Dynamic Positron Emission Tomography in Man Using Small

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Positron Emission Tomography in Man Using Small Presented at the Sixth International Conference on Positron Annihilation, Ft.Worth, TX, April 3-7, 1982 and to be published in the Proceedings. Also presented at The Workshop on Positron Emission Tomography, Edmonton, Alberta, Canada, April 21-23, 1982 £5e w 3 z o 4 s 6 > ~ DYNAMIC POSITRON-EMISSION TOMOGRAPHY IN MAN USING SMALL BISMUTH GERMANATE CRYSTALS S.E. Derenzo, T.F. Budinger, R.H. Huesman, and J.L. Cahoon April 1982 Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 LEGAL NOTICE This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govern­ ment nor any agency thereof, nor, any of their employees, makes any warranty, express or im­ plied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor­ ing by the United States Government or any agency thereof. The views and opinions of authors ex­ pressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Lawrence Berkeley Laboratory is an equal opportunity employer. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. - DISCLAIMER United States Cover This book was preoared as an account o! wort soonsored bv an agency o- f>eir emolovees. mates an Neither the United States Government nor any agency thereof, nor esoonsibilitv tor tne accu'aci warranty, express or implied, or assumes any legal liaoilitv < ^ completeness, or usefulness of any mtormation. apparatus, oroduc . ' ' ' jjic Proceedings of the Sixth International represents that its use would not infringe pnvatelv owned rights e.erenc ■ commercial product, process, or service by trade name, t r a d e d , manufacturer, or othe^rw , j Conference on Positron Annihilation, nol necessarily constitute or imply its endorsement, recommendation or 1avor' ® * States Government or any agency thereof. The viev.* and opinions of aut ors e»or Fort Worth, Texas, April 3-7, 1982 necessarily state or reflect those of the United States Government or v agency thereof. North-Hoi land Publishing Company LBL— 14308 DYNAMIC POSITRON-EMISSION TOMOGRAPHY IN MAN USING SMALL BISMUTH GERMANATE CRYSTALS* DE82 014997 S.E. Derenzo, T.F. Budinger, R.H. Huesman, and J.L. Cahoon Lawrence Berkeley Laboratory and Oonner Laboratory University of California, Berkeley CA 94720, U.S.A. Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging se n sitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with mini­ mum mechanical motion, shielding against out of plane activity, pulse height discrim i­ nation against scattered photons, and timing discrimination against accidental coinci­ dences. We discuss the choice of detectors, sampling motion, shielding, and electron­ ics to meet these objectives. INTRODUCTION For the past 50 years, since the pioneering work TABLE 1. EXAMPLES OF POSITRON LABELED COMPOUNDS of Von Hevesy, the radioactive tracer technique AND THE PROCESSES THAT THEY MEASURE has been used with considerable success in the biological sciences to measure fundamental bio­ TRACER PROCESS MEASURED chemical processes in plants and animals. In this spirit Positron Emission Tomography (PET) Heart: is being vigorously developed because it appears to be the best high resolution technique for the ionic 82Rb muscle perfusion quantitative regional measurement of tracer com­ pounds in the human body after a simple n C palmitate fatty acid oxidation injection. 18F deoxyglucose tissue demand for glucose Table 1 lists a few of the positron labeled com­ pounds that have been recently developed and the U C or 13N amino muscle regeneration and biochemical processes upon which their biodis­ acids metabolism tribution depends. We believe that many more w ill be developed in the years to come so that Brain: v irtu a lly any metabolic process can be measured non-invasively. 150 blood flow and oxygen utilization 2j_ HISTORY OF PET INSTRUMENTATION 31C bioamines blood flow and receptor Historically, positron emission tomography for sites the three-dimensional imaging of positron labeled compounds in the human body has evolved ionic 82Rb blood brain barrier through five stages (Figure,1): breakdown [1] Limited angle tomography using pairs of 18F deoxyglucose tissue demand for glucose Anger scintillation cameras,1*8 parallel planes of scintillation crystals9' 13 or n C methionine blood brain barrier wire chambers with converters19* 25 (Figure transport la ). Full angular , coverage requires rotation. “ C, 13N, or 18F receptor sites psychoactive [2] A single circular array of closely packed compounds scintillation crystals.-26*'*1* To obtain mul­ tiple transverse sections axial translation is required. [3] Hexagonal or octagonal arrays of scintilla­ *This work was supported by the Office of Health tion crystals that are both translated and and Environmental Research of the U.S. Depart­ rotated for full linear, angular, and axial ment of Energy under Contract No. DE-AC03- coverage (Fig lc ) . I*5* 52 76SF00098 and also by the National Institutes of Health, National Heart, Lung, and Blood Insti­ [4] Multiple layers of configurations [2] and tute under grant No. P01 HL25840-02. [3] above (Figs Id and le ) . 53-63 have been more fully described in previous papers.77>78 [1] The highest possible dose efficiency, which requires both a large solid angle and high detection efficiency. Time-of-flight infor­ mation can su bstantially reduce the number of events needed for a given statistical accuracy (especially for large emission regions). [2] A resolution of 5 irm FWHM or better, capa­ ble of quantitative measurements of regions 10 mm in size. The requirement for dynamic, gated imaging means that th is resolution must be achieved with lit t le or no mechani­ cal sampling motion. [3] The ability to measure the arterial input function of the tracer to the organ being imaged and to follow its subsequent accumu­ lation and clearance. This requires the ability to collect sufficient data in typi­ c a lly 10 second time frames and permits very little sampling motion.77*79 [4] A sufficient number of transverse sections to cover the volume of interest which is usually more than 5 cm axially. [5] Discrimination against background events by shielding, and by timing and pulse height discrimination. [6] Ability to correct data for accidental and f) Multiple Arroys With prompt scatter backgrounds and for image Time-of-Flight IT.O.F.) distortions. X8L023-3079 [7] Ability to tilt at least 15°. [8] A patient port of at least 50 cm for body Figure 1: Evolution of detector geometries for imaging and 25 cm for head imaging. positron emission tomography. 4^ DESIGN CONSIDERATIONS [5] Multiple circular arrays of fast scintilla­ tion crystals coupled to moderately large Design considerations for positron emission tom­ high-speed photomultiplier tubes for local­ ographs have been previously described in some ization by differential time-of-flight d e t a il. 27» 1,7» 77»80-83 Primary differences among measurement (Fig I f ) . 6**-75 designs occur in the choice of detector mate­ r ia l, the depth of the shielding, and the sam­ Fundamental considerations in positron emission pling employed. tomography for medical imaging show the advan­ tages of high density scintillators over wire 4.1 Detector Materials chambers and converters in terms of detection efficiency, time resolution, sensitivity, and Table 2 lists the three detector materials used maximum useful event ra te s.76 Contemporary in positron tomographs, N al(T l), CsF, and b is­ designs and the trend for the near future are muth germanate (BGO). Nal(Tl) leads in photon focussed on the multilayer approaches (Figures yield and pulse height resolution, CsF leads in le and If ) which provide the highest dose e f f i­ speed, and BGO leads in detection efficiency. An ciency and useful event rates. "ideal detector" with the best properties of all three would be very useful. 3^ MEDICAL OBJECTIVES While solid state detectors have been suggested We summarize below the primary requirements for for positron emission tomography,8**-86 their the quantitative
Recommended publications
  • Crystal Growth in Fused Solvent Systems
    SPACE DIVISION CRYSTAL GROWTH IN FUSED SOLVENT SYSTEMS BY D.R. ULRICH, B.A. NOVAL, K.E. SPEAR, W.B. WHITE AND E.C. HENRY (NASA-CR-120570) CRYSTAL GROWTH IN FUSED N75-14847 SOLVENT SYSTEMS Final Report (General Electric Co.) 174 p HC $6.25 CSCL 20B Unclas G3/25 06436 CONTRACT NAS 8-28114 CONTROL NUMBER DCN-1-1-50-13670-(IF) Eul I-o PREPARED FOR THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA 35812 GENERAL * ELECTRIC CRYSTAL GROWTH IN FUSED SOLVENT SYSTEMS D. R. Ulrich, B. A. Noval, K. E. Spear, W. B. White and E. C. Henry FINAL REPORT November 1974 Contract NAS 8-28114 Control Number DCN-1-1-50-13670-(1F) Prepared for the National Aeronautics and Space Administration Marshall Space Flight Center Huntsville, Alabama 35812 Prepared by General Electric Company Space Division Space Sciences Laboratory P. O. Box 8555 Philadelphia, Pennsylvania 19101 This report was prepared by the Space Sciences Laboratory of the General Electric Company under Contract NAS 8-28114, "Study of Crystal Growth in Fused Solvent Systems, " for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES viii FOREWORD xi SUMMARY xiii I. INTRODUCTION 1 II. BISMUTH GERMANATE 11 A. Solvent Criteria 12 B. Solvent Development 13 1. Bi203 *2B 2 03 Glass Solvent 13 2. Biz Q XAl203 (Z-x) B 203 Glass Solvent 17 C. Crystal Growth Studies 29 1. Crystal Growth Experiments 29 2. Crystal Perfection 32 3.
    [Show full text]
  • A High-Density Inorganic Scintillator: Lead Fluoride Chloride
    Journal of Physics D: Applied Physics Related content - Crystals for the HHCAL Detector Concept A high-density inorganic scintillator: lead fluoride Rihua Mao, Liyuan Zhang and Ren-Yuan Zhu chloride - Luminescence and scintillation properties of Rb2HfCl6 crystals Keiichiro Saeki, Yuki Wakai, Yutaka To cite this article: Jianming Chen et al 2004 J. Phys. D: Appl. Phys. 37 938 Fujimoto et al. - Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6 Keiichiro Saeki, Yutaka Fujimoto, Masanori Koshimizu et al. View the article online for updates and enhancements. Recent citations - The next generation of crystal detectors Ren-Yuan Zhu - Larry Franks et al - Structural phase transitions of ionic layered PbFX (X=Clor Br–) compounds under high pressure Y.A. Sorb and D. Sornadurai This content was downloaded from IP address 119.78.240.13 on 18/04/2019 at 12:40 INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 37 (2004) 938–941 PII: S0022-3727(04)72707-2 A high-density inorganic scintillator: lead fluoride chloride Jianming Chen1, Dingzhong Shen, Guohao Ren, Rihua Mao and Zhiwen Yin Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Jiading District, Shanghai 201800, People’s Republic of China E-mail: [email protected] Received 28 November 2003 Published 24 February 2004 Online at stacks.iop.org/JPhysD/37/938 (DOI: 10.1088/0022-3727/37/6/020) Abstract Lead fluoride chloride (PbFCl) crystal, whose density is about 7.11 g cm−3, was grown by the modified Bridgman method. PbFCl can emit violet-blue light with the peaks at 392 and 420 nm when excited by ultraviolet light or x-rays.
    [Show full text]
  • Record-High Positive Refractive Index Change in Bismuth Germanate
    www.nature.com/scientificreports OPEN Record‑high positive refractive index change in bismuth germanate crystals through ultrafast laser enhanced polarizability T. Toney Fernandez1*, Karen Privat2, Michael J. Withford1 & Simon Gross1 Unlike other crystals, the counter intuitive response of bismuth germanate crystals (Bi 4Ge3O12 , BGO) to form localized high refractive index contrast waveguides upon ultrafast laser irradiation is explained for the frst time. While the waveguide formation is a result of a stoichiometric reorganization of germanium and oxygen, the origin of positive index stems from the formation of highly polarisable non-bridging oxygen complexes. Micro-refectivity measurements revealed a record-high positive refractive index contrast of 4.25 × 10−2 . The currently accepted view that index changes > 1 × 10−2 could be brought about only by engaging heavy metal elements is strongly challenged by this report. The combination of a nearly perfect step-index profle, record-high refractive index contrast, easily tunable waveguide dimensions, and the intrinsic high optical non‑linearity, electro‑optic activity and optical transparency up to 5.5 µm of BGO make these waveguides a highly attractive platform for compact 3D integrated optics. Bismuth Germanate, Bi4Ge3O12 (BGO) crystals are generally known as an efcient scintillation material for high energy radiation detection 1. Te versatility of the femtosecond laser direct-write technique to form localized high refractive index change ( n ) in BGO crystal has been proposed for applications such as two dimensional gamma ray spectrometers2,3, positron emission tomography4 and other optical waveguide devices5,6. Te densely packed lattice of crystals makes it difcult to obtain an increase in refractive index upon ultrafast laser exposure 7,8.
    [Show full text]
  • Characterization of the Bismuth Germanate Blocks M
    Large surface gamma cameras for medical imaging: characterization of the bismuth germanate blocks M. Fontana, D. Dauvergne, R. Della Negra, J.M. Létang, F. Mounier, É. Testa, L. Zanetti, Y. Zoccarato To cite this version: M. Fontana, D. Dauvergne, R. Della Negra, J.M. Létang, F. Mounier, et al.. Large surface gamma cameras for medical imaging: characterization of the bismuth germanate blocks. JINST, 2018, 13, pp.P08018. 10.1088/1748-0221/13/08/P08018. hal-01871818 HAL Id: hal-01871818 https://hal.archives-ouvertes.fr/hal-01871818 Submitted on 28 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Prepared for submission to JINST Large surface gamma cameras for medical imaging: characterization of the bismuth germanate blocks M. Fontana,a D. Dauvergne,b R. Della Negra,a J. M. Létang,c F. Mounier,a É. Testa,a L. Zanetti,a Y. Zoccaratoa on behalf of the CLaRyS collaboration aUniversity of Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, F-69622, Villeurbanne, France bLPSC, Université Grenoble-Alpes, CNRS/IN2P3 UMR 5821, Grenoble, France cUniversity of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373, Lyon, France E-mail: [email protected] Abstract: The CLaRyS collaboration focuses on the development of gamma detectors for medical applications, in particular for what concerns the range monitoring in ion beam therapy.
    [Show full text]
  • Backgrounds in Bismuth Germanate (Bgo) Gamma-Ray Spectrometers in Space
    41st Lunar and Planetary Science Conference (2010) 1917.pdf BACKGROUNDS IN BISMUTH GERMANATE (BGO) GAMMA-RAY SPECTROMETERS IN SPACE. 1 1 R. C. Reedy , Planetary Science Institute, 152 So. Monte Rey Dr., Los Alamos, NM 87544 <reedy@ psi.edu>. Introduction: All gamma-ray detectors in space a peak in that detector’s spectra. Most internal peaks have backgrounds in their spectra because of cosmic- from radionuclides are made by decays involving the ray interactions with the detector materials. A good capture of an orbiting electron or by an isomeric (or understanding of all those backgrounds, especially internal) transition in one nucleus [2]. discrete-energy peaks, in a gamma-ray spectrometer Peaks inside BGO Detectors: There are not many (GRS) is needed to correctly analyze the measured γ- good measurements of backgrounds peaks in BGO, so ray spectra from a planetary object of interest in order the peaks listed here are only an initial estimate, based to get elemental abundances. Most backgrounds are a in some cases by the results in [5,7,11], by measure- continuum, but some are in peaks. ments in Ge detectors ([1,2], and by basic nuclear data Much work has been done recently on the many (e.g., [13]). backgrounds in germanium (Ge) detectors (e.g., [1,2]) Fast neutrons. Some peaks are made by reactions by prompt reactions and the decay of induced radionu- induced by fast neutrons, mainly inelastic-scattering, clides. For some recent and current planetary gamma- (n,nγ), reactions. Peaks from Ge and O are those seen ray spectroscopy missions, the low-energy-resolution by planetary GRS systems like Mars Odyssey [1].
    [Show full text]
  • Scintillation Crystals for PET*
    Scintillation Crystals for PET* Charles L. Melcher CT!Inc., Knoxville, Tennessee crystal,a fractionof the energylocalizeson the activator In PET, inorganic scintillator crystals are used to record -y-rays ions.Relaxationof the activatorionsresultsin the emission produced by the annihilation of positrons emitted by injected of scintillation photons, typically around 4 eV, correspond tracers.The ultimateperformanceof the camera is stronglytied ing to visible blue light. to boththe physicalandscintillationpropertiesofthe crystals.For In the early years of PET, detectors were made of single this reason, researchers have investigated virtually all known crystals ofthallium-doped sodium iodide (NaI[Tl]), individu scintillatorcrystalsfor possibleuse in PET.Despitethis massive researcheffort,only a few differentscintillatorshave beenfound ally coupledto photomultiplier tubes(PMTs).With thediscovery that have a suitable combinationof characteristics,and only 2 of bismuth germanate(Bi@Ge@O12or BGO), most detector (thallium-doped sodium iodide and bismuth germanate) have designers converted to this material because of its much greater found widespread use. A recently developedscintillatorcrystal, efficiency for detecting ‘y-rays.Ablock detectorbecame the most cenum-doped lutetium oxyorthosilicate,appears to surpass all widely useddesign,in which a BGO block is segmentedinto as previously used materials in most respectsand promisesto be many as 64 elements and coupled to 4 PMTs (1). Other the basisfor the nextgenerationof PETcameras. scintillators have included barium fluoride (BaF2 [2]), yttrium KeyWords:PET;scintillationcrystals;lutetiumoxyorthosilicate aluminate (YA1O3[Ce]or YAP) (3), and cerium-dopedgadolin J NucIMed2000;41:1051—1055 mm oxyorthosilicate(Gd2SiO5[Ce]or GSO) (4). In recentyears, a promising new material, cerium-doped lutetium oxyorthosili cate (Lu25i05[Ce] or LSO) (5), has emerged and is likely to be used widely in future generation PET scanners.
    [Show full text]
  • Molten Core Fabrication of Bismuth-Containing Optical Fibers Benoit Faugas Clemson University
    Clemson University TigerPrints All Dissertations Dissertations 5-2018 Molten Core Fabrication of Bismuth-Containing Optical Fibers Benoit Faugas Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Faugas, Benoit, "Molten Core Fabrication of Bismuth-Containing Optical Fibers" (2018). All Dissertations. 2166. https://tigerprints.clemson.edu/all_dissertations/2166 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MOLTEN CORE FABRICATION OF BISMUTH- CONTAINING OPTICAL FIBERS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Materials Science and Engineering by Benoit Faugas May 2018 Accepted by: Prof. John Ballato, Committee Chair Prof. Stephen Foulger Prof. Liang Dong Prof. Philip Brown ABSTRACT Glass optical fibers have generated significant commercial and research interest in the fields of communications, lasers and sensors since their successful development in the 1970s. Since then, higher performing optical fibers have arisen due to new and evolving demands necessitating the community to occasionally rethink the materials from which optical fibers are made. Although chemical vapor deposition (CVD)- based methods dominate due to their ability to make extremely low loss optical fiber, it is limited in the range of materials, hence properties, that can be brought to bear on modern problems. Accordingly, the method for fiber fabrication has proven to be a very useful technology from which fruitful knowledge and fiber performance has emerged.
    [Show full text]
  • Properties of Bismuth Germanate and Its Use for Electromagnetic Calorimetry *
    PROPERTIES OF BISMUTH GERMANATE AND ITS USE FOR ELECTROMAGNETIC CALORIMETRY * M. Cavalli-Sforza, D.G. Coyne, S. Cordes, J. Hawley, C. Newman-Holmes, R. Sonnenfeld Physics Department, Princeton University, Princeton, NJ, 08540 G. I. Kirkbride High Energy Physics Laboratory, Stanford University, Stanford, CA, 94305 Summary TABLE I BGO - NaI(Tt) COMPARISON The calorimetric and fluorescence properties of Bismuth Germanate are discussed and compared to those BGO NaI(Tt) of NaI(Tt). Results on the energy resolution of BGO are presented for energies up to 50 MeV; the energy and General Properties position resolution are studied by Montecarlos at high­ er energies. The performance of a 4n BGO e.m. calor­ Specific Gravity 7.13 3.67 imeter is compared to that of NaI and is specified for Hardness -5 (soft glass) -2 (rock salt) a compact fieldless calorimeter designed for the zO Stability rugged cleaves, energy region. Cost, optical uniformity and radiation shatters easily sensitivity are areas needing further work before a Chemical Stability good poor large BGO detector can be built. Solubility (H20) none very hygroscopic Introduction Calorimetric Properties Large solid angle, highly segmented sodium iodide detectors have emerged over the last few years as a Radiation Length, Xa 1.12 cm 2.59 cm novel and fruitful way to measure many of the paramet­ Mel iere Radius 2.24 cm 4.4 cm ers of the final states produced in e+e- annihilation. dE/dx (min) -9 MeV /cm 4.8 MeV/cm Two such detectors are at present active in e+e- phy­ Nuclear Absorption sics: the Crystal Ball, that after more than three Length A -23 cm -41 cm years of very productive existence at SPEAR is about to begin exploring b-quark physics at DORIS II, and the CUSB detector, working in the region of the ~·s at Optical and Fluorescence CESR.
    [Show full text]
  • Pushing Cherenkov PET with BGO Via Coincidence Time Resolution
    Phys. Med. Biol. 65 (2020) 115004 https://doi.org/10.1088/1361-6560/ab87f9 Physics in Medicine & Biology PAPER Pushing Cherenkov PET with BGO via coincidence time resolution OPEN ACCESS classification and correction RECEIVED 10 January 2020 Nicolaus Kratochwil1,2, Stefan Gundacker1,3, Paul Lecoq1 and Etiennette Auffray1 REVISED 1 23 March 2020 CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland 2 University of Vienna, Universitaetsring 1, 1010 Vienna, Austria ACCEPTED FOR PUBLICATION 3 UniMIB, Piazza dell’Ateneo Nuovo, 1-20126 Milano, Italy 8 April 2020 E-mail: [email protected] PUBLISHED 2 June 2020 Original Content from Abstract this work may be used under the terms of the Bismuth germanate (BGO) shows good properties for positron emission tomography (PET) Creative Commons Attribution 3.0 licence. applications, but was substituted by the development of faster crystals like lutetium oxyorthosilicate Any further distribution (LSO) for time-of-flight PET (TOF-PET). Recent improvements in silicon photomultipliers of this work must (SiPMs) and fast readout electronics make it possible to access the Cherenkov photon signal maintain attribution to the author(s) and the title produced upon 511 keV interaction, which makes BGO a cost -effective candidate for TOF-PET. of the work, journal citation and DOI. Tails in the time -delay distribution, however, remain a challenge. These are mainly caused by the high statistical fluctuation on the Cherenkov photons detected. To select fast events with a high detected Cherenkov photon number, the signal rise time of the SiPM was used for discrimination. The charge, time delay and signal rise time was measured for two different lengths of BGO crystals coupled to FBK NUV-HD SiPMs and high frequency readout in a coincidence time resolution setup.
    [Show full text]
  • Nonproportionality in the Scintillation Light Yield of Bismuth Germanate
    Nonproportionality in the scintillation light yield of bismuth germanate T. R. Gentilea, M. J. Balesb,∗, H. Breuerc, T.E. Chuppb, K. J. Coakleyd, R. L. Coopere, J. S. Nicoa, B. O'Neillf aNational Institute of Standards and Technology, Gaithersburg, MD 20899 USA bUniversity of Michigan, Ann Arbor, MI 48109 USA cUniversity of Maryland, College Park, MD 20742 USA dNational Institute of Standards and Technology, Boulder, CO 80305 USA eIndiana University, Bloomington, IN 47408 USA fArizona State University, Tempe, AZ 85287 USA Abstract We present measurements of nonproportionality in the scintillation light yield of bismuth germanate (BGO) for gamma-rays with energies between 6 keV and 662 keV. The scintillation light was read out by avalanche photodiodes (APDs) with both the BGO crystals and APDs operated at a temperature of ≈ 90 K. Data were obtained using radioisotope sources to illuminate both a single BGO crystal in a small test cryostat and a 12-element detector in a neutron radiative beta-decay experiment. In addition one datum was obtained in a 4.6 T magnetic field based on the bismuth K x-ray escape peak produced by a continuum of background gamma rays in this apparatus. These measurements and comparison to prior results were motivated by an experiment to study the radiative decay mode of the free neutron. The combination of data taken under different conditions yields a reasonably consistent picture for BGO nonproportionality that should be useful for researchers employing BGO detectors at low gamma ray energies. Keywords: avalanche photodiode, bismuth germanate, nonproportionality, photon detection, radiative neutron decay 1. Introduction reported the first observation of this process in a pilot experiment in which gamma-rays were de- For an ideal scintillator, the number of optical tected by a single BGO crystal [6, 7].
    [Show full text]
  • Radiation Damage Effects
    Radiation Damage Effects R.-Y. Zhu Physics, Mathematics and Astronomy Division, California Institute of Technology, Pasadena, CA, USA Introduction....................................... Scintillation-Mechanism Damage .......................... Radiation-Induced Phosphorescence and Energy-Equivalent Readout Noise ...................................... Radiation-Induced Absorption ............................ Recovery of Radiation-Induced Absorption ..................... Radiation-Induced Color Centers ............................ Dose-Rate Dependence and Color-Center Kinetics ................ Light-OutputDegradation.............................. Light-Response Uniformity .............................. Damage Mechanism in Alkali Halide Crystals and CsI(Tl) Development ....................................... Damage Mechanism in Oxide Crystals and PWO Development ....... Conclusion........................................ Acknowledgments ......................................... References .............................................. Further Reading .......................................... C. Grupen, I. Buvat (eds.), Handbook of Particle Detection and Imaging, DOI ./----_, © Springer-Verlag Berlin Heidelberg Radiation Damage Effects Abstract: Radiation damage is an important issue for the particle detectors operated in a hostile environment where radiations from various sources are expected. This is particularly important for high energy physics detectors designed for the energy and inten- sity frontiers. This chapter describes
    [Show full text]
  • Radiation-Induced Defects and Effects in Germanate and Tellurite Glasses
    materials Review Radiation-Induced Defects and Effects in Germanate and Tellurite Glasses Mikko Hongisto 1,2,* , Alexander Veber 1, Yannick Petit 2, Thierry Cardinal 2, Sylvain Danto 2, Veronique Jubera 2 and Laeticia Petit 1 1 Photonics Laboratory, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland; alexander.veber@tuni.fi (A.V.); laeticia.petit@tuni.fi (L.P.) 2 CNRS, University of Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France; [email protected] (Y.P.); [email protected] (T.C.); [email protected] (S.D.); [email protected] (V.J.) * Correspondence: mikko.hongisto@tuni.fi Received: 29 July 2020; Accepted: 25 August 2020; Published: 31 August 2020 Abstract: This review focuses on the radiation-induced changes in germanate and tellurite glasses. These glasses have been of great interest due to their remarkable potential for photonics, in terms of extended transmission window in the mid-infrared, ability of rare-earth loading suitable with a laser, and amplification in the near- and mid-infrared or high nonlinear optical properties. Here, we summarize information about possible radiation-induced defects, mechanisms of their formation, and the influence of the glass composition on this process. Special attention is paid to laser-induced structural modification of these glasses, including possible mechanisms of the laser-glass interaction, laser-induced crystallization, and waveguide writing. It is shown that these methods can be used for photostructuring of the glass and have great potential for practical applications. Keywords: germanate glass; tellurite glass; radiation treatment; defects; structuring 1. Introduction Glasses play a key role in many areas of modern life.
    [Show full text]