<<

Powder– basics&applications Powder metallurgy – scienceofproducingmetalpowdersandmakingfinished /semifinished objectsfrommixedoralloyedpowderswithorwithouttheadditionof nonmetallicconstituents Steps in powder metallurgy : Powderproduction,Compaction,,& Secondaryoperations Powderproduction: Rawmaterials=>Powder;Powderscanbepureelements,prealloyedpowders Methodsformakingpowders– Atomization :Producespowdersofbothferrousand nonferrouspowderslikestainless,superalloys,Tipowders; Reductionof compounds :Productionofiron,Cu,,molybdenum; Electrolysis :formaking Cu,iron,silverpowders Powdersalongwithadditivesaremixedusingmixers Lubricantsareaddedpriortomixingtofacilitateeasyejection ofcompactandto minimizewearoftools;Waxes,metallicstearates,graphiteetc. Powdercharacterization– size,flow,density,compressibilitytests R. Ganesh Narayanan, IITG Compaction: compactionisperformedusingdiesmachinedtoclosetolerances Diesaremadeofcementedcarbide,die/toolsteel;pressedusing hydraulicor mechanicalpresses Thebasicpurposeofcompactionistoobtainagreencompactwithsufficientstrength towithstandfurtherhandlingoperations Thegreencompactisthentakenforsintering Hot,hotpressing,hotisostatic pressing=>consolidationathigh temperatures Sintering : Performedatcontrolledatmospheretobondatomsmetallurgically;Bonding occursbydiffusionofatoms;doneat70%ofabs.meltingpointofmaterials Itservestoconsolidatethemechanicallybondedpowdersintoacoherentbodyhaving desiredonservicebehavior Densificationoccursduringtheprocessandimprovementinphysicalandmechanical propertiesareseen Furnaces– meshbeltfurnaces(upto1200C),walkingbeam,pushertypefurnace, batchtypefurnacesarealsoused R. Ganesh Narayanan, IITG Protectiveatmosphere:Nitrogen(widelyused) Secondaryoperations: Operationsincluderepressing,grinding,platingcanbedone; Theyareusedtoensureclosedimensionaltolerances,goodsurfacefinish,increase density,corrosionresistanceetc.

R. Ganesh Narayanan, IITG Flow chart for making P/M components Advantages&limitations • Efficientmaterialutilization • Enablesclosedimensionaltolerances– nearnetshapepossible • Goodsurfacefinish • Manufactureofcomplexshapespossible • Hardmaterialsusedtomakecomponentsthataredifficulttomachinecanbe readilymade– tungstenwiresforincandescentlamps • Environmentfriendly,energyefficient • Suitedformoderatetohighvolumecomponentproduction • Powdersofuniformchemicalcomposition=>reflectedinthefinishedpart • widevarietyofmaterials=>miscible,immisciblesystems;refractorymetals • Partswithcontrolledporositycanbemade • Highcostofpowdermaterial&tooling • Lessstrongpartsthanwroughtones • Lesswellknownprocess R. Ganesh Narayanan, IITG Productionofpowders • Metalpowders=>MainconstituentofaP/Mproduct;finalpropertiesofthefinished P/Mpartdependsonsize,shape,andsurfaceareaofpowderparticles • Singlepowderproductionmethodisnotsufficientforallapplications

Powderproductionmethods:1.Mechanicalmethods,2.Physicalmethods,3.Chemical methods 1. Mechanicalmethods =>cheapestofthepowderproductionmethods;Thesemethods involveusingmechanicalforcessuchascompressiveforces,shearorimpactto facilitateparticlesizereductionofbulkmaterials; Eg.: Milling Milling: Duringmilling,impact,attrition,shearandcompressionforces areactedupon particles.During impact ,strikingofonepowderparticleagainstanotheroccurs. Attrition referstotheproductionofweardebrisduetotherubbingactionbetween twoparticles. Shear referstocuttingofparticlesresultinginfracture.Theparticles arebrokenintofineparticlesbysqueezingactionin compressionforcetype . Mainobjectiveofmilling: Particlesizereduction(mainpurpose), Particlesizegrowth, shapechange,agglomeration(joiningofparticlestogether),solidstatealloying,

mechanicalorsolidstatemixing,modificationofmR. Ganesh Narayanan, IITG aterialproperties Mechanismofmilling : Changesinthemorphologyofpowderparticlesduringmilling resultsinthefollowingevents. 1. Microforging,2.Fracture,3.Agglomeration,4.Deagglomeration

Microforging =>Individualparticlesorgroupofparticlesareimpactedrepeatedlyso thattheyflattenwithverylesschangeinmass Fracture=>Individualparticlesdeformandcracksinitiateandpropagateresultingin fracture Agglomeration=>Mechanicalinterlockingduetoatomicbondingorvande Waals forces Deagglomeration =>Breakingofagglomerates

Thedifferentpowdercharacteristicsinfluencedbymillingareshape,size,texture, particlesizedistribution,crystallinesize,chemicalcomposition,hardness,density, flowability,compressibility,sinterability,sintereddensity

Millingequipment: Theequipmentsaregenerallyclassifiedascrushers&mills Crushing =>formakingmaterialssuchasoxidesofmetals; Grinding =>for reactivemetalssuchas,zirconium,niobium,tantalum

R. Ganesh Narayanan, IITG Grinding: Differenttypesofgrindingequipments/methodsareshowninthefigure

Jaw crusher Gyratory crusher Roll crusher

Ball Mill Vibratory Ball Mill Attritor

Planetary Rod Mill Mill Hammer Mill

R. Ganesh Narayanan, IITG Ballmills • Thiscontainscylindricalvesselrotatinghorizontally alongtheaxis.Lengthofthecylinderismoreorlessequal todiameter.Thevesselischargedwiththegrinding media.Thegrindingmediamaybemadeofhardened steel,ortungstencarbide,likeagate,porcelain, alumina,zirconia.Duringrollingofvessel,thegrinding media&powderparticlesrollfromsomeheight.This processgrindsthepowdermaterialsbyimpact/collision& attrition. • Millingcanbedrymillingorwetmilling.Indrymilling, about25vol%ofpowderisaddedalongwithabout1wt% Ball Mill ofalubricantsuchasstearic oroleicacid.Forwetmilling, 3040vol%ofpowderwith1wt%ofdispersingagent suchaswater,alcoholorhexaneisemployed. • Optimumdiameterofthemillforgrindingpowdersis about250mm

R. Ganesh Narayanan, IITG Vibratoryballmill • Finerpowderparticlesneedlongerperiodsforgrinding • Inthiscase,vibratoryballmillisbetter=>herehighamount ofenergyisimpartedtotheparticlesandmillingis acceleratedbyvibratingthecontainer • Thismillcontainsanelectricmotorconnectedtotheshaftof thedrumbyanelasticcoupling.Thedrumisusuallylined withwearresistantmaterial.Duringoperation,80%ofthe containerisfilledwithgrindingbodiesandthestarting material. Herevibratorymotionisobtainedbyaneccentric shaftthatismountedonaframeinsidethemill.Therotation ofeccentricshaftcausesthedrumofthevibratingmillto oscillate. • Ingeneral, vibrationfrequencyisequalto1500to3000 oscillations/min. Theamplitudeofoscillationsis2to3mm. Vibratory Ball Mill Thegrindingbodiesismadeofsteelorcarbideballs,thatare 1020mmindiameter. Themassoftheballsis810timesthe chargedparticles. Finalparticlesizeisoftheorderof5100 R. Ganesh Narayanan, IITG microns Attritionmill :INthiscase,thechargeisgroundtofinesizebytheactionofavertical shaftwithsidearmsattachedtoit.Theballtochargeratiomaybe5:1,10:1,15:1.This methodismoreefficientinachievingfineparticlesize. Rodmills: Horizontalrodsareusedinsteadofballstogrind.Granularity ofthe dischargematerialis4010mm.Themillspeedvariesfrom12to30rpm. Planetarymill: Highenergymillwidelyusedforproducingmetal,alloy,andcomposite powders.

FluidenergygrindingorJetmilling: Thebasicprincipleoffluidenergymillistoinduce particlestocollideagainsteachotherathigh velocity,causingthemtofractureintofineparticR. Ganesh Narayanan,les. IITG • Multiplecollisionsenhancethereductionprocessandtherefore,multiplejet arrangementsarenormallyincorporatedinthemilldesign.Thefluidusediseitherair about0.7MPa orstreamat2MPa.Inthecaseofvolatilematerials,protective atmosphereofnitrogenanddioxideisused. • Thepressurizedfluidisintroducedintothegrindingzonethroughspecially designednozzleswhichconverttheappliedpressuretokineticenergy.Alsomaterials tobepowderedareintroducedsimultaneouslyintotheturbulentzone. • Thevelocityoffluidcomingoutfromthenozzlesisdirectlyproportionaltothe squarerootoftheabsolutetemperatureofthefluidenteringthenozzle.Henceitis preferabletoraisethetemperatureoffluidtothemaximumpossiblelevelwithout affectingthefeedmaterial. • Iffurtherpowderingisrequired,largesizeparticlesareseparatedfromtherest centrifugalforcesandrecirculatedintotheturbulentzoneforsizereduction.Fine particlesaretakentotheexitbyviscousdragoftheexhaustgasestobecarriedaway forcollection. • This Jetmilling processcancreatepowdersofaverageparticlesizelessthan5m

R. Ganesh Narayanan, IITG Machining: Mg,Be,Ag,solder,dentalalloyarespecificallymadebymachining; Turningandchipsthusformedduringmachiningaresubsequentlycrushedor groundintopowders Shotting: Finestreamofmoltenmetalispouredthroughavibratoryscreenintoair orprotectivegasmedium.Whenthemoltenmetalsfallsthroughscreen,it disintegratesandsolidifiesassphericalparticles.Theseparticlesgetoxidized.The particlesthusobtaineddependsonporesizeofscreen,temperature,gasused, frequencyofvibration.MetalproducedbythemethodareCu,,Al,Zn,Sn, Pb,Ni. (thismethodislikemakingBoondhi) Graining: Sameasshotting exceptthatthefallingmaterialthroughsieveis collectedinwater;Powdersofcadmium,Bismuth,antimonyareproduced.

R. Ganesh Narayanan, IITG 2.Physicalmethods Electrolyticdeposition • Inthismethod,theprocessingconditionsaresochosenthatmetalsofhighpurity areprecipitatedfromaqueoussolutiononthecathodeofanelectrolyticcell.This methodismainlyusedforproducing,ironpowders.Thismethodisalso usedforproducingzinc,tin,,cadmium,antimony,silver, lead,beryllium powders. • Copperpowder=>Solutioncontainingcoppersulphate andsulphuric acid;crude copperasanode • Reaction: atanode:Cu>Cu + +e ; atcathode:Cu + +e >Cu • Ironpowder =>anodeislowcarbonsteel;cathodeisstainlesssteel.Theiron powderdepositsaresubsequentlypulverizedbymillinginhammer mill.The milledpowdersareannealedinhydrogenatmospheretomakethemsoft • Mgpowder =>electrodepositionfromapurifiedsulphate electrolyte usinginsolubleleadanodesandstainlesssteelcathodes • Powdersofthorium,tantalum,=>fusedsaltelectrolysisiscarriedout atatemperaturebelowmeltingpointofthemetal.Heredepositionwilloccurin theformofsmallcrystalswithdendriticR. Ganesh Narayanan, shape IITG Inthismethod,finaldepositionoccursinthreeways, 1. Ahardbrittlelayerofpuremetalwhichissubsequentlymilledtoobtainpowder (eg.ironpowder) 2. Asoft,spongysubstancewhichislooselyadherentandeasilyremovedby scrubbing 3. Adirectpowderdepositfromtheelectrolytethatcollectsatthebottomofthecell

Factorspromotingpowderdepositsare,highcurrentdensity,low metal concentration,pHofthebath,lowtemperature,highviscosity,circulationof electrolytetoavoidofconvection Advantages: Powdersofhighpuritywithexcellentsinterability Widerangeofpowderqualitycanbeproducedbyalteringbathcomposition Disadvantages: Timeconsumingprocess;Pollutionofworkplacebecauseoftoxic chemicals;

Wastedisposalisanotherissue;CostinvolvedinoR. Ganesh Narayanan, xidationofpowdersandhencetheyIITG shouldbewashedthoroughly Atomization This uses high pressure fluid jets to break up a molten metal stream into very fine droplets, which then solidify into fine particles HighqualitypowdersofAl,brass,iron,stainlesssteel,toolsteel,superalloys are producedcommercially Types: wateratomization,gasatomization,solublegasorvacuumatomization, centrifugalatomization,rotatingdiskatomization,ultrarapid solidificationprocess, ultrasonicatomization Mechanism of atomization: Inconventional(gasorwater)atomization,aliquidmetalisproducedbypouringmolten metalthroughatundish withanozzleatitsbase.Thestreamofliquidisthenbroken intodropletsbytheimpingementofhighpressuregasorwater.Thisdisintegrationof liquidstreamisshowninfig.Thishasfivestages i) Formationofwavysurfaceoftheliquidduetosmalldisturbances ii) Wavefragmentationandligamentformation iii) Disintegrationofligamentintofinedroplets iv) Furtherbreakdownoffragmentsintofineparticles R. Ganesh Narayanan, IITG v) Collisionandcoalescenceofparticles atomization

• Theinteractionbetweenjetsandliquidmetalstreambeginswiththecreationof smalldisturbancesatliquidsurfaces,whichgrowintoshearingforcesthatfragment theliquidintoligaments.Thebrokenligamentsarefurthermade tofineparticles becauseofhighenergyinimpactingjet. • Lowersurfacetensionofmoltenmetal,highcoolingrate=>formationofirregular surface=>likeinwateratomization • Highsurfacetension,lowcoolingrates=>sphericalshapeformation=>likein inertgasatomization

0.5 • Theliquidmetalstreamvelocity, v=A[2g(P i –Pg)ρ] wherePi – injectionpressureoftheliquid,PR. Ganesh Narayanan,g IITG– pressureofatomizing medium, ρ – densityoftheliquid Typesofatomization Atomizationofmoltenmetalcanbedoneindifferentwaysdependinguponthefactors likeeconomyandrequiredpowdercharacteristics.Atpresent,waterorgas atomizingmediumcanbeusedtodisintegrateamoltenmetalstream.Thevarious typesofatomizationtechniquesusedare, 1. Wateratomization : Highpressurewaterjetsareusedtobringaboutthe disintegrationofmoltenmetalstream. Waterjetsareusedmainlybecauseoftheir higherviscosityandquenchingability.Thisisaninexpensiveprocessandcanbe usedforsmallorlargescaleproduction.Butwatershouldnotchemicallyreactwith metalsoralloysused. 2. Gasatomization :Hereinsteadofwater, highvelocityargon,nitrogenandhelium gasjetsareused.Themoltenmetalisdisintegratedandcollectedasatomized powderinawaterbath .Fluidizedbedcoolingisusedwhencertainpowder characteristicsarerequired. 3. Vacuumatomization: Inthismethod, whenamoltenmetalsupersaturatedwithagas underpressureissuddenlyexposedintovacuum,thegascomingfrommetal solutionexpands,causingatomizationofthemetalstream . Thisprocessgivesvery highpuritypowder.Usuallyhydrogenisusedasgas.Hydrogenandargonmixture

canalsobeused. R. Ganesh Narayanan, IITG 4.Centrifugalatomization: Inthismethod, oneendofthemetalbarisheatedand meltedbybringingitintocontactwithanonconsumabletungstenelectrode,while rotatingitlongitudinallyatveryhighspeeds.Thecentrifugalforcecreatedcauses themetaldropstobethrownoffoutwards. Thiswillthenbesolidifiedasspherical shapedparticlesinsideanevacuatedchamber.Titaniumpowdercanbemadeusing thistechnique 5. Rotatingdiskatomization: Impingingofastreamofmoltenmetalontothesurfaceof rapidlyspinningdisk.Thiscausesmechanicalatomizationofmetalstreamand causesthedropletstobethrownofftheedgesofthedisk. Theparticlesarespherical inshapeandtheirsizedecreaseswithincreasingdiskspeed. 6.Ultrarapid solidificationprocesses: Asolidificationrateof1000C/sisachievedinthis process. Thisresultsinenhancedchemicalhomogeneity,formationofmetastable crystallinephases,amorphousmaterials.

R. Ganesh Narayanan, IITG AtomizationUnit Meltingandsuperheatingfacility: Standardmeltingfurnacescanbeusedfor producingtheliquidmetal.Thisisusuallydonebyairmelting, inertgasorvacuum inductionmelting.Complexalloysthataresusceptibletocontaminationaremelted invacuuminductionfurnaces.Themetalistransferredtoatundish,whichservesas reservoirformoltenmetal. Atomizationchamber: Anatomizationnozzlesystemisnecessary.Thenozzlethat controlsthesizeandshapeofthemetalstreamiffixedatthebottomofthe atomizingchamber.Inordertoavoidoxidationofpowders,thetankispurgedwith inertgaslikenitrogen. Powdercollectiontank: Thepowdersarecollectedintank.Itcouldbedrycollection orwetcollection.Indrycollection,thepowderparticlessolidifybeforereachingthe bottomofthetank.Inwetcollection,powderparticlescollectedinthebottomofthe watertank.Thetankhastobecooledextremelyifusedforlargescaleproduction. Duringoperation,theatomizationunitiskeptevacuatedto10 3 mmofHg,tested forleakandfilledwithargongas.

R. Ganesh Narayanan, IITG Atomizingnozzles

• Functionistocontroltheflowandthepatternofatomizingmediumtoprovidefor efficientdisintegrationofpowders • Foragivennozzledesign,theaverageparticlesizeiscontrolledbythepressureof theatomizingmediumandalsobytheapexanglebetweentheaxes ofthegasjets • Higherapexangleleadtosmallerparticlesize • Apexangleforwateratomizationissmallerthanforgasatomization • Nozzledesign: i)annulartype,ii)discretejettype; i)freefalling,ii)confineddesign • Infreefalling,moltenmetalcomesincontactwithatomizingmediumaftersome distance.Herefreefallingofmetalisseen.Thisismainlyusedinwateratomization. • Inconfineddesignusedwithannularnozzle,atomizationoccurs attheexitofthe nozzle.Gasatomizationisusedgenerallyforthis.Thishashigherefficiencythanfree fallingtype. Onehastobecautiousthat“freezeup” ofmetalinthenozzlehastobe avoided.

R. Ganesh Narayanan, IITG Atomicnozzleconfiguration,a)twinjetnozzle,b)annularjetnozzle

R. Ganesh Narayanan, IITG Atomizingmediums • Theselectionoftheatomizingjetmediumisbasedmainlyonthereactivityofthemetal andthecostofthemedium • Airandwaterareinexpensive,butarereactiveinnature • InertgaseslikeNi,Ar,Hecanbeusedbutareexpensiveandhencehavetoberecycled • Pumpingofcoldgasalongwiththeatomizingjet=>thiswillincreasethesolidification rate • recently, synthetic oils are used instead of gas or water => this yields high cooling rate & lower oxygen content comparedtowateratomizedpowders • Oil atomization issuitableforhighcarbonsteel,highspeed,bearingsteals,steel containinghighquantitiesofcarbideformingelementslikeCr,Molybdenum • Thismethodisnotgoodforpowdersoflowcarbonsteels

Gasesusedfor atomization

R. Ganesh Narayanan, IITG Importantatomizationprocesses Inertgasatomization Productionofhighgrademetalpowderswithsphericalshape,highbulkdensity, flowability alongwithlowoxygencontentandhighpurity Eg.Nibasedsuperalloys Controlling parameters: (1)viscosity,surfacetension,temperature,flowrateof moltenmetal ; (2)flowrate,velocity,viscosityofatomizingmedium ;(3)jetangle, jetdistanceoftheatomizingsystem; (4)natureofquenchingmedia TheflightpathforNibasedsuperalloypowdersofdiameter‘d’ is, L=1806√d3 /(6.12/d)+12.5 ; L – Criticalflightpathinmeters

Schematicofhorizontal gasatomization R. Ganesh Narayanan, IITG Wateratomization Waterjetisusedinsteadofinertgas Fitforhighvolumeandlowcostproduction Powdersofaveragesizefrom150micronto400micron;coolingratesfrom 10 3 to10 5 K/s.Rapidextractionofheatresultsinirregularparticleshape=>less timetospheroidize incomparisontogasatomization Waterpressureof70MPa forfinepowdersin10micronrange important parameters: 1.Waterpressure:Increasewaterpressure=>sizedecrease=> increased impact 2.waterjetthickness:increasethickness=>finerparticles=>volumeof atomizingmediumincreases 3.Angleofwaterimpingementwithmoltenmetal&distanceofjettravel

R. Ganesh Narayanan, IITG Schematicofwateratomization

R. Ganesh Narayanan, IITG Atomizationprocessparameters 1. Effectofpressureofmetalhead: r=a+b√h; r– rateofatomization 2. Effectofatomizingmediumpressure: r=a√p +b; Increaseinairpressure increasesthefinenessofpowderuptoalimit,afterwhichnoincreaseisseen 3. Moltenmetaltemperature : Astemperatureincreases,bothsurfacetensionand viscositydecrease;soavailableenergycanefficientlydisintegratethemetal streamproducingfinepowdersthanatlowertemperature; Temperatureeffect onparticleshapeisdependentonparticletemperatureattheinstantof formationandtimeintervalbetweenformationoftheparticleandits solidification;Temperatureincreasewillreducesurfacetension andhence formationofsphericalparticleisminimal;howeversphericalparticlescanstill beformedifthedisintegratedparticlesremainasliquidforlongertimes. 4. Orificearea: negligibleeffect 5. Moltenmetalproperties : IronandCupowder=>finesphericalsize;Pb,Sn =>irregularshapepowder; Alpowders=>irregularshapeevenathighsurfacetension(oxidationeffect)

R. Ganesh Narayanan, IITG Summaryofvariouspowderproductionmethods

R. Ganesh Narayanan, IITG Characteristicsofdifferentatomizationprocesses

Powdersproducedbyvariousatomizationmethodsandapplications

R. Ganesh Narayanan, IITG Makingpowder&subsequentprocessing

R. Ganesh Narayanan, IITG Powdertreatment&Handling Inpowderconditioning,thepowderspreparedbyvariousmethods aresubjectedtoa varietyoftreatmentstoimproveormodifytheirphysical,chemicalcharacteristics

Powdertreatments PowdersmanufacturedforP/Mapplicationscanbeclassifiedinto – elemental powders,andprealloyedpowders Elementalpowders =>powders ofsinglemetallicelement;eg.:ironformagnetic applications Prealloyedpowders =>morethanoneelement;madebyalloyingelemental powdersduringprocessitself;INthiscase,alltheparticleshave samenominalcompositionandeachparticleisequivalenttosmallingot Majorityofpowdersundergoheattreatments priortocompactionlike, i)Dryingtoremovemoisture,ii)grinding/crushingtoobtainfinesizes,iii)particle sizeclassificationtoobtainthedesiredparticlesizedistribution,iv)annealing,v) mixingandblendingofpowders,vi)lubricantadditionforpowdercompaction,vii) powdercoating R. Ganesh Narayanan, IITG a) Cleaningofpowders: • Referstotheremovalofcontaminants,solidorgaseous,fromthepowderparticles • Solid contaminants =>comefromseveralsourceslikenozzlesorcruciblelinings. Theyinterfereduringcompactionandsinteringpreventingproper mechanical bonding • Mostofthesecontaminantsarenonreactive,butthey actassitesforcracknucleation andreducethedynamicpropertiesofthesinteredpart ;Nonmetallicsolidimpurities canberemovedfrom powdersbyparticleseparators,electrostatic separationtechniques • Gaseous impurities likehydrogenandoxygengetintopowdersduringprocessing, storageorhandlingifpropercareisnottaken.Finerthepowders,contaminationwill bemorebecauseoflargepowdersurfacearea. • Thesegaseousimpuritiescanform undesirableoxidesduringprocessingatrelatively hightemperature or getstrappedinsidethematerialaspores ,reducingtheinsitu performanceoftheP/Mpart;Degassingtechniqueslikecold,hot staticordynamic degassingmethodsareusedtoremoveadsorbedgasesfromthepowders • Lubricantsaddedtothepowdersforbettercompactionhastoberemovedfor

desirablefinalP/Mpart R. Ganesh Narayanan, IITG b)Grinding: similartothemechanicalmethodsseenearlier;Millingiswidelyusedfor reducingtheaggregatesofpowder;Millingtime,speed,typecan beselectedforgetting requireddegreeofgrinding c)Powderclassification&screening: Powdersizeandshape,sizedistributionvaried withinspecifiedrangeisrequiredforbetterbehaviorofP/Mparts;Inthismethod,the desiredparticlesizedistributionswithparticlesizeswithinspecificlimitscanbe obtained;Thesevariationdependsonlotalso. d)Blending&mixing: Blending – Processinwhichpowdersofthesamenominal compositionbuthavingdifferentparticlesizesareintermingled.Thisisdoneto(i) obtainauniformdistributionofparticlesizes,i.e.powdersconsistingofdifferent particlesizesareoftenblendedtoreduceporosity,(ii)forinterminglingoflubricant withpowderstomodifymetaltopowderinteractionduringcompaction Mixing – processofcombiningpowdersofdifferentchemistriessuchaselemental powdermixes(CuSn)ormetalnonmetalpowders.Thismaybedoneindryorwet condition.Liquidmediumlikealcohol,acetone,benzeneordistilledwaterareusedas millingmediuminwetmilling.Ballmillsorrodmillsareemployedformixinghard metalssuchascarbides.

R. Ganesh Narayanan, IITG cylindrical Vtype Coretype

R. GaneshVtypemixer Narayanan, IITG Mixingmethods Thevarioustypesofmixingmethodsare,(i) convectivemixing :transferofonegroup ofparticlesfromonelocationtoanother,(ii) diffusivemixing :movementofparticles ontonewlyformedsurface,(iii) shearmixing :deformation&formationofplanes withinthepowders Dependingontheextentofmixing,mixingcanbeclassifiedas(i)perfectlymixedor uniformmixing,(ii)randommixed,&(iii)totallyunmixed.Themixingshouldbe stoppedwhenrandommixtureisachieved.Overmixing leadstoreducedflow characteristicsofthemix.

uniformmixing randommixed unmixed. R. Ganesh Narayanan, IITG Heattreatmentofpowders Heattreatmentisgenerallycarriedoutbeforemixingorblendingthemetalpowders. Someoftheimportantobjectivesare, i) Improvingthepurityofpowder: Reductionofsurfaceoxidesfrompowdersby annealinginhydrogenorotherreducingatmosphere.Dissolvedgaseslike hydrogenandoxygen,otherimpuritiesareremovedbyannealingofpowders. Loweringimpuritieslikecarbonresultsinlowerhardnessofthe powderandhence lowercompactionpressures&lowerdiewearduringcompaction.Foreg.,atomized powdershavingacombinedcarbonandoxygencontentashighas1%canbe reducedafterannealingtoabout0.01%carbonand0.2%oxygen.Heattreatmentis doneatprotectiveatmospherelikehydrogen,vacuum. ii) Improvingthepowdersoftness: Aimistoreducetheworkhardeningeffectof powdersthathasbecrushedtoobtainfinepowders;whilemanypowdersaremade bymilling,crushingorgrindingofbulkmaterials.Powderparticlesareannealed underreducingatmospherelikehydrogen.Theannealingtemperatureiskeptlowto avoidfusionoftheparticles. iii) Modificationofpowdercharacteristics :Theapparentdensityofthepowderscanbe modifiedtoahigherorlowervaluebychangingthetemperatureoftreatment. R. Ganesh Narayanan, IITG Toxicityofpowders

• Toxicityleadstoundesirablehealtheffectslikeeye,skinirritation,vomiting, respiratoryproblems,bloodpoisoningetc. • powderlikelead,nickelarehighlytoxic&Al,ironarelesstoxic • Precautions:Useofprotectivegloves,respiratorymasks,protectiveclothingetc.;use ofwellventilatedstorage,workplace;carefulhandling,disposalofwastes • flammability&reactivitydataisrequired • Healtheffects:Inhalation– disturbstherespiratorytrack;remedialmeasuresinclude movingthepersontofreshair.Artificialbreathingisrequired ifpatientnotbreathing properly. Skin,eyes– Brushing,washingskinandeyeswithwaterandsoap.Cleaneyes with freshwaterfor15mts.

R. Ganesh Narayanan, IITG Compactionofmetalpowders • Compactionisanimportantstepinpowderprocessingasitenablestheformingof loosemetalpowdersintorequiredshapeswithsufficientstrengthtowithstandtill sinteringiscompleted. • Ingeneral,compactionisdonewithouttheapplicationofheat. Loosepowdersare convertedintorequiredshapewithsufficientstrengthtowithstandejectionfromthe toolsandsubsequentsinteringprocess.INcaseslikecementedcarbide,hotcompaction isdonefollowedbysintering.Onecannotcallthisascompactionstrictly,assintering isalsoinvolvedinthis.

Powdercompactionmethods Powdercompactiontechniquescanbeclassifiedas, 1. Methodswithoutapplicationofpressure – i)loosepowdersinteringinmould,ii) vibratorycompaction,iii)slipcasting,iv)slurrycasting,v)injectionmoulding 2. Methodswithappliedpressure – i)colddiecompaction(singleactionpressing, doubleactionpressing,floatingdiepressing),ii)isostatic pressing,iii)powder rolling,iv)powderextrusion,v)explosivecompaction

R. Ganesh Narayanan, IITG Pressureless compactiontechniques Usedfortheproductionofsimpleandlowdensitypartssuchasfilters,otherpartsthat areporousinnature; thesetechniquesinvolvenoexternalforceanddependupon gravityforpowderpacking I)Loosepowdersintering: Alsoknownasloosepowdershaping,gravitysintering, pressureless sintering. Inthismethod,themetalpowderisvibratedmechanicallyinto themould,whichisthenegativeimpressionoftheproductandheatedtosintering temperature. Thisisthesimplestmethodandinvolvelowcostequipment.The main reasonsfornotusingthismethodforpartproductionare,difficultyofpartremoval fromthemouldaftersintering,&considerableshrinkageduringsintering. Applications : Amountofporosityrangesfrom40vol%toashighas90vol%;Highly porousfiltermaterialsmadeofbronze,stainlesssteel,and,porousnickel membraneforuseaselectrodesinalkalinestoragebatteriesand fuelcellsaretypical examples. II)Slipcasting: Usedforcompactingmetalandceramicpowderstomakelarge& complexshapesforlimitedproductionruns Aslipisasuspension ofmetalorceramicpowder(finerthan5m)inwaterorother solubleliquidwhichisporedintoamould,driedandfurthersintered. R. Ganesh Narayanan, IITG Slipisusuallymadeof,1)a dispersion agent tostabilizethepowderagainstcolloidal forces,2)a solvent tocontroltheslipviscosityandfacilitatecasting,3)a binder forgiving greenstrengthtothecastshape,4) plasticizer tomodifythepropertiesofthebinder Forsuccessfulslipcasting,formationofappropriateandaconsistentslipisimportant.This isachievedbypropercontrolofparticlesize,sizedistribution,orderofcomponentaddition, theirmixingtime,additionofproper deflocculant topreventthesettlingandaggregation ofpowdersandmaintainsthedesirableviscosityoftheslip. Mostlywaterisusedassuspendingmedium,butabsolutealcohol orotherorganicliquids mayalsobeemployed. Additiveslikealginates– ammoniumandsodiumsaltsofalginic acids,servethreefoldfunctionsofdeflocculant,suspensionagent&bindingagentto improvegreenstrengthofthecompact . Thesliptobecastisobtainedinaformofsuspensionofpowderinasuspendingmedium. Theslipshouldhavelowviscosity&lowrateofsettingsothat itcanbereadilypoured.The slipcastshouldbereadilyremovablefromthemould.Lowshrinkageandhighstrengthafter dryingisexpected. Toobtaintheseproperties,5mpowderparticlesshouldbeused.Inthecaseoffine molybdenumpowders,aslipcanbepreparedbysuspendingthepowderin5%aqueous polyvinylalcoholwithaminimumviscosity,atapHvalueof7.

R. Ganesh Narayanan, IITG • Forcoarser,sphericalstainlesssteelpowder,amixerof80.7% metalpowder,19%water, 0.3%ofsodiumalginateasdeflocculant havingapHvalueof10canbeused. • Stepsinslipcasting: i)Preparingassembledplastermould,ii)fillingthemould,iii) absorptionofwaterfromtheslipintotheporousmould,iv)removalofpartfromthemould, v)trimmingoffinishedpartsfromthemould • Sometimesmouldreleaseagentslikeoil,graphitecanbeused. • Hollowandmultiplepartscanbeproduced • Advantages of slip casting: Productsthatcannotbeproducedbypressingoperationcan bemade,noexpensiveequipmentisrequired,worksbestwithfinestpowderparticles • Disadvantage: slowprocess,limitedcommercialapplications • Applications : tubes,boats,crucibles,cones,turbineblades,rocketguidance fins;Also productswithexcellentsurfacefinishlikebasins,waterclosets.

Assembled mould FillingR. Ganesh mould Narayanan,Absorption IITG of Part removal water from slip III) Slurrycasting : Thisprocessissimilartoslipcastingexceptthataslurryof metalpowderswithsuitableliquids,variousadditives,andbindersispouredintoa mouldanddried.ThesolventisremovedeitherbyabsorptionintothePOPorby evaporation.Veryhighporoussheetforuseaselectrodesinfuelcellsandnickel cadmiumrechargeablebatteriesareproducedbythismethod.

IV)Tapecasting(doctorbladecasting): Thisisavariationofslurrycastingprocessand isusedtoproducethinflatsheets. Thisprocessinvolvespreparingadispersionofmetalorceramic powderinasuitable solventwiththeadditionofdispersionagent(toimprovethedispersionoftheparticles). Thenabinderisaddedandfedtoareservoir.Wholemixtureisfedontoamovingcarrier filmfromthebottomofthereservoir. Thisslurrylayerisdepositedonthefilmbytheshearingactionofablade.Theslurry shouldbefreeofairbubbles,otherwiseresultinporosity.Duringsintering,thebinderis burntofffirstanddensificationofmaterialoccurs. Inpresentdays,endlessstainlesssteelbeltisusedinsteadofcarriertape.Thisprocess canbeusedformakingverythintapesbetween50to1000mthickness.Thismethodis usedformakingelectronicsubstrates,dielectricsforcapacitorsandpiezoelectricactuators.

R. Ganesh Narayanan, IITG Schematicoftapecasting

Slip Greentape Sinteredtape Stagesintapecasting R. Ganesh Narayanan, IITG V)Vibratorycompaction : Vibratorycompactionusesvibrationenergytocompactthe powdermass.Duringthisprocess,smallervoidscanbefilledwithparticlesofstill smallersizeandthissequenceiscarriedouttillahighpackingdensityofpowderis achievedevenbeforeconsolidation.Mechanicalvibrationfacilitatestheformationof nearlyclosedpackedpowderbysettlingparticlesinthevoidspresentinthepowder agglomerate.Duringvibration,smallpneumaticpressureisusuallysuperimposedon thepowdermass. Brittlepowderscanbecompactedbythismethodastheydevelop crackifdoneby pressurecompaction Thismethodisgenerallyusedwhen,1)powdershaveirregularshape,2)useof plasticizersforformingisnotdesirable,3)sintereddensityisrequiredtobeveryclose theoreticaldensity Importantvariablesinvibratorycompaction: 1.inertiaofsystem: largerthesystem,moretheenergyrequiredforpacking 2.frictionforcebetweenparticles: morefrictionresultsinneedofmoreKEfor compaction 3.particlesizedistribution: morefrequencyrequiredifmorelargeparticlesare present.VibrationcycleisimportantandnotperioR. Ganesh Narayanan,dofvibration. IITG Pressurecompactiontechniques • Thesetechniquesinvolveapplicationofexternalpressuretocompacttheloose powderparticles;Pressureappliedcanbeunidirectional,bidirectionalorhydrostaticin nature. • Die compaction: Inthisprocess,loosepowderisshapedinadieusingamechanical orhydraulicpressgivingrisetodensification.Themechanismsofdensificationdepend onthematerialandstructuralcharacteristicsofpowderparticles. • Unidirectionalandbidirectionalcompactioninvolvessamenumberofstagesandare describedinthisfigure.Theyare,i)chargingthepowdermix,ii)applyingloadusinga punch(uni)ordoublepunch(bi)tocompactpowders,iii)removalofloadby retractingthepunch,iv)ejectionofgreencompact.Thetablegivescompactionpressure rangesformetalsandceramics. Material type Compaction pressure range (MPa)

R. Ganesh Narayanan, IITG Effectofpowdercharacteristics Foragoodcompaction,1)irregularshapedparticlesarepreferredastheygivebetter interlockingandhencehighgreenstrength,2)apparentdensityofpowdersdecidesthedie fillduringcompaction.Hencepowdersize,shape&densityaffecttheapparentdensity,3) flowrateaffectsthediefilltime,andonceagainpowdersize, shape&densityaffectthe flowrate. Powderbehaviorduringcompaction Compactioninvolves,1)flowofpowderparticlespastoneanotherinteractingwitheach otherandwithdiepunch,2)deformationofparticles.Inthecaseofhomogeneous compaction,twostagesareobserved. First stage =>rapiddensificationoccurswhen pressureisappliedduetoparticlemovementandrearrangementresultinginimproved packing; Second stage =>increaseinappliedpressureleadstoelasticandplastic deformationresultinginlockingandcoldweldingofparticles.Inthesecondstage,large incrementsinpressuresareseentoeffectasmallincreaseindensity. Top punch Green density Powder Slope,K die R. Ganesh Narayanan, IITG Compaction pressure • Thegreencompactproducedcanbeconsideredasatwoaggregateconsistingof powderparticlesandporosityeachhavingownshapeandsize. • Compactioncanbedoneatlowandhightemperatures.Roomtemperaturecompaction employspressuresintherangeof100700MPa andproducedensityintherangeof60 90%ofthetheoreticaldensity.Athighertemperatures,pressuresarekeptlowwithinthe limitsforpreventingdiedamage. • In single die compaction ,powdersclosetothepunchanddiewallsexperiencemuch betterforcethanincenter.Thisresultsingreendensityvariationacrossthesample length.Longerthesamplemorethedensitydifference.Thisnonuniformitycanresultin nonuniformityinpropertiesofsinteredpart. • Thisdensityvariationandhencefinalpropertyvariationcanbe greatlyreducedby having double ended die compaction .Inthiscase,powderexperiencesmoreuniform pressurefrombothtopandbottom,resultinginminimizationofdensityvariation.But thisvariationwillstillbeconsiderableifthecomponentshave highaspectratio(length todiameterratio).Thismeansthatlongrodsandtubescannotbeproducedbydie compaction.Inthiscase,isostatic pressingcanbeused .

Singleended Doubleended compaction compaction R. Ganesh Narayanan, IITG Schematicofpowdercompaction

R. Ganesh Narayanan, IITG Figurefrompublicdomain Diecompactionlubricants Itisknownthatpresenceoffrictionalforceslimitsthedegreeofdensification. Usageoflubricantseithermixedorappliedtocontactsurfaces canbedonetominimize friction Lubricants =>organiccompoundssuchaswaxesormetallicstearates orsaltsandthey generallyhavelowboilingpoints;Amountoflubricantaddedcan be0.5to2%byweight ofcharge Mixed lubrication =>Reducetheinterparticle frictionandaidbetterpacking.Butthey mayaffectthedensificationpropertydependingontheirvolumeanddensity.Themixed lubricantsshouldberemovedbeforesinteringtoavoiddistortionofcompact. Even1wt%oflubricantcanoccupylargevolumeofapp.5%andmaximumattainable densitywillbe95%(assumingzeroporosity)only.

Die wall lubrication =>Graphite&MoS 2 canbeappliedphysicallyonthedie,punch surfaces;Theycanbeeasilyremoved,buttakeslongerproductiontimes. Commonly used lubricants in P/M =>Paraffinwax, stearate,Lithium stearate,Zincstearate,Magnesiumstearate,stearic acid,Oleicacid,Talc,Graphite,boron nitride,Mos 2

R. Ganesh Narayanan, IITG Toolingfordiecompaction P/M part classification ClassIP/Mpart =>simple,thinsections,unidirectionallypressedwithsinglelevel compaction; classIIP/MPart =>Simple,butthicksectionsrequiringpressingfrom twodirection; classIII =>Twodifferentthicknesslevelsrequiringtwodirection pressing; classIV =>Multiplelevelsofthickness,requiringpressingfromboththe directions Tooling: Singleactiontooling: pressureisappliedbylowerpunch,whilethedie cavityandupperpunchremainstationary.Aftercompaction,theupperpunch movesawayandcompactisejectedbymovementoflowerpunch.ClassIpartscan bemadebythistooling. Doubleactiontooling: INthis,Simultaneousmovementoftopandbottompunches areseen,whiledieandcorerodremainstationary.ClassII,III,IVtypepartsare madebythistooling. Powdercharacteristicsthataffectthetoolingdesigninclude , 1)Flowofpowders – powderparticlesshouldflowfreelytofillthedie.Byusinglubricants,flowcanbe madesmoothandimproved; 2)diefill – thisistheamountofpowderinthecavity beforecompaction.Thisdependsonshapeandgeometryofpart,freeflowof R. Ganesh Narayanan, IITG powders,complexityofpartlikethinsectionsandprotrusions. Green compact

Die Punches Core rod

Doubleactiontooling Toolingfordoubleactiondiecompaction Hydraulicpressusedfordie compaction

Class I

ClassIpart ClassIIpart ClassIIIpart ClassIVpart Class II

Class III

R. Ganesh Narayanan, IITG Diematerials Softpowders likealuminium,copper,lead=>abrasionresistantsteelsuchasair hardenedsteels,diesteelsareusedformakingdie Relativelyhardpowders =>diesmadeoftoolsteelareused Morehard&abrasivepowders likesteel=>tungstencarbidediesareused.Butcarbide diesarecostly&highhardness(difficulttomachine) Coateddies withhard&wearresistantcoatingmaterialliketitaniumnitrideortitanium carbidecanbeused Defectsoccurringindiepressingofpowders: 1) laminationcracking – thisiscausedbytrappedairincompactsample.Thiscracking occursperpendiculartoloaddirection.Thistrappedairpreventstheinterlockingof particles. 2) Blowout – occurswhenalltheentrappedairtriestoescapeattheinterfacebetween thedieandpunch

R. Ganesh Narayanan, IITG Coldisostatic compaction(CIP) • CIPisacompactionprocessinwhichisostatic fluidpressureisappliedtoapowder massatroomtemperaturetocompactitintodesiredshape.Thepowderpartscanbe compactedupto8090%oftheirtheoreticaldensities.Wateroroilcanbeusedas pressuringmedium. • Processdetails: Highdensitynearnetshapegreenparts,longthinwalledcylinders, partswithundercutscanbereadilyfabricated. Inthisprocess,pressureisapplied simultaneouslyandequallyinalldirectionsusingafluidtoan elastomeric fluidwith powderatroomtemperature. SinteredCIPcomponentcanreachupto97%of theoreticaldensity.Stepsinthisprocessisshowninflowchart. Selectelementalor Pressurise & Fillmouldwithpowder Loadmouldintopress prealloyedpowders hold

Removecompact Depressurise & sample&sinter removemould GoodmouldfillingisrequiredinCIPbecausetheinitialpowder distributionanddensity affectthepreform shape.Powdersize,shape,densityandmechanicalpropertiesaffectthe flowability ofpowderintothemouldandthepackingdensity.Optimumpressingis obtainedbyusingafreeflowingpowderalongwithcontrolledvibrationormouldtapping. Materials used for flexible mouldsR. areGanesh natural, Narayanan, syn theticIITG rubber like neoprene, urethane, nitrile, silicones. • Duringpressing,highdensityisachievedatalowpressure,whilethegreenstrength ofthecompactriseslinearlywithpressure. Thepressureappliedcanrangefrom100 400MPa. Initiallytheappliedstress(exactlyshearstress)servestoimprovethedensity ofthecompactbyparticleslidingandrotation.Inthenextstage,deformationofpowder particlesoccurandparticlecharacteristicslikeshapeplayvitalroleindecidingthis stage. • Irregularparticleswhichinterlockwithoneanotherandalsodeformduringboththe stages,tendtodensify mucheasilythansphericalpowders. Inthecaseofspherical powders,inspiteoftheirhigherinitialpackingdensities,particlesdonotmechanically interlockwithoneanotherandhencedonoteasilydeform. Hencehighpressuresare requiredfortheircompaction.

Green compact Depressurization Mould Mould R. Ganesh Narayanan, IITG filling pressurization Typesofcoldisostatic pressing: Wetbagprocess: INthis,themouldisdirectlyincontactwiththefluid.Thisreduces theproductivity,sincethebaghastoberemovedeverytimebeforerefilling.Tooling costsarereducedinthis. Fixedmouldprocess: themouldisfixedinthepressurevesselandpowdersarefilled insitu.Thetoolinghasinternalchannelintowhichfluidispumped.Thisisan automatedprocessinwhichthepowderfilling,compaction,depressurizationand removalofgreenpartsaredonecontinuously.Thisinvolveshighertoolingcost,but hashigherproductionrate. AdvantagesofCIP: Uniform,controlled,reproducibledensificationofpowder;long, slenderpartscanbe pressed;neatnetshapeforming;shortproductiontimes;economy ofoperationfor complexandlargeparts. Applications: Metallicfiltersmadefrombronze,brass,stainlesssteel,,Monel,Titanium, highspeedtools,carbidetools.Alsoceramicpartssuchassparksplugsand insulatorsaremadebythismethod. R. Ganesh Narayanan, IITG Powderrolling Thisprocessinvolvesfeedingofpowdersbetweenrollstoproduceacoherentandbrittle greenstrip.Thisgreenstripisthensintered&rerolledtoobtainadense,finished product.

Steps: 1)preparationofgreenstrip,2)sintering,3)densificationofsinteredstrip,4) finalcoldrollingandannealing Parameters affecting powder rolling arerollgap,rolldiameter,rollspeed,powder characteristics; Roll gap =>largerollgapleadstodecreaseingreendensity;verysmall rollgapleadstoedgecracking; roll diameter =>increaseindensityandstrengthwith increaseinrolldia.foragivenstripthickness;roll speed =>Keptlow,0.30.5m/s; Powder =>irregularpowderwithroughsurfacesprovidebetterstripdensity Indensificationstage,either repeated cold rolling followed by annealing or hot rolling of strip canbefollowed Applications: nickelstripsforcoinage,nickelironstripsforcontrolledexpansion properties,CuNiSn alloysforelectronicapplications,porousnickelstripforalkaline batteriesandfuelcellapplications. R. Ganesh Narayanan, IITG 12” wide Ti-6Al-4V strip

R. Ganesh Narayanan,Figuresfromwww.cems.uvm.edu/~ebuturla/, IITG http://www.itponline.com/Presentations/ITA2005.pdf Hotisostatic pressing Idealmethodforconsolidationofpowdersofnickelandbasesuperalloys,tool steels,maraging steels,titaniumalloys,refractorymetalpowders,cermets.Ithasgot varietyofapplicationsincludingbondingofdissimilarmaterials,consolidationof coatings,processinghardandsoftmagneticmaterialsetc. HIPistheapplicationofpressureatelevatedtemperaturestoobtainnetornearnet shapepartsfrommetal,ceramic,cermet powders. HIPunitconsistsofapressurevessel,hightemperaturefurnace,pressurizingsystem, controlsandauxiliarysystems(materialhandling,vacuumpumps, meteringpumps). The pressurevessel ismadeoflowalloysteel.Itsfunctionistoheatthepowders whileapplyinguniformgaspressureonallthesides. Furnaces areofradiationor convectiontypeheatingfurnaceswithgraphiteormolybdenumheatingelements. Nichrome isalsoused.Thefurnaceheatsthepowderpart,whilepressurizingmedium (agas)isusedtoapplyahighpressureduringtheprocess.Generally, argon,nitrogen, heliumorevenairisusedaspressurizingmedium. Thepressurizinggas,usuallyargon,isletintothevesseland thenacompressoris usedtoincreasethepressuretothedesiredlevel.Thefurnaceisthenstartedandboth temperatureandpressureareincreasedtoarequiredvalue. R. Ganesh Narayanan, IITG HIP UNIT– used for ceramic material (photo from public domain)

Schematic of HIP UNIT (cross-section) R. Ganesh Narayanan, IITG HIPpressesareavailableindiametersupto2mwithpressuresrangesfrom40to300 MPa withtemperaturerangefrom500to2200°C.Theprocessingtimecanlastupto4 hoursdependingonthematerialandsizeofthepart. duringHIP,theporesareclosedbyflowofmatterbydiffusion andcreep,butalso bondedacrosstheinterfacetoformacontinuousmaterial. Commonlyusedheatingelements: Kanthal heatingelement– upto1200°C; Molybdenumheatingelement– 1200to1700°C;Graphiteheatingelement– 2000to 2600°C Typicalrangeoftemperature&pressuresusedinHIPisgivenintable

R. Ganesh Narayanan, IITG Sintering • Itistheprocessofconsolidatingeitherlooseaggregateofpowderoragreencompact ofthedesiredcompositionundercontrolledconditionsoftemperatureandtime. • Typesofsintering: a)solidstatesintering – Thisisthecommonlyoccurring consolidationofmetalandalloypowders.Inthis,densification occursmainlybecause ofatomicdiffusioninsolidstate. b)Liquidphasesintering – Thedensificationinimprovedbyemployingasmallamount ofliquidphase(110%vol).Theliquidphaseexistingwithinthepowdersatthe sinteringtemperaturehassomesolubilityforthesolid.Sufficientamountofliquidis formedbetweenthesolidparticlesofthecompactsample.During sintering,theliquid phasecrystallizesatthegrainboundariesbindingthegrains.Duringthisstage,thereisa rapidrearrangementofsolidparticlesleadingtodensityincrease.Inlaterstage,solid phasesinteringoccursresultingingraincoarseninganddensificationrateslowsdown. Usedforsinteringofsystemsliketungstencopperandcoppertin.Alsocovalent compoundslikesiliconnitride,siliconcarbidecanbemade,thataredifficulttosinter. c)Activatedsintering – INthis,analloyingelementcalled‘doping’ isaddedinsmall amountimprovesthedensificationbyasmuchas100timesthanundoped compact samples.Exampleisthedopingofnickelintungstencompacts R. Ganesh Narayanan, IITG d)Reactionsintering – INthisprocess,hightemperaturematerialsresultingfromchemical reactionbetweentheindividualconstituents,givingverygoodbonding.Reactionsintering occurswhentwoormorecomponentsreactschemicallyduringsinteringtocreatefinalpart. Atypicalexampleisthereactionbetweenaluminaandtitania toformaluminium titanate at 1553Kwhichthensinterstoformadensified product. Otherthanmentionedabove,ratecontrolledsintering,microwave sintering,gasplasma sintering,sparkplasmasinteringarealsodevelopedandpracticed. Sinteringtheory Sinteringmayinvolve,1)singlecomponentsystem – hereselfdiffusionisthemajor materialtransportmechanismandthedrivingforceresultingfromachemicalpotential gradientduetosurfacetensionandcapillaryforcesbetweenparticles,2)multicomponent system (involvemorethanonephase)– interdiffusionoccurswiththeconcentration gradientbeingthemajordrivingforceforsinteringinaddition toselfdiffusioncausedby surfacetensionandcapillaryforces.INthissintering,liquidphaseformationandsolid solutionformationalsooccurswithdensification. FirsttheorywasproposedbySauerwald in1922. Thistheorysaysthattwostagesare involvedinsinteringnamely adhesion and recrystallisation . Adhesionoccursduringheating duetoatomicattraction and recrystallisationoccursatrecrystallisationtemperature(above

0.5T m). Inrecrystallisation,microstructurechanges,phaseR. Ganesh Narayanan, IITG changes,graingrowth,shrinkage occurs. Solidstatesinteringprocess Conditionforsintering: 1)densificationoccursduringsinteringandsolidstatesinteringis carriedoutattemperatureswherematerialtransportduetodiffusionisappreciable.Surface diffusionisnotsufficient,atomicdiffusionisrequired.

2)Thisoccursbyreplacinghighenergysolidvapour interfaces(withfreeenergy γSV )with thelowenergysolidsolidinterface(particleparticle)offreeenergy γSS . Thisreductionin surfaceenergycausesdensification. 3)Initiallyfreeenergyofsolidsolidinterfacemustbelowerthanfreeenergyofsolid vapour interface.Theprocessofsinteringwillstopiftheoverallchangeinfreeenergyofthe system( dE )becomeszero,i.e., dE =γSS dA SS +γSV dA SV ≤ 0

Where dA SS & dA SV aretheinterfacialareaofsolidsolidandsolidvapour interfaces. 4)Initially,thesurfaceareaofcompactrepresentthefreesurfacearea,sincenograin boundarieshavedevelopedandhence ASV =A SV0 &A SS =0 .Assinteringproceeds, ASV decreasesand ASS increases.Thesinteringprocesswillstopwhen dE =0 , i.e., γSS dA SS +γSV dA SV =0=>γSS /γSV = dA SV /dA SS

5)Densificationstopswhen dA SV /dA SS isclosetozero.Toachievedensificationwithout graingrowth,thesolidsolidinterfacemustbemaximized.Suchconditionscanbeachieved bydopingorbyusingsuitablesinteringconditionsforsurfacefreeenergymaximization. R. Ganesh Narayanan, IITG Stagesinsolidstatesintering • Ingeneral,solidstatesinteringcanbedividedintothreestages– 1st stage : Necks areformedatthecontactpointsbetweentheparticles ,whichcontinuetogrow. Duringthisrapidneckgrowthtakesplace.Alsotheporesareinterconnectedandthe poreshapesareirregular. • 2nd stage: Inthisstage,withsufficientneckgrowth,theporechannelsbecomemore cylindricalinnature.Thecurvaturegradientishighforsmallnecksizeleadingto fastersintering.Withsufficienttimeatthesinteringtemperature,theporeeventually becomesrounded.Astheneckgrows,thecurvaturegradientdecreasesandsintering alsodecreases.Thismeansthereisnochangeinporevolumebut withchangeinpore shape=>poresmaybecomesphericalandisolated. Withcontinuedsintering,a networkofporesandaskeletonofsolidparticleisformed .Theporescontinueto formaconnectedphasethroughoutthecompact. • 3rd orfinalstage: Inthisstage, porechannelclosureoccursandtheporesbecome isolatedandnolongerinterconnected .Porositydoesnotchangeandsmallpores remainevenafterlongsinteringtimes.

R. Ganesh Narayanan, IITG Particles in contact Formation of necks, Final sintered geometry grain boundaries, pores

Pore channel formation R. Ganesh Narayanan, IITG Drivingforceforsintering • Themaindrivingforceisexcesssurfacefreeenergyinsolidstatesintering . The surfaceenergycanbereducedbytransportingmaterialfromdifferentareasby variousmaterialtransportmechanismssoastoeliminatepores . • materialtransportduringsolidstatesinteringoccursmainlybysurfacetransport, grainboundarytransportation.Thissurfacetransportcanbethroughadhesion, surfacediffusion.Manymodelsavailabletodescribesinteringprocess– like viscousflow,plasticflow,grainboundaryandvolumediffusionmodels.These modelswillbebrieflydescribedhere.

R. Ganesh Narayanan, IITG Mechanisminsolidstatesintering Asdiscussedearlier,materialoratomtransportformsthebasic mechanismforsintering process.Anumberofmechanismshavebeenproposedforsintering operation. Theseare, 1.Evaporationcondensation, 2.diffusion(canbevolumediffusion,grainboundary diffusion,surfacediffusion), 3.viscousflow, 4.plasticflow 1.Evaporationandcondensationmechanism Thebasicprincipleofthemechanismisthatthe equilibriumvaporpressureovera concavesurface(likeneck)islowercomparedtoaconvexsurface(likeparticle surface). Thiscreatesthevaporpressuregradientbetweentheneckregionand particlesurface.Hencemasstransportoccursbecauseofvaporpressuregradient fromneck(concavesurface)toparticlesurface(convexsurface).Thedrivingforce

ofthisisbasedonGibbsThomsonequation, 0 =RTln(p/p 0)=(γ)()/r where and0 arechemicalpotentialsofinitialandfinalsurfaces,Risuniversalgas constant,TistemperatureinK,pandp 0 arepartialpressuresoverthecurvedand flatsurfacerespectively,γ isthesurfacefreeenergy, istheatomicvolume

R. Ganesh Narayanan, IITG 2.Diffusionmechanism Diffusionoccursbecauseofvacancyconcentrationgradient .Inthecaseoftwo spheresincontactwitheachother,avacancygradientisgeneratedbetweenthetwo

surfaces.Thisconditioncanbegivenby, 0 =RTln(C/C 0)=(γ)()/r Where C and C0 arethevacancyconcentrationgradientaroundthecurvedandflatsurface. Kuczynski hasderived empiricalrelationforneckgrowthrateforthefollowingtwo cases, i)asphereincontactwithflatsurface– therateofneckgrowthis proportionaltoseventhrootoftime( t1/7 ), ii)whentwospheresareincontact– the neckgrowthrateis, x5/a 2 =40γ D.t/RT wherea– radiusofsphere,D– volume diffusivityofmaterial, – atomicormolecularvolume . Neckgrowthduetosurfacediffusion,latticediffusion,vapour transport,grain boundarytransportfromGBsource,latticediffusionfromsourcesonGB,lattice diffusionfromdislocationsources 3.Viscousflowmechanism Accordingtothisconcept,sinteringoccurs duetothepresenceoflatticevacancies .This isimportantinsinteringofglass.Frenkel developedtheequation, (x 2/a)=3/2(γ/η).t wherexistheneckradius&aistheradiusofparticle. Increasingthetemperature resultsinincreasedplasticityofmetalpowders .Balshin proposedthefollowing R. Ganesh Narayanan, IITG mechanismstohappenduringsintering. 1. Particlerearrangement,2.particleshapechange,3.graingrowth. Frenkel suggestedthatsurfacetensionleadtosinteringandsolidscouldbehavelike newtonian liquidsathightemperaturesi.e.,sinteringoccursbyviscousflow .He derivedanequationfortheviscositycoefficient,η =kT/D wherekisthe Boltszman’s constant,Tistheabsolutetemperature,Distheselfdiffusion coefficient, istheatomicvolume.Hederivedanexpressiononneckgrowth duringsinteringoftwosphericalparticlesofradius a withtime t as, x2 =3aγ/2 η where x istheneckradiusand γ isthesurfaceenergy. 4.Plasticflowmechanism Bulkflowofmaterialbymovementofdislocationshasbeenproposedaspossible mechanismfordensificationduringsintering .Importancewasgiventoidentify dislocationsourcesduringthesinteringprocess. Eveniffrankreadsourcesare presentintheneckregion,thestressavailablefordislocation generationisvery small,indicatingthatthegenerationofdislocationmustcomefromfreesurfaces . Onlyifthesurfaceisverysmalloftheorderof40nm,thestressrequiredfor dislocationgenerationwillbesufficient.Butexperimentalresultshaveshown theabsenceofappliedstressandplasticflowisexpectedtooccurduringearly stagesofsintering . Plasticflowmechanismispredominantduringhotpressing. R. Ganesh Narayanan, IITG Propertychangesduringsintering • Densificationisproportionaltotheshrinkageortheamountof poresremovedin thecaseofsinglecomponentsystem • INmulticomponent system,expansionratherthanshrinkagewillresultin densificationandhencedensificationcannotbetreatedasequaltotheamountof porosityremoved. • densificationresultsinmechanicalpropertychangelikehardness,strength, toughness,physicalpropertieslikeelectrical,thermalconductivity,magnetic propertiesetc.Alsochangeincompositionisexpectedduetotheformationofsolid solution. density Indicatedproperty 100 comparedtosolid strength material,%

Time 0 R. Ganesh Narayanan, IITG Mechanismduringliquidphasesintering Inthesinteringofmulticomponentsystems,thematerialtransportmechanismsinvolve selfdiffusionandinterdiffusion ofcomponentstooneanotherthroughvacancy movement. Sintering of such systems may also involve liquid phase formation, if the powder aggregate consists of a low melting component whose melting point is below the sintering temperature Liquidphasesintering: Inthis,theliquidphaseformedduringsinteringaidsin densificationofthecompacts. Liquid phase sintering employs a small amount of a second constituent having relatively low melting point. This liquid phase helps to bind the solid particles together and also aids in densification of the compact. This processiswidelyusedforceramics– porcelain,refractories. Three main considerations arenecessaryforthisprocesstooccurs,1.presenceof appreciableamountofliquidphase,2.appreciablesolubilityof solidinliquid,3. completewettingofthesolidbyliquid. Three main stages are observed in liquid phase sintering , 1.initialparticle rearrangementoccursoncetheliquidphaseisformed.Thesolidparticlesflowunderthe influenceofsurfacetensionforces ,2.solution&reprecipitation process :inthisstage, smallerparticlesdissolvefromareaswheretheyareincontact. Thiscausestheparticle centerstocomeclosercausingdensification.Thedissolvedmaterialiscarriedaway R. Ganesh Narayanan, IITG fromthecontactareaandreprecipitate onlargerparticles, 3.solidstatesintering ThisformofliquidphasesinteringhasbeenusedforWNiFe,WMoNiFe,WCu systems.Thethreestagedensificationisschematicallyshownin figure.

liquid densification γsv γsv 3 2 Grain Grain 1 time γss INsolidphasesintering,thesolidparticlesarecoatedbytheliquidintheinitialstage. Inliquidphasesintering,thegrainsareseparatedbyaliquidfilm.Thedihedralangle (θ)isimportant.Forthefigureshownhere,thesurfaceenergyforthesolidliquid vapour systemis, θ =γss/2γls where γss & γls aretheinterfacialenergiesbetweentwo solidparticlesandliquidsolidinterfacesrespectively . Forcompletewetting θ shouldbezero.Thismeansthattwoliquidsolidinterfacecan bemaintainedatlowenergythanasinglesolidsolidinterface.Thispressuregradient willmaketheparticlestocomecloser. Ifθ ispositive,grainboundariesmayappear betweentheparticlesandanaggregateoftwoormoregrainswillbeestablished.This createsformationofrigidskeletonandwillhinderR. Ganesh Narayanan,withdensification. IITG Sinteringatmosphere Functionsofsinteringatmosphere : 1.preventingundesirablereactionsduring sintering,2.facilitatereductionofsurfaceoxides,3.facilitatingtheadditionof othersinteringandalloyingelementswhichenhancethesinteringrateand promotedensification,4.aidingtheremovaloflubricants,5.compositioncontrol andadjustingtheimpuritylevels. Eg.forsinteringatmosphere: purehydrogen,ammonia,reformedhydrocarbon gases,inertgases,vacuum,nitrogenbasedmixtureswithoutcarburizingaddition, nitrogenbasedmixtureswithcarburizingaddition

Type of transport Material transport mechanism Driving force Vapour phase Evaporationcondensation Vapour pressuregradient betweenconvexandconcave regions Soldstate Diffusion– surfacediffusion Chemicalpotential Grainboundarydiffusion, Chemicalpotential volumediffusion, Chemicalpotential viscousflow,plasticflow Liquidphase Viscousflow Surfacetension SolutionprecipitationR. Ganesh Narayanan, IITG Surfacetension Selectedapplicationofpowdermetallurgy P/Mporousfilters: porousfiltersmadebyP/Mroutecanbeclassifiedintofourtypes basedontheirapplicationslikefiltration,flowcontrol,distribution,porosity. Filtrationistheseparationprocessinvolvingtheremovalofgas,liquidorsolidfrom anothergasorliquid.Flowcontrolinvolvesregulationoffluid flowinasystemwith controlledpressuredrop.Distributioninvolvesprovidingauniformflowoverawide area. Productionofporousmetalfilters: Typicalfiltershapesthatcanbeproducedfromthe powderincludediscs,cups,bushings,sheets,tubes.Themajoradvantagesofporous filtersincludehightemperatureresistance,goodmechanicalstrength,corrosion,long servicelife. MadebyGravitysintering: Bronzefiltersareproducedbythismethod.This sintering,asdiscussedearlier,involvespouringofgradedpowdersintoamouldprior tosinteringoperation.Thensinteringisperformedandmetallurgicalbondingis achievedbydiffusion. Bronzefilters aremadebygravitysinteringusingeitheratomizedsphericalbronze powderorfromsphericalCupowdercoatedwithSn layer.Thepowdersaresintered ingraphiteorstainlesssteelmouldsattemperaturesnearthesolidus temperatureof thebronzecomposition.Porositiesoftherange40R. Ganesh Narayanan, to50%canbeformed.IITG Porousnickelfilters aremadeinthesame. Hollow,cylindricalstainlesssteel filters withthinwallthicknesscanbefabricatedbycoldextrusionof theplasticized mixture.Theseproductsareavailableincorrosionresistantalloyslikestainlesssteel, Ti,Ni,andnickelbasealloys.Desiredporosityisobtainedbyusingspecificparticles sizeandshape.Compactionandsinteringisperformedundercontrolledatmosphereto obtaingoodgreencompactpart. Madebypowderrolling: porousstripsofNi,Ti,Cu,bronzeandTialloysareprepared bypowderrolling.Stripshavingthicknessfrom0.25to3mmand lengthofseveral meterscanbesuccessfullymadebythistechnique. Madebydiecompaction&sintering: porousfilterpartscanalsobemadebydie compaction,butwithonlylowcompactionpressures.Onceachievingthegreen compact,thepartsareheatedtothedesiredtemperatureunderprotectiveatmosphereto promotebondingbetweenatoms.Porouspartsfrombronze,nickel, stainlesssteel, titaniumpowderscanbeproducedbythismethod. Madebypowderspraying: sprayingofmetalpowdersonasubstrateundercontrolled conditionscanbeusedtoproduceporousmaterial.Itisalsopossibletocospraythe materialalongwithasecondmaterialandremovingthelatterto obtaintheporouspart.

R. Ganesh Narayanan, IITG SecondaryoperationsonP/Mpart : Machining – Ingeneral,machiningisnotnecessary forporousparts.Butitcanbedonetoproducespecificshapeandsizeinwhichcasea verysharptoolingwithaslightrakeisemployed.Themachinedsurfaceisthentreated toremovethecuttingfluids.EDMandlasercuttingarealsoperformedtoobtain specificshapeandsize. Joining – Joining ofporouspartscanbedonewithoneanotherorwithsolidpart mainly inthecaseofstainlesssteelporouscomponents.TIG,LASERorelectronbeam weldingarerecommendedforsatisfactoryjoiningofporousparts.Solderingand brazingarenotused.Epoxyresinsarealsousedforbondingofporousparts. Insertmoulding,sinterbonding,pressfittingareothersecondaryoperations. Applicationsofporousparts: porousmetallicfilters – porousfiltersremovesolid particlesfromstreamsofliquidsuchasoil,gasoline,refrigerants,polymermeltsand fromairorothergases.Theimportantcharacteristicsoffilter materialsare,adequate mechanicalstrength,retentionofsolidparticlesuptoaspecifiedsize,fluid permeability,adequateresistancetoatmosphereattack. Typicalporesizesare0.2,0.5,1,2,5,10,20,40,60and100 microns.Themostwidely usedmetallicfiltermaterialsareporouscoppertinbronzeandporousstainlesssteel. Forfilteringhighlycorrosivefluids,filtersmadeformmonel,inconel,Ticanbeused. R. Ganesh Narayanan, IITG Theyarealsousedinflowcontroldevices,distributionapplicationsetc.