Fürstner Total Synthesis Provides Strong Evidence: Xestocyclamine A is the Enantiomer of Ingenamine J. Am. Chem. Soc. 2020, 142, 11703-11708 J. Hillenbrand, M. Leutzsch, E. Yiannakas, C. Gordon, C. Wille, N. Nöthling, C. Copéret, A. Fürstner “Canopy Catalysts” for Alkyne Metathesis: Molybdenum Alkylidyne Complexes with a Tripodal Ligand Framework J. Am. Chem. Soc.2020, 142, 11279-11294 M. Heinrich, J. Murphy, M. Ilg, A. Letort, J. Flasz, P. Philipps, A. Fürstner Chagosensine: A Riddle Wrapped in a Mystery Inside an Enigma J. Am. Chem. Soc. 2020, 142, 6409-6422 M. Buchsteiner, L. Martinez-Rodriguez, P. Jerabek, I. Pozo, M. Patzer, N. Nöthling, C. Lehmann, A. Fürstner Catalytic Asymmetric Fluorination of Copper Carbene Complexes: Preparative Advances and a Mechanistic Rationale Chem.–Eur. J. 2020, 26, 2509-2515 2019 S. Peil, A. Fürstner Mechanistic Divergence in the Hydrogenative Synthesis of Furans and Butenolides: Ruthenium Carbenes Formed by gem-Hydrogenation or via Carbophilic Activation of Alkynes Angew. Chem. 2019, 131; 18647-18652; Angew. Chem. Int. Ed. 2019, 58, 18476-18481 L. Huang, Y. Gu, A. Fürstner Iron Catalyzed Reactions of 2-Pyridone Derivatives: 1,6-Addition and Formal Ring Opening/Cross Coupling Chem. -
Trisubstituted Push-Pull Nitro Alkenes
The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2020, part vii, 401-421 Organic Chemistry Trisubstituted push-pull nitro alkenes Branislav Pavilek* and Viktor Milata Institute of Organic Chemistry, Catalysis, and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia Email: [email protected] Dedicated to Professor Jan Bergman on the occasion of his 80th birthday. Received 02-18-2021 Accepted 04-19-2021 Published on line 04-30-2021 Abstract Properties, preparations, and utilization in the organic synthesis of the trisubstituted push-pull nitroalkenes are summarized from all the relevant results published until 2020. Preparation of these nitroalkenes is versatile due to numerous of the starting materials. The importance of reviewed nitroalkenes is outlined by their frequent exploitation in the synthesis of biologically active compounds, as well as a vast range of heterocyclic derivatives. Keywords: Push-pull nitroalkenes, nucleophilic vinylic substitution, heterocycles formation, nitroalkenes cycloadditions DOI: https://doi.org/10.24820/ark.5550190.p011.495 Page 401 ©AUTHOR(S) Arkivoc 2020, vii, 401-421 Pavilek, B. et al. Table of Contents 1. Introduction 2. Review 2.1. Isomerism 2.2. Preparation 2.2.1. Formation of nitroenolethers (A) 2.2.2. Formation of mono-N-substituted nitroenamines (B) 2.2.3. Formation of di-N,N-substituted nitroenamines (C) 2.2.4. Other preparations (D) 2.3. Utilization in organic synthesis 2.3.1. Reactions with mono-nucleophiles (E) 2.3.2. Reactions with 1,2-binucleophiles (F) 2.3.3. Reactions with 1,3-binucleophiles (G) 2.3.4. -
Aldehydes Can React with Alcohols to Form Hemiacetals
340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess. -
Orthoester Exchange: a Tripodal Tool for Dynamic Covalent and Systems
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014 Supporting Information Orthoester Exchange: a Tripodal Tool for Dynamic Covalent and Systems Chemistry René-Chris Brachvogel and Max von Delius* Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Henkestr. 42, 91054 Erlangen, Germany. * Fax: +49 9131 85 26864; Tel: +49 9131 85 22946; E-mail: [email protected] Contents General experimental section ....................................................................................................................S2 Reversibility of equilibration .....................................................................................................................S7 Investigation of solvents ...........................................................................................................................S11 Investigation of different orthoesters......................................................................................................S13 Investigation of different alcohols ...........................................................................................................S15 Treatment with bicarbonate solution .....................................................................................................S21 Analysis by GC-FID and HPLC-MS ......................................................................................................S23 Manipulation of equilibrium distribution ..............................................................................................S26 -
1 Protecting Group Strategies in Carbohydrate Chemistry
1 1 Protecting Group Strategies in Carbohydrate Chemistry Anne G. Volbeda, Gijs A. van der Marel, and Jeroen D. C. Codée Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands Carbohydrates are the most densely functionalized class of biopolymers in nature. Every monosaccharide features multiple contiguous stereocenters and bears multiple hydroxyl functionalities. These can, in turn, be decorated with sulfate groups, acyl esters, lactic acid esters and ethers, or phosphate moieties. Amine and carboxylate functions can also be present. Most often, the amine groups are acetylated, but different amide functions are also found, as well as N‐sulfates and alkylated amines. The discrimination of the functional groups on a carbohydrate ring has been and continues to be one of the great challenges in synthetic carbohydrate chemistry [1–3]. This chapter describes the differences in the reactivity of the various func tional groups on a carbohydrate ring and how to exploit these in the design of effective protecting group strategies. The protecting groups on a carbohydrate dictate the reactivity of the (mono)saccharide, and this chapter will describe how protecting group effects can be used to control stereoselective transformations (most importantly, glycosylation reactions) and reactivity‐controlled one‐pot synthesis strategies. Applications and strategies in automated synthesis are also highlighted. 1.1 Discriminating Different Functionalities on a Carbohydrate Ring The main challenge in the functionalization of a carbohydrate (mono)saccharide is the discrimination of the different hydroxyl functionalities. The – often subtle – differences in reactivity can be capitalized upon to formulate effective protecting group strategies (see Scheme 1.1A). -
Chapter 3. the Concept of Protecting Functional Groups
Chapter 3. The Concept of Protecting Functional Groups When a chemical reaction is to be carried out selectively at one reactive site in a multifunctional compound, other reactive sites must be temporarily blocked. A protecting group must fulfill a number of requirements: • The protecting group reagent must react selectively (kinetic chemoselectivity) in good yield to give a protected substrate that is stable to the projected reactions. • The protecting group must be selectively removed in good yield by readily available reagents. • The protecting group should not have additional functionality that might provide additional sites of reaction. 3.1 Protecting of NH groups Primary and secondary amines are prone to oxidation, and N-H bonds undergo metallation on exposure to organolithium and Grignard reagents. Moreover, the amino group possesses a lone pair electrons, which can be protonated or reacted with electrophiles. To render the lone pair electrons less reactive, the amine can be converted into an amide via acylation. N-Benzylamine Useful for exposure to organometallic reagents or metal hydrides Hydrogenolysis Benzylamines are not cleaved by Lewis acid Pearlman’s catalyst Amides Basicity of nitrogen is reduced, making them less susceptible to attack by electrophilic reagent The group is stable to pH 1-14, nucleophiles, organometallics (except organolithium reagents), catalytic hydrogenation, and oxidation. Cleaved by strong acid (6N HCl, HBr) or diisobutylaluminum hydride Carbamates Behave like a amides, hence no longer act as nucleophile Stable to oxidizing agents and aqueous bases but may react with reducing agents. Iodotrimethylsilane is often the reagent for removal of this protecting group Stable to both aqueous acid and base Benzoyloxycarbonyl group for peptide synthesis t-butoxycarbonyl group(Boc) is inert to hydrogenolysis and resistant to bases and nucleophilic reagent. -
Electronic Or Optoelectronic Device Comprising an Anchored Thin Molecular Layer, Process for Its Preparation and Compound Used Therein
(19) TZZ Z _T (11) EP 2 840 622 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 25.02.2015 Bulletin 2015/09 H01L 51/10 (2006.01) H01L 51/50 (2006.01) (21) Application number: 13180827.1 (22) Date of filing: 19.08.2013 (84) Designated Contracting States: • Lüssem, Björn AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 01127 Dresden (DE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO •Leo,Karl PL PT RO RS SE SI SK SM TR 01219 Dresden (DE) Designated Extension States: • Fischer, Axel BA ME 01097 Dresden (DE) (71) Applicant: Novaled GmbH (74) Representative: Bittner, Thomas L. 01307 Dresden (DE) Boehmert & Boehmert Anwaltspartnerschaft mbB (72) Inventors: Patentanwälte Rechtsanwälte • Nicht, Sylvia Pettenkoferstrasse 20-22 01187 Dresden (DE) 80336 München (DE) •Blochwitz-Nimoth, Jan 01097 Dresden (DE) (54) Electronic or optoelectronic device comprising an anchored thin molecular layer, process for its preparation and compound used therein (57) The application concerns materials for self as- (EWG) group, such as tetrafluorotetracyanoquin- sembled (SAM) charge injection layers on electrodes of odimethane (F4TCNQ), hexaazatriphenylene (HAT) and organic electronic devices. The materials comprise an hexaazatriphenylene hexacarbonitrile (HATCN). The anchoring group, such as a thiol, a spacer group selected spacer group is connected to the EWG via a single bond from nitrogen aromatic heterocycles and aromatic rings from a nitrogen of the spacer group to a mehtylidenyl substituted with an amine, and an electron withdrawing group of the EWG. EP 2 840 622 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 840 622 A1 Description [0001] The present invention relates to an electronic or optoelectronic device comprising an anchored thin molecular layer. -
Thiazolo[3,2-B][1,2,4]Triazolium Cationic Surfactant
Article Volume 11, Issue 6, 2021, 13885 - 13892 https://doi.org/10.33263/BRIAC116.1388513892 Synthetic Strategy and Structure Characterization of a New [1,3]Thiazolo[3,2-b][1,2,4]Triazolium Cationic Surfactant Maksym Fizer 1,* , Mikhailo Slivka 2 , Oksana Fizer 3 1 Department of Organic Chemistry, Faculty of Chemistry, Uzhhorod National University, Fedinets', Str. 53/1, 88000, Uzhhorod, Ukraine; [email protected] (M.F.); [email protected] (M.S.); [email protected] (O.F.); * Correspondence: [email protected]; (M.F.); Scopus Author ID 55823743600 Received: 20.01.2021; Revised: 21.02.2021; Accepted: 24.02.2021; Published: 1.03.2021 Abstract: Here, we present a synthetic strategy to access a new [1,3]thiazolo[3,2-b][1,2,4]triazolium- based cationic surfactant via the use of proton-induced heterocyclization method for quaternization of a nitrogen atom. The two-step synthesis of 2-heptyl-6,6-dimethyl-3-phenyl-5,6-dihydro-3H- [1,3]thiazolo[3,2-b][1,2,4]triazol-7-ium perchlorate is described in details. The analysis of NMR spectra unequivocally proved the formation of the 1,3-thiazolinium ring upon cyclization reaction. PM7 semiempirical calculations testify to the similar electronic structure of the newly synthesized surfactant cation and 1-heptylpyridinium cation. Keywords: 1,2,4-triazole; alkylation; cyclization; surfactant; NMR; cation; PM7; semiempirical. © 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).