COMPLETE QUANTUM THERMODYNAMICS OF THE BLACK BODY PHOTON GAS Vladan Pankovi´c, Darko V. Kapor Department of Physics, Faculty of Sciences, 21000 Novi Sad, Trg Dositeja Obradovi´ca 4, Serbia,
[email protected] PACS number: 03.65.Ta, 05.70.-a keywords: photon gas thermodynamics, black body, black hole entropy Abstract Kelly and Leff demonstrated and discussed formal and conceptual similarities between basic thermodynamic formulas for the classical ideal gas and black body photon gas. Leff pointed out that thermodynamic formulas for the photon gas cannot be deduced completely by thermodynamic methods since these formulas hold two characteristic pa- rameters, r and b, whose accurate values can be obtained exclusively by accurate methods of the quantum statistics (by explicit use of the Planck’s or Bose-Einstein distribution). In this work we prove that the complete quantum thermodynamics of the black body pho- ton gas can be done by simple, thermodynamic (non-statistical) methods. We prove that both mentioned parameters and corresponding variables (photons number and pressure) can be obtained very simply and practically exactly (with relative error about few per- cent), by non-statistical (without any use of the Planck’s or Bose-Einstein distribution), quantum thermodynamic methods. Corner-stone of these methods represents a quantum thermodynamic stability condition that is, in some degree, very similar to quantum sta- bility condition in the Bohr quantum atomic theory (de Broglie’s interpretation of the Bohr quantization postulate). Finally, we discuss conceptual similarities between black arXiv:1103.3161v1 [physics.gen-ph] 16 Mar 2011 body photon gas entropy and Bekenstein-Hawking black hole entropy.