Opportunities and Challenges of Sphagnum Farming & Harvesting

Total Page:16

File Type:pdf, Size:1020Kb

Opportunities and Challenges of Sphagnum Farming & Harvesting Opportunities and Challenges of Sphagnum Farming & Harvesting Gilbert Ludwig Master’s thesis December 2019 Bioeconomy Master of Natural Resources, Bioeconomy Development Description Author(s) Type of publication Date Ludwig, Gilbert Master’s thesis December 2019 Language of publication: English Number of pages Permission for web 33 publication: x Title of publication Opportunities & Challenges of Sphagnum Farming & Harvesting Master of Natural Resources, Bioeconomy Development Supervisor(s) Kataja, Jyrki; Vertainen, Laura; Assigned by International Peatland Society Abstract Sphagnum sp. moss, of which there are globally about 380 species, are the principal peat forming organisms in temperate and boreal peatlands. Sphagnum farming & harvesting has been proposed as climate-smart and carbon neutral use and after-use of peatlands, and dried Sphagnum have been shown to be excellent raw material for most growing media applications. The state, prospects and challenges of Sphagnum farming & harvesting in different parts of the world are evaluated: Sphagnum farming as paludiculture and after-use of agricultural peatlands and cut-over bogs, Sphagnum farming on mineral soils and mechanical Sphagnum harvesting. Challenges of Sphagnum farming and harvesting as a mean to reduce peat dependency in growing media are still significant, with industrial upscaling, i.e. ensuring adequate quantities of raw material, and economic feasibility being the biggest barriers. Development of new, innovative business models and including Sphagnum in the group of agricultural products eligible for subsidies, could in the future open up new and sustainable livelihood opportunities for landowners and peat extraction professionals, and ultimately may be key in reducing the peat dependence of growing media. Keywords/tags (subjects) Peat, peat alternatives, paludiculture, growing media, sustainability, Sphagnum sp., Sphagnum farming, Sphagnum harvesting, climate change Miscellaneous (Confidential information) 1 Description Tekijä(t) Julkaisun laji Päivämäärä Ludwig, Gilbert Opinnäytetyö, YAMK Joulukuu 2019 Julkaisun kieli English Sivumäärä Verrkojulkaisu 33 myönnetty: x Työn nimi Rahkasammaleen viljelyn ja keruun mahdollisuudet ja haasteet Tutkinto-ohjelma Biotalouden edistäminen YAMK Ohjaaja(t) Kataja, Jyrki; Vertainen, Laura; Toimeksiantaja International Peatland Society/Kansainvälinen Suojärjestö ry Tiivistelmä Rahkasammalet ovat laaja sammalten suku, jotka muodostavat maatuessaan turvetta, ja sen viljelyä ja keruuta pidetään yhtenä lupaavana ja ilmastoystävällisenä soiden käyttömuotona. Kuivattuna raaka-aineena rahkasammal on ihanteellinen erilaisten kasvualustojen ainesosana. Tässä opinnäytetyössä selvitin rahkasammalviljelyn ja -keruun nykytilaa sekä tulevaisuuden näkymiä sekä haasteita eri puolilla maailmaa. Rahkasammal on nopeasti uusiutuva raaka-aine, jolla on vahva potentiaali kasvualustojen turveriippuvuuden vähentämisessä, mutta sen tuotannon nostaminen teolliselle tasolle, eli riittävien raaka-ainemäärien varmistaminen, sekä taloudellisuus ovat vielä suuri haaste. Uusien innovatiivisten liiketoimintamallien ja teknologian kehittäminen sekä muutokset maatalousstrategioissa voisivat tulevaisuudessa avata viljelijöille ja maanomistajille uusia ja kestäviä toimeentulomahdollisuuksia. Avainsanat Turve, turvevaihtoehdot, paludikulttuuri, kasvualustat, kestävyys, rahkasammal, sphagnum sp. Peat,Muut tpeatiedot alternatives, paludiculture, growing media, sustainability, Sphagnum sp., Sphagnum farming, Sphagnum harvesting, climate change 2 Contents 1 Background ................................................................................................... 4 2 Objectives...................................................................................................... 7 3 Methods ........................................................................................................ 7 4 Results........................................................................................................... 9 4.1 General ........................................................................................................ 9 4.2 Sphagnum farming as paludiculture and after-use of of agricultural peatland and cut-over bogs (Germany, Canada, Sweden) ...................................... 10 4.3 Sphagnum farming on mineral soils (China) ............................................. 14 4.4 Mechanical Sphagnum harvesting (Finland, Sweden) .............................. 18 5 Conclusions ................................................................................................. 20 5.1 Environmental Dimensions of Sphagnum Farming & Harvesting ............. 20 5.2 Economic Dimensions of Sphagnum Farming & Harvesting ..................... 23 5.3 Societal Dimensions of Sphagnum Farming & Harvesting ........................ 24 5.4 Technology Dimensions of Sphagnum Farming & Harvesting .................. 25 6 Discussion.................................................................................................... 26 References .......................................................................................................... 27 3 Figures Figure 1. Global peatland distribution derived from PEATMAP (Xu et al. 2018.) .......... 5 Figure 2. Experimental Sphagnum cultivation site, Hankahauser Moor, Rastede, Germany. Image by Gilbert Ludwig .............................................................................. 11 Figure 3. Sample of Sphagnum from first year harvest in Sweden. Image courtesy of Sabine Jordan ............................................................................................................... 14 Figure 4. Upper left: Dense Sphagnum growth, before harvest (Image courtesy of Zhu Longjin). Upper right: Annual growth (Image courtesy of Zhu Longjin). Bottom: Sphagnum cultivation site on former rice paddy, after harvest (Image courtesy of Gilbert Ludwig). All images Qiannan Prefecture, Guiding, Guizhou. ........................... 16 Figure 5. Mechanical harvesting in Finland. Image courtesy of Hannu Salo. .............. 19 Figure 6. Peatland uses in Finland as % of total surface. Adapted from Rantanen (2019a) ......................................................................................................................... 20 4 1 Background With the world population expected to reach 10 billion by 2050, the demand of vegetables, fruits and flowers is increasing rapidly. According to Hunter, Smith, Schipanski, Atwood & Mortensen (2017, 386), global food production will have to increase by up to 70% from current production levels by 2050, with vegetable production needs being likely even higher. At the same time, expansion of traditional agriculture is increasingly difficult and needs to be prevented (Ranganathan, Waite, Searchinger & Hanson 2018.). Intensive and large-scale production of vegetables and fruits in greenhouses using standardized high-quality growing media mixtures, or substrates, allow uniform high-quality plant seedlings to be grown economically with very high productivity (Altman 2008.). As an example, following its agricultural crisis in the end of the 20th century, China is increasingly shifting its production of vegetable, fruit and rice seedlings to controlled greenhouse plantations, resulting in a gradually increasing demand of growing media (Meng 2019.). According to Meng (2019), Chinas demand of growing media will increase from currently 2 mio m3 to 100 mio m3 within the next 10 to 20 years. Globally, growing media demand is expected to increase from 60 mio m3 in 2018 to 240 mio m3 by 2050 (Blok 2019.). Ensuring availability of raw materials in order to keep up supply of growing media is therefore a big challenge (Hofer 2019.), but also a necessity. The challenge is exacerbated by the fact that, for decades, Sphagnum peat (mostly white peat) has been, and still is, the single most important ingredient of most growing media mixtures, comprising commonly 60-90% of growing media mixtures. The unique physical and chemical properties, such as low pH, nutrient and nitrogen immobilization, its structural properties, slow decomposition, low bulk density, high porosity and unique water retention capacities, the fact that it is relatively free of weeds and pathogens, and, after all, its low price, make peat the most important constituent of professional high-quality growing media mixtures that allow easy adjustment to requirements of individual plants (Schmilewski & Köbbing 2016, Schmilewski 2008). The sustainability of peat based growing media, however, is an increasing concern of environmental lobbying. Covering over four million km2, or about 3% of the world’s 5 terrestrial & freshwater surface (Fig. 1), peatlands store and sequester more carbon than any other terrestrial ecosystem, about one quarter of the worlds soil carbon. Drained peatlands make up about 16% of the world’s peatlands, or 0.5% of the Earth’s land surface, yet their contribution to global greenhouse gas and cropland emissions are 5% and 32%, respectively (Joosten et al. 2016, Carlson et al. 2017). Peatlands and peatland use make therefore an important contribution to global climate change mitigation (Biancalani, Salvatore & Tubiello 2014.), the significance of rewetting and restoration of drained peatland is increasingly acknowledged (Leifeld & Menichetti 2018.). FAO (UN Food and Agriculture Organization) are actively promoting replacement of peat in growing media through sustainable peatland concepts. As a result, the use of peat as raw
Recommended publications
  • Download Species Dossier
    Pallavicinia lyellii Veilwort PALLAVICINIACEAE SYN: Pallavicinia lyellii (Hook.) Caruth. Status UK BAP Priority Species Lead Partner: Plantlife International & RBG, Kew Vulnerable (2001) Natural England Species Recovery Programme Status in Europe - Vulnerable 14 10km squares UK Biodiversity Action Plan (BAP) These are the current BAP targets following the 2001 Targets Review: T1 - Maintain populations of Veilwort at all extant sites. T2 - Increase the extent of Veilwort populations at all extant sites where appropriate and biologically feasible. T3 - If biologically feasible, re-establish populations of Veilwort at three suitable sites by 2005. T4 - Establish by 2005 ex situ stocks of this species to safeguard extant populations. Progress on targets as reported in the UKBAP 2002 reporting round can be viewed online at: http://www.ukbap.org.uk/2002OnlineReport/mainframe.htm. The full Action Plan for Pallavicinia lyellii can be viewed on the following web site: http://www.ukbap.org.uk/UKPlans.aspx?ID=497. Work on Pallavicinia lyellii is supported by: 1 Contents 1 Morphology, Identification, Taxonomy & Genetics................................................2 2 Distribution & Current Status ...........................................................................4 2.1 World ......................................................................................................4 2.2 Europe ....................................................................................................4 2.3 Britain .....................................................................................................5
    [Show full text]
  • From Understanding to Sustainable Use of Peatlands: the WETSCAPES Approach
    Article From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach Gerald Jurasinski 1 , Sate Ahmad 2 , Alba Anadon-Rosell 3 , Jacqueline Berendt 4, Florian Beyer 5 , Ralf Bill 5 , Gesche Blume-Werry 6 , John Couwenberg 7, Anke Günther 1, Hans Joosten 7 , Franziska Koebsch 1, Daniel Köhn 1, Nils Koldrack 5, Jürgen Kreyling 6, Peter Leinweber 8, Bernd Lennartz 2 , Haojie Liu 2 , Dierk Michaelis 7, Almut Mrotzek 7, Wakene Negassa 8 , Sandra Schenk 5, Franziska Schmacka 4, Sarah Schwieger 6 , Marko Smiljani´c 3, Franziska Tanneberger 7, Laurenz Teuber 6, Tim Urich 9, Haitao Wang 9 , Micha Weil 9 , Martin Wilmking 3 , Dominik Zak 10 and Nicole Wrage-Mönnig 4,* 1 Landscape Ecology and Site Evaluation, Faculty of Agricultural and Environmental Sciences, University of Rostock, J.-v.-Liebig-Weg 6, 18051 Rostock, Germany; [email protected] (G.J.); [email protected] (A.G.); [email protected] (F.K.); [email protected] (D.K.) 2 Soil Physics, Faculty of Agricultural and Environmental Sciences, University of Rostock, J.-v.-Liebig-Weg 6, 18051 Rostock, Germany; [email protected] (S.A.); [email protected] (B.L.); [email protected] (H.L.) 3 Landscape Ecology and Ecosystem Dynamics, Institute of Botany and Landscape Ecology, University of Greifswald, partner in the Greifswald Mire Centre, Soldmannstr. 15, 17487 Greifswald, Germany; [email protected] (A.A.-R.); [email protected] (M.S.); [email protected] (M.W.) 4 Grassland
    [Show full text]
  • Paludiculture Potential in North East Germany
    Reed as a Renewable Resource; Greifswald; Feburary 14.-16. 2013 Paludiculture Potential in North East Germany Christian Schröder University of Greifswald Foto: W. Thiel Natural versus drained peatland Mire = growing peatland peat-formation carbon storage surface raise water table Drained peatland peat degradation CO2-Emissions subsidence water table Nabu 2012 Peatlands of Mecklenburg- Western Pomerania ca. 300.000 ha 13% of the total area 95% are drained Peatland Drainage peat degradation subsidence increase of drainage costs management problems -1 -1 25tons CO2 eqha a Annual CO2 emissions in Mecklenburg- Western Pomerania 7 Used 6 For Forestry 5 4 equ per year per equ - 2 Used 3 For t CO 6 Agriculture 2 1 Semi- 0 natural Emissions in 10 Emissions Public energy Industry Traffic Small Emissions and remote customers from heating supply peatlands MLUV 2009 Agricultural used peatlands show highest emissions Estimation of GHG-Emissions from peatlands 70 60 1 - 50 CO2 yr CH4 1 - 40 GWP 30 äq ha äq emissions - - 20 2 10 t CO t GHG 0 -10 -20 -100 -80 -60 -40 -20 0 20 water table[cm] Rewetting of peatlands Loss of agricultural land Use wet peatlands ! Paludiculture Paludiculture „palus“ – lat.: swamp, marsh Sustainable land use of peatlands Production of biomass Preservation of the peatbody Reduction of greenhouse gas emissions Maintain ecosystem services Peatland conservation by sustainable land use Nature conservation vs. paludiculture rewetting frequency of harvesting water managment planting fertilisation intensity of land use Nature conservation Paludiculture management Use of Biomass Raw material for industrial use Harvesting Energy generation Paludibiomass as a raw material Foto: W.
    [Show full text]
  • Peatlands & Climate Change Action Plan 2030 Pages 0-15
    Peatlands and Climate Change Action Plan 2030 © Irish Peatland Conservation Council 2021 Published by: Irish Peatland Conservation Council, Bog of Allen Nature Centre, Lullymore, Rathangan, Co. Kildare R51V293. Telephone: +353-45-860133 Email: [email protected] Web: www.ipcc.ie Written and compiled by: Dr Catherine O’Connell BSc, HDipEdn, PhD; Nuala Madigan BAgrEnvSc, MEd; Tristram Whyte BSc Hons Freshwater Biology and Paula Farrell BSc Wildlife Biology on behalf of the Irish Peatland Conservation Council. Irish Peatland Conservation Council Registered Revenue Charity Number CHY6829 and Charities Regulator Number (RCN) 20013547 ISBN 1 874189 34 X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic mechanical, photocopying, recording or otherwise with the prior permission of the Irish Peatland Conservation Council. Funded by: This Action Plan was funded by the Irish Peatland Conservation Council’s supporters - friends of the bog - who made donations in response to a spring appeal launched by the charity in 2020. Printing costs for the Action Plan were supported by the Heritage Council through their Heritage Sector Support Grant 2021. Copyright Images: Every effort has been made to acknowledge and contact copyright holders of all images used in this publication. Cover Image: Blanket bog complex south of Killary Harbour, Co. Galway. Blanket bogs face a number of pressures - overgrazing, drainage for turf cutting and forestry, burning to improve grazing, recreation and windfarm developments. Together these uses can change the natural function of the blanket bog so that it switches from slowing climate change as a carbon sink, to become a carbon source that releases greenhouse gases to the atmosphere.
    [Show full text]
  • Assessment on Peatlands, Biodiversity and Climate Change: Main Report
    Assessment on Peatlands, Biodiversity and Climate change Main Report Published By Global Environment Centre, Kuala Lumpur & Wetlands International, Wageningen First Published in Electronic Format in December 2007 This version first published in May 2008 Copyright © 2008 Global Environment Centre & Wetlands International Reproduction of material from the publication for educational and non-commercial purposes is authorized without prior permission from Global Environment Centre or Wetlands International, provided acknowledgement is provided. Reference Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva , T., Silvius, M. and Stringer, L. (Eds.) 2008. Assessment on Peatlands, Biodiversity and Climate Change: Main Report . Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. Reviewer of Executive Summary Dicky Clymo Available from Global Environment Centre 2nd Floor Wisma Hing, 78 Jalan SS2/72, 47300 Petaling Jaya, Selangor, Malaysia. Tel: +603 7957 2007, Fax: +603 7957 7003. Web: www.gecnet.info ; www.peat-portal.net Email: [email protected] Wetlands International PO Box 471 AL, Wageningen 6700 The Netherlands Tel: +31 317 478861 Fax: +31 317 478850 Web: www.wetlands.org ; www.peatlands.ru ISBN 978-983-43751-0-2 Supported By United Nations Environment Programme/Global Environment Facility (UNEP/GEF) with assistance from the Asia Pacific Network for Global Change Research (APN) Design by Regina Cheah and Andrey Sirin Printed on Cyclus 100% Recycled Paper. Printing on recycled paper helps save our natural
    [Show full text]
  • Controlling the Invasive Moss Sphagnum Palustre at Ka'ala
    Pacific Cooperative Studies Unit UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 192 Controlling the invasive moss Sphagnum palustre at Ka‘ala, Island of O‘ahu March 2015 Stephanie Marie Joe 1 1 The Oahu Army Natural Resource Program (OANRP) USAG-HI, Directorate of Public Works Environmental Division IMPC-HI-PWE 947 Wright Ave., Wheeler Army Airfield, Schofield Barracks, HI 96857-5013 [email protected] PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: Pacific Cooperative Studies Unit, Department of Botany, 3190 Maile Way, St. John #408, University of Hawaii, Honolulu, HI 96822. Office: (808) 753-0702. Recommended Citation: Joe, SM. 2015. Controlling the invasive moss Sphagnum palustre at Ka‘ala, Island of O‘ahu. Pacific Cooperative Studies Unit Technical Report 191. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 18 pages. Key words: Bryocides, Sphagnum palustre, invasive species control Place key words: Pacific islands, O‘ahu, Ka‘ala Natural Area Reserve Editor: David C. Duffy, PCSU Unit Leader (Email: [email protected]) Series Editor: Clifford W. Morden, PCSU Deputy Director (Email: [email protected]) About this technical report series: This technical report series began in 1973 with the formation of the Cooperative National Park Resources Studies Unit at the University of Hawai'i at Mānoa. In 2000, it continued under the Pacific Cooperative Studies Unit (PCSU). The series currently is supported by the PCSU.
    [Show full text]
  • TAXON:Sphagnum Palustre L. SCORE:11.0 RATING
    TAXON: Sphagnum palustre L. SCORE: 11.0 RATING: High Risk Taxon: Sphagnum palustre L. Family: Sphagnaceae Common Name(s): boat-leaved sphagnum Synonym(s): Sphagnum cymbifolium (Ehrhart) R. Hedwig peat moss praire sphagnum spoon-leaved sphagnum Assessor: Chuck Chimera Status: Assessor Approved End Date: 17 Sep 2019 WRA Score: 11.0 Designation: H(Hawai'i) Rating: High Risk Keywords: Dioecious Moss, Environmental Weed, Shade-Tolerant, Dense Mats, Spreads Vegetatively Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) Intermediate tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 y 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 y 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n Creation Date: 17 Sep 2019 (Sphagnum palustre L.) Page 1 of 19 TAXON: Sphagnum palustre L.
    [Show full text]
  • Sphagnum Palustre
    Sphagnum palustre Britain 1990–2013 1358 1950–1989 337 pre-1950 42 Ireland 1990–2013 332 1950–1989 122 pre-1950 2 oose cushions and patches of Sphagnum palustre are have leaf cross-sections of intermediate and unstable L found in a wide variety of habitats, including wet woods, shape, differing between leaves on the same plant. Var. boggy grassland, ditches, flushed peaty banks, marshes and centrale has been found in four places in England, two in streamsides. Unlike S. papillosum, it is tolerant of shade and Wales, two in the Isle of Man, and as two separate gatherings is sometimes abundant in damp conifer plantations and from the Morrone Birkwood near Braemar in eastern swampy carr. It is one of the less acid-demanding sphagna, Scotland. The Morrone locality is at about 500 m altitude growing with S. fimbriatum, S. squarrosum and S. subnitens. and is the only one that fits with its distribution in Eurasia It is also common on oceanic blanket bogs, where it occupies and North America, where it has a continental distribution, small declivities receiving surface flow in wet weather. penetrating continental interiors from which var. palustre is Altitudinal range: 0–1100 m. absent. Genetic analysis in North America (Karlin et al., 2010) indicates that there is a clear distinction between the Dioicous; capsules are occasional, August. two taxa. Photos in Flatberg (2013) and Hölzer (2010) show S. centrale as remaining greenish or yellowish in autumn, and Plants in our area are mostly var. palustre. Var. centrale is not turning pinkish as is normal for var.
    [Show full text]
  • Edited by IJ Bennallick & DA Pearman
    BOTANICAL CORNWALL 2010 No. 14 Edited by I.J. Bennallick & D.A. Pearman BOTANICAL CORNWALL No. 14 Edited by I.J.Bennallick & D.A.Pearman ISSN 1364 - 4335 © I.J. Bennallick & D.A. Pearman 2010 No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright holder. Published by - the Environmental Records Centre for Cornwall & the Isles of Scilly (ERCCIS) based at the- Cornwall Wildlife Trust Five Acres, Allet, Truro, Cornwall, TR4 9DJ Tel: (01872) 273939 Fax: (01872) 225476 Website: www.erccis.co.uk and www.cornwallwildlifetrust.org.uk Cover photo: Perennial Centaury Centaurium scilloides at Gwennap Head, 2010. © I J Bennallick 2 Contents Introduction - I. J. Bennallick & D. A. Pearman 4 A new dandelion - Taraxacum ronae - and its distribution in Cornwall - L. J. Margetts 5 Recording in Cornwall 2006 to 2009 – C. N. French 9 Fitch‟s Illustrations of the British Flora – C. N. French 15 Important Plant Areas – C. N. French 17 The decline of Illecebrum verticillatum – D. A. Pearman 22 Bryological Field Meetings 2006 – 2007 – N. de Sausmarez 29 Centaurium scilloides, Juncus subnodulosus and Phegopteris connectilis rediscovered in Cornwall after many years – I. J. Bennallick 36 Plant records for Cornwall up to September 2009 – I. J. Bennallick 43 Plant records and update from the Isles of Scilly 2006 – 2009 – R. E. Parslow 93 3 Introduction We can only apologise for the very long gestation of this number. There is so much going on in the Cornwall botanical world – a New Red Data Book, an imminent Fern Atlas, plans for a new Flora and a Rare Plant Register, plus masses of fieldwork, most notably for Natural England for rare plants on SSSIs, that somehow this publication has kept on being put back as other more urgent tasks vie for precedence.
    [Show full text]
  • Paludiculture Projects in Europe
    Paludiculture projects in Europe Franziska Tanneberger, Christian Schröder & Wendelin Wichtmann Conventional agriculture on peatland: the peat mineralises and shrinks subsidence + ‚increasing‘ water levels Van de Riet et al. 2014 Peatland rewetting stops subsidence + emissions Drained peat Wet peat Wet peat Van de Riet et al. 2014 Paludiculture ‐ the wet alternative to drainage‐ based use of degraded peatlands „palus“ –lat. for swamp … the use of wet peatlands which combines the production function with the provision of essential ecosystem services of mires… What can be achieved? • preservation of peat safeguard the production function • reduction of greenhouse gas emissions climate protection • minimisation of nutrient run‐off water protection • optional: mire biodiversity, new peat formation 60 Conventional peatland use 40 -1 a -1 Emission reduction -eq. ha 2 20 Paludiculture GWP t CO 0 Rewetting -120 -100 -80 -60 -40 -20 0 20 40 Crops, high-intensity grassland Mean annual water table [cm] Low-intensity grazing Low-intensity grassland Reed canary grass Alder Reed, sedges, cattail --- Peatmoss Reed canary grass (Phalaris arundinacea) energy (combustion, biogas) Common Reed (Phragmites australis) construction materials and energy Sedges (Carex spp.) energy (combustion, biogas), fodder, litter Cattail (Typha spp.) construction materials, fodder, energy (biogas) Black Alder (Alnus glutinosa) construction materials, furniture, energy Peatmosses (Sphagnum palustre, S. papillosum) growing media Cultivation of mire plants Afforestation
    [Show full text]
  • RESTORATION of CALIFORNIA DELTAIC and COASTAL WETLANDS Version 1.1
    METHODOLOGY FOR THE QUANTIFICATION, MONITORING, REPORTING AND VERIFICATION OF GREENHOUSE GAS EMISSIONS REDUCTIONS AND REMOVALS FROM THE RESTORATION OF CALIFORNIA DELTAIC AND COASTAL WETLANDS VERSION 1.1 November 2017 METHODOLOGY FOR THE QUANTIFICATION, MONITORING, REPORTING AND VERIFICATION OF GREENHOUSE GAS EMISSIONS REDUCTIONS AND REMOVALS FROM THE RESTORATION OF CALIFORNIA DELTAIC AND COASTAL WETLANDS VERSION 1.1 November 2017 American Carbon Registry® WASHINGTON DC OFFICE c/o Winrock International 2451 Crystal Drive, Suite 700 Arlington, Virginia 22202 USA ph +1 703 302 6500 [email protected] americancarbonregistry.org ABOUT AMERICAN CARBON REGISTRY® (ACR) A leading carbon offset program founded in 1996 as the first private voluntary GHG registry in the world, ACR operates in the voluntary and regulated carbon markets. ACR has unparalleled experience in the development of environmentally rigorous, science-based offset methodolo- gies as well as operational experience in the oversight of offset project verification, registration, offset issuance and retirement reporting through its online registry system. © 2017 American Carbon Registry at Winrock International. All rights reserved. No part of this publication may be reproduced, displayed, modified or distributed without express written per- mission of the American Carbon Registry. The sole permitted use of the publication is for the registration of projects on the American Carbon Registry. For requests to license the publica- tion or any part thereof for a different use, write to the Washington DC address listed above. METHODOLOGY FOR THE QUANTIFICATION, MONITORING, REPORTING AND VERIFICATION OF GREENHOUSE GAS EMISSIONS REDUCTIONS AND REMOVALS FROM THE RESTORATION OF CALIFORNIA DELTAIC AND COASTAL WETLANDS Version 1.1 ACKNOWLEDGEMENTS This methodology was authored by Steven Deverel (HydroFocus, Inc.), Patricia Oikawa (U.C.
    [Show full text]
  • Sphagnum Farming for Replacing Peat in Horticultural Substrates
    Sphagnum farming for replacing peat in horticultural substrates Rastede, Lower Saxony, Germany (53° 15.80′ N, 08°16′ E) Sabine Wichmann1, Greta Gaudig1, Matthias Krebs1, Hans Joosten1, Kerstin Albrecht2, Silke Kumar3 1 2 3 University of Greifswald, University of Rostock, Torfwerk Moorkultur Ramsloh ©FAO/Sabine Wichmann ©FAO/Sabine Sphagnum farming: a: site with infrastructure for water management (pump, ditches, overflow) and dams used as causeways (maintenance, harvest, transport) (schematic representation: Sabine Wichmann) b: Preparation of a Sphagnum farming production site (photo: Sabine Wichmann); c: same site with established Sphagnum culture and irrigation system (photo: Sabine Wichmann). Summary Sphagnum (peat moss) biomass provides a GHG-neutral alternative to fossil peat in professional horticulture. So far however, it has only been collected in the wild. Small-scale land-based Sphagnum farming is currently practiced on degraded peatlands. Sphagnum farming has also been tested on specially constructed floating mats that guarantee a constant water supply. This water–based cultivation allows bog waters to be used as reservoirs to irrigate cultivated areas in dry periods. It also creates additional Sphagnum farming areas. A mosaic of rewetted areas with land-and water-based cultivation may present the optimal combination for Sphagnum farming on degraded bogs. Experiments have also shown the suitability of growing media made of Sphagnum biomass for cultivating a wide variety of crops from seedling to saleable plant. Sphagnum biomass is also suitable for other uses, including gardening design, terrariums, sanitary items, insulation of buildings, water filtering and pharmaceuticals. When Sphagnum is cultivated as a new agricultural crop on rewetted peatlands, the high and stable water levels greatly reduce GHG emissions and the subsidence of the formerly drained peat soil.
    [Show full text]