The Accretion Rates and Mechanisms of Herbig Ae/Be Stars 1

Total Page:16

File Type:pdf, Size:1020Kb

The Accretion Rates and Mechanisms of Herbig Ae/Be Stars 1 The accretion rates and mechanisms of Herbig Ae/Be stars 1 The accretion rates and mechanisms of Herbig Ae/Be stars Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/staa169/5709940 by University of Leeds user on 29 January 2020 C. Wichittanakom,1;2? R. D. Oudmaijer,2 J. R. Fairlamb,3 I. Mendigut´ıa,4 M. Vioque,2 and K. M. Ababakr5 1Department of Physics, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand 2School of Physics and Astronomy, EC Stoner Building, University of Leeds, Leeds LS2 9JT, UK 3Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822, USA 4Centro de Astrobiolog´ıa(CSIC-INTA), Departamento de Astrof´ısica, ESA-ESAC Campus, PO Box 78, 28691 Villanueva de la Ca~nada, Madrid, Spain 5Erbil Polytechnic University, Kirkuk Road, Erbil, Iraq Accepted 2020 January 07. Received 2020 January 01; in original form 2019 October 09 ABSTRACT This work presents a spectroscopic study of 163 Herbig Ae/Be stars. Amongst these, we present new data for 30 objects. Stellar parameters such as temperature, reddening, mass, luminosity and age are homogeneously determined. Mass accretion rates are determined from Hα emission line measurements. Our data is complemented with the X-Shooter sample from previous studies and we update results using Gaia DR2 parallaxes giving a total of 78 objects with homogeneously determined stellar parameters and mass accretion rates. In addition, mass accretion rates of an additional 85 HAeBes are determined. We confirm previous findings that the mass accretion rate increases as a function of stellar mass, and the existence of a different slope for lower and higher +1:37 mass stars respectively. The mass where the slope changes is determined to be 3:98−0:94 M . We discuss this break in the context of different modes of disk accretion for low- and high mass stars. Because of their similarities with T Tauri stars, we identify the accretion mechanism for the late- type Herbig stars with the Magnetospheric Accretion. The possibilities for the earlier-type stars are still open, we suggest the Boundary Layer accretion model may be a viable alternative. Finally, we investigated the mass accretion - age relationship. Even using the superior Gaia based data, it proved hard to select a large enough sub-sample to remove the mass dependency in this relationship. Yet, it would appear that the mass accretion does decline with age as expected from basic theoretical considerations. Key words: accretion, accretion discs { stars: formation { stars: fundamental param- eters { stars: pre-main-sequence { stars: variables: T Tauri, Herbig Ae/Be { techniques: spectroscopic 1 INTRODUCTION A long standing problem has also been that their brightness is very high, such that radiation pressure can in principle Herbig Ae/Be stars (HAeBes) are optically visible interme- stop accretion onto the stellar surface (Kahn 1974). More- diate pre-main sequence (PMS) stars whose masses range over, they form very quickly and reach the main sequence from about 2 to 10 M . These PMS stars were first identi- before their surrounding cloud disperses (Palla & Stahler fied by Herbig(1960), using three criteria: \Stars with spec- 1993). This suggests that their evolutionary processes are tral type A and B with emission lines; lie in an obscured very different from T Tauri stars. region; and illuminate fairly bright nebulosity in its imme- The accretion onto classical T Tauri low-mass stars is diate vicinit". HAeBes play an important role in understand- magnetically controlled. The magnetic field from the star ing massive star formation, because they bridge the gap be- truncates material in the disc and from this point, material tween low-mass stars whose formation is relatively well un- falls onto the star along the field line. After matter hits the derstood, and high-mass stars whose formation is still un- photosphere, it produces X-ray radiation that is absorbed by clear. The study of their formation is not well understood as surrounding particles. Then, these particles heat up and re- massive stars are very rare and as a consequence on average radiate at ultraviolet wavelengths, producing an UV-excess far away, and often optically invisible (Lumsden et al. 2013). that can be observed and from which the accretion luminos- ity can be calculated (Bouvier et al. 2007; Hartmann et al. 2016). It was found later, that a correlation between the ? E-mail: [email protected] (CW) line luminosity and the accretion luminosity exists, allowing 2 C. Wichittanakom et al. accretion rates of classical T Tauri stars to be determined ing the distances determined from the Gaia DR2 parallaxes from the UV-excess and absorption line veiling (Calvet et al. and a redetermined extinction towards the objects. As such, 2004; Ingleby et al. 2013). this becomes the largest homogeneous spectroscopic anal- Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/staa169/5709940 by University of Leeds user on 29 January 2020 HAeBes have similar properties as classical T ysis of HAeBes to date. In addition, the accretion rates of Tauri stars, for instance having emission lines, UV- HAeBes in the V18 study are determined for the 104 objects excess, a lower surface gravity than main-sequence stars for which Hα emission line equivalent widths are collected (Hamann & Persson 1992; Vink et al. 2005) and they are from the literature or determined from archival spectra. usually identified by an infrared (IR) excess from circumstel- The structure of this paper is as follows. Section 2 lar discs (Van den Ancker et al. 2000; Meeus et al. 2001). presents the spectroscopic data observation of all targets. Because their envelopes are radiative, no magnetic field Details of observations, instrumental setups and reduction is expected to be generated in HAeBe stars as this usu- procedures are given in this section. Section 3 and 4 detail ally happens in stars by convection. Indeed, magnetic fields the determination of stellar parameters and mass accretion have rarely been detected towards them (Catala et al. 2007; rates. Sections 5 and 6 focus on the analysis and a discus- Alecian et al. 2013). As a result magnetically controlled ac- sion respectively. Section 7 provides a summary of the main cretion is not necessarily expected to apply in the case of conclusions of this paper. the most massive objects, requiring another accretion mech- anism. However, how the material arrives at the stellar sur- face in the absence of magnetic fields is still unclear. 2 OBSERVATIONS AND DATA REDUCTION Several lines of evidence have indicated a difference be- 2.1 IDS and sample selection tween the lower mass Herbig Ae and higher mass Herbig Be stars. Spectropolarimetric studies suggest that Herbig The data were collected in June 2013 using the Intermediate Ae stars and T Tauri stars may form in the same process Dispersion Spectrograph (IDS) instrument and the RED+2 (Vink et al. 2005; Ababakr et al. 2017). Accretion rates of CCD detector with 2048 × 4096 pixels (pixel size 24 µm), HAeBes are determined from the measurement of UV-excess which is attached to the Cassegrain focus of the 2.54-m Isaac (Mendigut´ıa et al. 2011b) who have found that the relation- Newton Telescope (INT) at the Observatorio del Roque de ship between the line luminosity and the accretion luminos- los Muchachos, La Palma, Spain. The observations spanned ity is similar to the classical T Tauri stars. A spectroscopic six nights between the 20th and the 25th June 2013. Bias variability study suggests that a Herbig Ae star is undergo- frames, flat field frames, object frames and arc frames of ing magnetospheric accretion in the same manner as classical Cu-Ar and Cu-Ne comparison lamp were taken each night T Tauri stars (Sch¨oller et al. 2016) while Mendigut´ıa et al. to prepare for the data reduction. (2011a) find the Herbig Be stars to have different Hα vari- In the first two nights the spectrograph was set up with ability properties than the Herbig Ae stars. Therefore, mag- a 1200 lines mm−1 R1200B diffraction grating and a 0.9 or netically influenced accretion in HAeBes would still be pos- 1.0 arcsecond wide slit in order to obtain spectra across the sible. A study employing X-shooter spectra for 91 HAeBes Balmer discontinuity. The wavelength coverage was 3600{ was carried out by Fairlamb et al.(2015, 2017, hereafter F15 4600 A,˚ centred at 4000.5 A.˚ In this range the hydrogen lines and F17 respectively). They determined the stellar param- of Hγ;Hδ, H(7-2), H(8-2), H(9-2) and H(10-2) can be anal- eters in a homogenous fashion, derived mass accretion rates ysed. This combination provides a reciprocal dispersion of from the UV-excess and found the relationship between ac- 0.53 A˚ pixel−1 with a spectral resolution of ∼ 1 A˚ and a re- cretion luminosity and line luminosity for 32 emission lines solving power of R ∼ 4000. in the range 0.4{2.4 µm. 47 objects in their sample were For the next two nights the R1200Y grating was used to taken from Th´eet al.(1994, table 1), which to this date observe spectra in the visible. Its spectral range covers 5700 contains the strongest (candidate) members of the group. to 6700 A,˚ centred at 6050.4 A.˚ This range includes the He i ˚ ˚ The Fairlamb papers were published before the Gaia par- line at 5876 A, the [O iλ6300] line and the Hα line at 6562 A. allaxes became available, and the distances used may need This setup results in a reciprocal dispersion of 0.52 A˚ pixel−1 revision as these can affect parameters such as the radius, and a resolving power of R ∼ 6500.
Recommended publications
  • A Hipparcos Study of the Hyades Open Cluster
    A&A 367, 111–147 (2001) Astronomy DOI: 10.1051/0004-6361:20000410 & c ESO 2001 Astrophysics A Hipparcos study of the Hyades open cluster Improved colour-absolute magnitude and Hertzsprung{Russell diagrams J. H. J. de Bruijne, R. Hoogerwerf, and P. T. de Zeeuw Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands Received 13 June 2000 / Accepted 24 November 2000 Abstract. Hipparcos parallaxes fix distances to individual stars in the Hyades cluster with an accuracy of ∼6per- cent. We use the Hipparcos proper motions, which have a larger relative precision than the trigonometric paral- laxes, to derive ∼3 times more precise distance estimates, by assuming that all members share the same space motion. An investigation of the available kinematic data confirms that the Hyades velocity field does not contain significant structure in the form of rotation and/or shear, but is fully consistent with a common space motion plus a (one-dimensional) internal velocity dispersion of ∼0.30 km s−1. The improved parallaxes as a set are statistically consistent with the Hipparcos parallaxes. The maximum expected systematic error in the proper motion-based parallaxes for stars in the outer regions of the cluster (i.e., beyond ∼2 tidal radii ∼20 pc) is ∼<0.30 mas. The new parallaxes confirm that the Hipparcos measurements are correlated on small angular scales, consistent with the limits specified in the Hipparcos Catalogue, though with significantly smaller “amplitudes” than claimed by Narayanan & Gould. We use the Tycho–2 long time-baseline astrometric catalogue to derive a set of independent proper motion-based parallaxes for the Hipparcos members.
    [Show full text]
  • Where Are the Hot Ion Lines in Classical T Tauri Stars Formed?
    Accretion, winds and jets: High-energy emission from young stellar objects Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universit¨at Hamburg vorgelegt von Hans Moritz G¨unther aus Hamburg Hamburg 2009 ii Gutachter der Dissertation: Prof. Dr. J. H. M. M. Schmitt Prof. Dr. E. Feigelson Gutachter der Disputation: Prof. Dr. P. H. Hauschildt Prof. Dr. G. Wiedemann Datum der Disputation: 13.03.2009 Vorsitzender des Pr¨ufungsausschusses: Dr. R. Baade Vorsitzender des Promotionsausschusses: Prof. Dr. R. Klanner Dekan der MIN Fakult¨at: Prof. Dr. A. Fr¨uhwald (bis 28.02.2009) Prof. Dr. H. Graener (ab 01.03.2009) iii Zusammenfassung Sterne entstehen durch Gravitationsinstabilit¨aten in molekularen Wolken. Wegen der Erhaltung des Drehimpulses geschieht der Kollaps nicht sph¨arisch, sondern das Material f¨allt zun¨achst auf eine Akkretionsscheibe zusammen. In dieser Doktorarbeit wird hochenergetische Strahlung von Sternen untersucht, die noch aktiv Material von ihrer Scheibe akkretieren, aber nicht mehr von einer Staub- und Gash¨ulle verdeckt sind. In dieser Phase nennt man Sterne der Spektraltypen A und B Herbig Ae/Be (HAeBe) Sterne, alle sp¨ateren Sterne heißen klassische T Tauri Sterne (CTTS); eigentlich werden beide Typen ¨uber spektroskopische Merkmale definiert, aber diese fallen mit den hier genannten Entwicklungsstadien zusammen. In dieser Arbeit werden CTTS und HAeBes mit hochaufl¨osender Spektroskopie im R¨ontgen- und UV-Bereich untersucht und Simulationen f¨ur diese Stadien gezeigt. F¨ur zwei Sterne werden R¨ontgenspektren reduziert und vorgestellt: Der CTTS V4046 Sgr wurde mit Chandra f¨ur 100 ks beobachtet. Die Lichtkurve dieser Beobachtung zeigt einen Flare und die Triplets der He Isosequenz (Si xiii, Ne ix und O vii) deuten auf hohe Dichten im emittierenden Plasma hin.
    [Show full text]
  • The UV Perspective of Low-Mass Star Formation
    galaxies Review The UV Perspective of Low-Mass Star Formation P. Christian Schneider 1,* , H. Moritz Günther 2 and Kevin France 3 1 Hamburger Sternwarte, University of Hamburg, 21029 Hamburg, Germany 2 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research; Cambridge, MA 02109, USA; [email protected] 3 Department of Astrophysical and Planetary Sciences Laboratory for Atmospheric and Space Physics, University of Colorado, Denver, CO 80203, USA; [email protected] * Correspondence: [email protected] Received: 16 January 2020; Accepted: 29 February 2020; Published: 21 March 2020 Abstract: The formation of low-mass (M? . 2 M ) stars in molecular clouds involves accretion disks and jets, which are of broad astrophysical interest. Accreting stars represent the closest examples of these phenomena. Star and planet formation are also intimately connected, setting the starting point for planetary systems like our own. The ultraviolet (UV) spectral range is particularly suited for studying star formation, because virtually all relevant processes radiate at temperatures associated with UV emission processes or have strong observational signatures in the UV range. In this review, we describe how UV observations provide unique diagnostics for the accretion process, the physical properties of the protoplanetary disk, and jets and outflows. Keywords: star formation; ultraviolet; low-mass stars 1. Introduction Stars form in molecular clouds. When these clouds fragment, localized cloud regions collapse into groups of protostars. Stars with final masses between 0.08 M and 2 M , broadly the progenitors of Sun-like stars, start as cores deeply embedded in a dusty envelope, where they can be seen only in the sub-mm and far-IR spectral windows (so-called class 0 sources).
    [Show full text]
  • January 2015 BRAS Newsletter
    January, 2015 Next Meeting: January 12th at 7PM at HRPO Artist concept of New Horizons. For more info on it and its mission to Pluto, click on the image. What's In This Issue? President's Message Astro Short: Wild Weather on WASP -43b Secretary's Summary Message From HRPO IYL and 20/20 Vision Campaign Recent BRAS Forum Entries Observing Notes by John Nagle President's Message Welcome to a new year. I can see lots to be excited about this year. First up are the Rockafeller retreat and Hodges Gardens Star Party. Go to our website for details: www.brastro.org Almost like a Christmas present from heaven, Comet Lovejoy C/2014 Q2 underwent a sudden brightening right before Christmas. Initially it was expected to be about magnitude 8 at its brightest but right after Christmas it became visible to the naked eye. At the time of this writing, it may become as bright as magnitude 4.5 or 4. As January progresses, the comet will move farther north, and higher in the sky for us. Now all we need is for these clouds to move out…. If any of you received (or bought yourself) any astronomical related goodies for Christmas and would like to show them off, bring them to the next meeting. Interesting geeky goodies qualify also, like that new drone or 3D printer. BRAS members are invited to a star party hosted by a group called the Lake Charles Free Thinkers. It will be January 24, 2015 from 3:00 PM on, at 5335 Hwy.
    [Show full text]
  • The T Tauri Star RY Tauri As a Case Study of the Inner Regions of Circumstellar Dust Disks
    A&A 478, 779–793 (2008) Astronomy DOI: 10.1051/0004-6361:20077049 & c ESO 2008 Astrophysics The T Tauri star RY Tauri as a case study of the inner regions of circumstellar dust disks A. A. Schegerer1,S.Wolf1, Th. Ratzka2, and Ch. Leinert1 1 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany Received 3 January 2007 / Accepted 13 November 2007 ABSTRACT Aims. We study the inner region (∼1.0 AU up to a few 10 AUs) of the circumstellar disk around the “classical” T Tauri star RY Tau. Our aim is to find a physical description satisfying the available interferometric data, obtained with the mid-infrared interferometric instrument at the Very Large Telescope Interferometer, as well as the spectral energy distribution in the visible to millimeter wave- length range. We also compare the findings with the results of similar studies, including those of intermediate-mass Herbig Ae/Be stars. Methods. Our analysis is done within the framework of a passively heated circumstellar disk, which is optionally supplemented by the effects of accretion and an added envelope. To achieve a more consistent and realistic model, we used our continuum transfer code MC3D. In addition, we studied the shape of the 10 µm silicate emission feature in terms of the underlying dust population, both for single-dish and for interferometric measurements. Results. We show that a modestly flaring disk model with accretion can explain both the observed spectral energy distribution and the mid-infrared visibilities obtained with the mid-infrared infrared instrument.
    [Show full text]
  • Star Clusters E NCYCLOPEDIA of a STRONOMY and a STROPHYSICS
    Star Clusters E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Star Clusters the Galaxy can be used to derive the cluster distance, independently of parallax measurements. Even a small telescope shows obvious local concentrations Afinal category of clusters has recently been identified of stars scattered around the sky. These star clusters are based on observations with infrared detectors. These are not chance juxtapositions of unrelated stars. They are, the embedded clusters—star clusters still in the process of instead, physically associated groups of stars, moving formation, and still embedded in the clouds out of which together through the Galaxy. The stars in a cluster are they formed. Because it is possible to see through the dust held together either permanently or temporarily by their much better at infrared wavelengths than in the optical, mutual gravitational attraction. these clusters have suddenly become observable. The classic, and best known, example of a star cluster Star clusters are of considerable astrophysical impor- is the Pleiades, visible in the evening sky in early winter tance to probe models of stellar evolution and dynamics, (from the northern hemisphere) as a group of 7–10 stars explore the star formation process, calibrate the extragalac- (depending on one’s eyesight). More than 600 Pleiades tic distance scale and most importantly to measure the age members have been identified telescopically. and evolution of the Galaxy. Clusters are generally distinguished as being either Definition of a star cluster—cluster catalogs GALACTIC OPEN CLUSTERS or GLOBULAR CLUSTERS, corresponding Just what is a cluster? How many stars does it take to to their appearance as seen through a moderate-aperture make a cluster? Trumpler in 1930 defined open clusters telescope.
    [Show full text]
  • Download This Article in PDF Format
    A&A 397, 693–710 (2003) Astronomy DOI: 10.1051/0004-6361:20021545 & c ESO 2003 Astrophysics Near-IR echelle spectroscopy of Class I protostars: Mapping Forbidden Emission-Line (FEL) regions in [FeII] C. J. Davis1,E.Whelan2,T.P.Ray2, and A. Chrysostomou3 1 Joint Astronomy Centre, 660 North A’oh¯ok¯u Place, University Park, Hilo, Hawaii 96720, USA 2 Dublin Institute for Advanced Studies, School of Cosmic Physics, 5 Merrion Square, Dublin 2, Ireland 3 Department of Physical Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK Received 27 August 2002 / Accepted 22 October 2002 Abstract. Near-IR echelle spectra in [FeII] 1.644 µm emission trace Forbidden Emission Line (FEL) regions towards seven Class I HH energy sources (SVS 13, B5-IRS1, IRAS 04239+2436, L1551-IRS5, HH 34-IRS, HH 72-IRS and HH 379-IRS) and three classical T Tauri stars (AS 353A, DG Tau and RW Aur). The parameters of these FEL regions are compared to the characteristics of the Molecular Hydrogen Emission Line (MHEL) regions recently discovered towards the same outflow sources (Davis et al. 2001 – Paper I). The [FeII] and H2 lines both trace emission from the base of a large-scale collimated outflow, although they clearly trace different flow components. We find that the [FeII] is associated with higher-velocity gas than the H2, and that the [FeII] emission peaks further away from the embedded source in each system. This is probably because the [FeII] is more closely associated with HH-type shocks in the inner, on-axis jet regions, while the H2 may be excited along the boundary between the jet and the near-stationary, dense ambient medium that envelopes the protostar.
    [Show full text]
  • Arxiv:1405.0225V1 [Astro-Ph.SR] 1 May 2014 58,USA 85287, ...([email protected]) U.S.A
    Orbital Motion in Pre-Main Sequence Binaries G. H. Schaefer1, L. Prato2, M. Simon3, and J. Patience4,5 ABSTRACT We present results from our ongoing program to map the visual orbits of pre- main sequence binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass pre-main sequence stars. Subject headings: binaries: visual, stars: pre-main sequence, stars: fundamental parameters 1. Introduction The mass and chemical composition of a star determines how its physical properties evolve over time. At pre-main sequence (PMS) ages, there are significant differences in the evolutionary tracks predicted by different sets of models (e.g., Hillenbrand & White arXiv:1405.0225v1 [astro-ph.SR] 1 May 2014 2004; Mathieu et al. 2007; Simon 2008). Mapping the orbit of a binary star provides a 1The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023, U.S.A.
    [Show full text]
  • Mid-Infrared Interferometric Variability of DG Tauri: Implications for the Inner-Disk Structure?
    A&A 604, A84 (2017) Astronomy DOI: 10.1051/0004-6361/201630287 & c ESO 2017 Astrophysics Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure? J. Varga1, K. É. Gabányi1, P. Ábrahám1, L. Chen1, Á. Kóspál1; 4, J. Menu2, Th. Ratzka3, R. van Boekel4, C. P. Dullemond5, Th. Henning4, W. Jaffe6, A. Juhász7, A. Moór1, L. Mosoni1; 8, and N. Sipos1 1 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, PO Box 67, 1525 Budapest, Hungary e-mail: [email protected] 2 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 3 Institute for Physics/IGAM, NAWI Graz, University of Graz, Universitätsplatz 5/II, 8010 Graz, Austria 4 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 5 Institute for Theoretical Astrophysics, Heidelberg University, Albert-Ueberle-Strasse 2, 69120 Heidelberg, Germany 6 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 7 Institute of Astronomy, Madingley Road, Cambridge CB3 OHA, UK 8 Park of Stars in Zselic, 064/2 hrsz., 7477 Zselickisfalud, Hungary Received 19 December 2016 / Accepted 6 April 2017 ABSTRACT Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic be- havior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 µm silicate feature from emission to absorption temporarily. Aims. We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods. Infrared interferometry can spatially resolve the thermal emission of the circumstellar disk, also giving information about dust processing.
    [Show full text]
  • Accretion and Outflow-Related X-Rays in T Tauri Stars
    Star-Disk Interactions in Young Stars Proceedings IAU Symposium No. 243, 2007 c 2007 International Astronomical Union J. Bouvier, ed. DOI: 00.0000/X000000000000000X Accretion and Outflow-Related X-Rays in T Tauri Stars Manuel G¨udel1,2, Kevin Briggs1, Kaspar Arzner1, Marc Audard3, J´erˆome Bouvier4, Catherine Dougados4, Eric Feigelson5, Elena Franciosini6, Adrian Glauser1, Nicolas Grosso4 †, Sylvain Guieu4 ‡, Fran¸cois M´enard4, Giusi Micela6, Jean-Louis Monin4, Thierry Montmerle4, Deborah Padgett7, Francesco Palla8, Ignazio Pillitteri6,9, Thomas Preibisch10, Luisa Rebull7, Luigi Scelsi6,9, Bruno Silva11, Stephen Skinner12, Beate Stelzer6 and Alessandra Telleschi1 1 Paul Scherrer Institut, W¨urenlingen and Villigen, 5232 Villigen PSI, Switzerland email: [email protected] 2 Max-Planck-Institute for Astronomy, K¨onigstuhl 17, 69117 Heidelberg, Germany 3 Integral Science Data Centre, Ch. d’Ecogia 16, 1290 Versoix, and Geneva Observatory, University of Geneva, Ch. des Maillettes 51, 1290 Sauverny, Switzerland 4 Laboratoire d’Astrophysique de Grenoble, Universit´eJoseph Fourier - CNRS, BP 53, 38041 Grenoble Cedex, France 5 Department of Astronomy & Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802, USA 6 INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy 7 Spitzer Science Center, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125, USA 8 INAF - Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125 Firenze, Italy 9 Dipartimento di Scienze Fisiche ed Astronomiche, Universit`adi Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy 10 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany 11 Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150 Porto, and Departamento de Matem´atica Aplicada, Faculdade de Ciˆecias da Universidade do Porto, 4169 Porto, Portugal 12 CASA, UCB 389, University of Colorado, Boulder, CO 80309-0389, USA Abstract.
    [Show full text]
  • Low Mass Star Formation in the Taurus-Auriga Clouds
    Handbook of Star Forming Regions Vol. I Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. Low Mass Star Formation in the Taurus-Auriga Clouds Scott J. Kenyon Smithsonian Astrophysical Observatory, 60 Garden Street Cambridge, MA 02138, USA Mercedes Gomez´ Observatorio Astronomico,´ Universidad Nacional de Cor´ doba Laprida 854, 5000 Cor´ doba, Argentina Barbara A. Whitney Space Science Institute, 4750 Walnut Street, Suite 205 Boulder, CO 80301, USA Abstract. We review the history and structure of star formation in the Taurus-Auriga dark clouds. Our discussion includes a summary of the macroscopic cloud properties, the population of single and binary pre-main sequence stars, the properties of jets and outflows, and detailed summaries of selected individual objects. We include compre- hensive tables of dark clouds, young stars, and jets in the clouds. 1. Overview In October 1852, J. R. Hind `noticed a very small nebulous looking object' roughly 1800 west of a tenth magnitude star in Taurus. Over the next 15 years, the nebula slowly faded in brightness and in 1868 vanished completely from the view of the largest tele- scopes. O. Struve then found a new, smaller and fainter, nebulosity roughly 40 west of Hind's nebula. While trying to recover these nebulae, Burnham (1890, 1894) discov- ered a small elliptical nebula surrounding T Tau (Figure 1). Spectra of Hind's nebula revealed emission from either Hβ or [O III] λ5007, demonstrating that the nebula was gaseous as in novae and planetary nebulae. At about the same time, Knott (1891) reported 4 magnitude variability in the `ruddy' star associated with these nebulae, T Tauri.
    [Show full text]
  • The Herschel DIGIT Survey of Weak-Line T Tauri Stars: ? Implications for Disk Evolution and Dissipation
    The Herschel DIGIT Survey of Weak-line T Tauri stars: ? implications for disk evolution and dissipation Lucas A. Cieza1, Johan Olofsson2, Paul M. Harvey3, Neal J. Evans II3, Joan Najita4, Thomas Henning2, Bruno Mer´ın5, Armin Liebhart6, Manuel G¨udel6, and Jean-Charles Augereau7 [email protected] Received ; accepted ? Herschel is an ESA space observatory with science instruments provided by European- led Principal Investigator consortia and with important participation from NASA. Based in part on observations made with the CFHT, under program 11AH96 1Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822. Sagan Fellow, [email protected] 2Max Planck Institut fur Astronomie, Konigstuhl 17, 69117, Heidelberg, Germany 3Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 4National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 86719, USA 5Herschel Science Centre, European Space Agency (ESAC), P.O. Box, 78, 28691 Vil- lanueva de la Ca~nada,Madrid, Spain 6Deptartment of Astronomy, Univ. of Vienna, T¨urkenschanzstr, 17, A-1180 Vienna, Austria 7Laboratoire d0Astrophysique de Grenoble, CNRS, Universit´eJoseph-Fourier, UMR 5571, Grenoble, France { 2 { To appear in ApJ { 3 { ABSTRACT As part of the \Dust, Ice, and Gas In Time (DIGIT)" Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350 and 500 µm) of 31 Weak-Line T Tauri stars (WTTSs) in order to investigate the evolutionary status of their circumstellar disks. Thirteen stars in our sample had circumstellar disks previously known from infrared observations at shorter wavelengths, while eighteen of them had no previous evidence for a disk.
    [Show full text]