Characterization and Comparison of the Tissue-Related Modules in Human and Mouse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment. -
Capra Hircus)
ARTICLES OPEN Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus) Yang Dong1,2,12, Min Xie3,12, Yu Jiang1,5,12, Nianqing Xiao10,12, Xiaoyong Du4,12, Wenguang Zhang1,6,12, Gwenola Tosser-Klopp7, Jinhuan Wang1, Shuang Yang3, Jie Liang3, Wenbin Chen3, Jing Chen3, Peng Zeng3, Yong Hou3, Chao Bian3, Shengkai Pan3, Yuxiang Li3, Xin Liu3, Wenliang Wang3, Bertrand Servin7, Brian Sayre11, Bin Zhu10, Deacon Sweeney10, Rich Moore10, Wenhui Nie1, Yongyi Shen1,2, Ruoping Zhao1, Guojie Zhang3, Jinquan Li6, Thomas Faraut7, James Womack9, Yaping Zhang1, James Kijas5, Noelle Cockett8, Xun Xu1–3, Shuhong Zhao4, Jun Wang3 & Wen Wang1 We report the ~2.66-Gb genome sequence of a female Yunnan black goat. The sequence was obtained by combining short-read sequencing data and optical mapping data from a high-throughput whole-genome mapping instrument. The whole-genome mapping data facilitated the assembly of super-scaffolds >5× longer by the N50 metric than scaffolds augmented by fosmid end sequencing (scaffold N50 = 3.06 Mb, super-scaffold N50 = 16.3 Mb). Super-scaffolds are anchored on chromosomes based on conserved synteny with cattle, and the assembly is well supported by two radiation hybrid maps of chromosome 1. We annotate 22,175 protein-coding genes, most of which were recovered in the RNA-seq data of ten tissues. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat reveal 51 genes that are differentially expressed between the two types of hair follicles. This study, whose results will facilitate goat genomics, shows that whole-genome mapping technology can be used for the de novo assembly of large genomes. -
Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest. -
Downloaded from ENSEMBL (Version 72), and the Reference Genome Sequence of the Goat Was Download from (CGD) (Dong Et Al
bioRxiv preprint doi: https://doi.org/10.1101/743955; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Convergent genomic signatures of high altitude adaptation among domestic mammals Dong-Dong Wu 1, 5, 10, *, ‡, Cui-Ping Yang 3,5 ‡, Ming-Shan Wang 1, 5, ‡, Kun-Zhe Dong 4, ‡, Da-Wei Yan 2, ‡, Zi-Qian Hao 11, ‡, Song-Qing Fan7, Shu-Zhou Chu7, Qiu-Shuo Shen 3,5, Li-Ping Jiang 3,5, Yan Li 1, 5, Lin Zeng 1, 5, He-Qun Liu 1, 5, Hai-Bing Xie 1, 5, Yun-Fei Ma 1, 5, Xiao-Yan Kong 2, Shu-Li Yang 2, Xin-Xing Dong 2, Ali Esmailizadeh Koshkoiyeh 8, David M Irwin 1, 9, Xiao Xiao 3, Ming Li 3, Yang Dong 1, 5, Wen Wang 1, 5, Peng Shi 1, 5, Hai-Peng Li 10, 11, Yue-Hui Ma 4, *, Xiao Gou 2, *, Yong-Bin Chen 3, 5, 10, *, Ya-Ping Zhang 1, 5, 6, 10, * 1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China 2. Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; 3. Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China 4. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China. 5. Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China 6. -
Long-Term Propagation of Tree Shrew Spermatogonial Stem Cells in Culture and Successful Generation of Transgenic Offspring
Cell Research (2017) 27:241-252. © 2017 IBCB, SIBS, CAS All rights reserved 1001-0602/17 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring Chao-Hui Li1, 2, 3, Lan-Zhen Yan4, 5, Wen-Zan Ban1, Qiu Tu4, 3, Yong Wu4, 3, Lin Wang1, 2, Rui Bi4, Shuang Ji1, Yu-Hua Ma5, Wen-Hui Nie1, Long-Bao Lv5, Yong-Gang Yao3, 4, 5, 6, Xu-Dong Zhao4, 5, Ping Zheng1, 2, 5 1State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 2Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 3Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; 4Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Scienc- es, Kunming 650223, China; 5Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 6CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China Tree shrews have a close relationship to primates and have many advantages over rodents in biomedical research. However, the lack of gene manipulation methods has hindered the wider use of this animal. Spermatogonial stem cells (SSCs) have been successfully expanded in culture to permit sophisticated gene editing in the mouse and rat. Here, we describe a culture system for the long-term expansion of tree shrew SSCs without the loss of stem cell properties. -
SZDB: a Database for Schizophrenia Genetic Research
Schizophrenia Bulletin vol. 43 no. 2 pp. 459–471, 2017 doi:10.1093/schbul/sbw102 Advance Access publication July 22, 2016 SZDB: A Database for Schizophrenia Genetic Research Yong Wu1,2, Yong-Gang Yao1–4, and Xiong-Jian Luo*,1,2,4 1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China; 2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; 3CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China 4YGY and XJL are co-corresponding authors who jointly directed this work. *To whom correspondence should be addressed; Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; tel: +86-871-68125413, fax: +86-871-68125413, e-mail: [email protected] Schizophrenia (SZ) is a debilitating brain disorder with a Introduction complex genetic architecture. Genetic studies, especially Schizophrenia (SZ) is a severe mental disorder charac- recent genome-wide association studies (GWAS), have terized by abnormal perceptions, incoherent or illogi- identified multiple variants (loci) conferring risk to SZ. cal thoughts, and disorganized speech and behavior. It However, how to efficiently extract meaningful biological affects approximately 0.5%–1% of the world populations1 information from bulk genetic findings of SZ remains a and is one of the leading causes of disability worldwide.2–4 major challenge. There is a pressing -
Functional Genomics Identify a Regulatory Risk Variation Rs4420550 in the 16P11.2 Schizophrenia- Associated Locus
Biological Psychiatry Archival Report Functional Genomics Identify a Regulatory Risk Variation rs4420550 in the 16p11.2 Schizophrenia- Associated Locus Hong Chang, Xin Cai, Hui-Juan Li, Wei-Peng Liu, Li-Juan Zhao, Chu-Yi Zhang, Jun-Yang Wang, Jie-Wei Liu, Xiao-Lei Ma, Lu Wang, Yong-Gang Yao, Xiong-Jian Luo, Ming Li, and Xiao Xiao ABSTRACT BACKGROUND: Genome-wide association studies (GWASs) have reported hundreds of genomic loci associated with schizophrenia, yet identifying the functional risk variations is a key step in elucidating the underlying mechanisms. METHODS: We applied multiple bioinformatics and molecular approaches, including expression quantitative trait loci analyses, epigenome signature identification, luciferase reporter assay, chromatin conformation capture, homology- directed genome editing by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9), RNA sequencing, and ATAC-Seq (assay for transposase-accessible chromatin using sequencing). RESULTS: We found that the schizophrenia GWAS risk variations at 16p11.2 were significantly associated with messenger RNA levels of multiple genes in human brain, and one of the leading expression quantitative trait loci genes, MAPK3, is located w200 kb away from these risk variations in the genome. Further analyses based on the epigenome marks in human brain and cell lines suggested that a noncoding single nucleotide polymorphism, rs4420550 (p=2.36 3 1029 in schizophrenia GWAS), was within a DNA enhancer region, which was validated via in vitro luciferase reporter assays. The chromatin conformation capture experiment showed that the rs4420550 region physically interacted with the MAPK3 promoter and TAOK2 promoter. Precise CRISPR/Cas9 editing of a single base pair in cells followed by RNA sequencing further confirmed the regulatory effects of rs4420550 on the transcription of 16p11.2 genes, and ATAC-Seq demonstrated that rs4420550 affected chromatin accessibility at the 16p11.2 region. -
Impact of a Cis-Associated Gene Expression SNP on Chromosome
The British Journal of Psychiatry (2016) 208, 128–137. doi: 10.1192/bjp.bp.114.156976 Impact of a cis-associated gene expression SNP on chromosome 20q11.22 on bipolar disorder susceptibility, hippocampal structure and cognitive performance Ming Li,* Xiong-jian Luo,* Mikael Lande´ n, Sarah E. Bergen, Christina M. Hultman, Xiao Li, Wen Zhang, Yong-Gang Yao, Chen Zhang, Jiewei Liu, Manuel Mattheisen, Sven Cichon, Thomas W. Mu¨ hleisen, Franziska A. Degenhardt, Markus M. No¨ then, Thomas G. Schulze, Maria Grigoroiu-Serbanescu, Hao Li, Chris K. Fuller, Chunhui Chen, Qi Dong, Chuansheng Chen, Ste´ phane Jamain, Marion Leboyer, Frank Bellivier, Bruno Etain, Jean-Pierre Kahn, Chantal Henry, Martin Preisig, Zolta´ n Kutalik, Enrique Castelao, Adam Wright, Philip B. Mitchell, Janice M. Fullerton, Peter R. Schofield, Grant W. Montgomery, Sarah E. Medland, Scott D. Gordon, Nicholas G. Martin, MooDS Consortium,a The Swedish Bipolar Study Group,a Marcella Rietschel, Chunyu Liu, Joel E. Kleinman, Thomas M. Hyde, Daniel R. Weinberger and Bing Su Background Bipolar disorder is a highly heritable polygenic disorder. between a brain eQTL rs6088662 on chromosome 20q11.22 Recent enrichment analyses suggest that there may and bipolar disorder (log Bayes factor = 5.48; bipolar disorder be true risk variants for bipolar disorder in the expression P = 5.8561075). Follow-up studies across multiple quantitative trait loci (eQTL) in the brain. independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar Aims disorder susceptibility (P = 3.5461078). Further exploratory We sought to assess the impact of eQTL variants on bipolar analysis revealed that rs6088662 is also associated with disorder risk by combining data from both bipolar disorder hippocampal volume and cognitive performance in healthy genome-wide association studies (GWAS) and brain eQTL. -
Defining Individual-Level Genetic Diversity and Similarity Profiles
www.nature.com/scientificreports OPEN Defning Individual-Level Genetic Diversity and Similarity Profles Zhanshan (Sam) Ma1,3*, Lianwei Li 1 & Ya-Ping Zhang2,3* Classic concepts of genetic (gene) diversity (heterozygosity) such as Nei & Li’s nucleotide diversity were defned within a population context. Although variations are often measured in population context, the basic carriers of variation are individuals. Hence, measuring variations such as SNP of an individual against a reference genome, which has been ignored previously, is certainly in its own right. Indeed, similar practice has been a tradition in community ecology, where the basic unit of diversity measure is individual community sample. We propose to use Renyi’s-entropy-based Hill numbers to defne individual-level genetic diversity and similarity and demonstrate the defnitions with the SNP (single nucleotide polymorphism) datasets from the 1000-Genomes Project. Hill numbers, derived from Renyi’s entropy (of which Shannon’s entropy is a special case), have found widely applications including measuring the quantum information entanglement and ecological diversity. The demonstrated individual-level SNP diversity not only complements the existing population-level genetic diversity concepts, but also ofers building blocks for comparative genetic analysis at higher levels. The concept of individual covers, but is not limited to, individual chromosome, region of chromosome, gene cluster(s), or whole genome. Similarly, the SNP can be replaced by other structural variants or mutation types such as indels. SNPs (single nucleotide polymorphism) are single-nucleotide substitutions of one base for another and arguably the commonest genetic variation. Tere are two general categories of approaches to investigating SNPs: one is the genomic approach and another is the functional approach. -
Chromosomal Level Assembly and Population Sequencing of The
ZOOLOGICAL RESEARCH INTRODUCTION architecture of genomes and can order, orient, and anchor contigs into chromosome-scale scaffolds (Burton et al., 2013). Tree shrews (Tupaia belangeri) are widely distributed Here, we applied both long-read single-molecule sequencing throughout South Asia, Southeast Asia (Fuchs & Corbach- and Hi-C technology to obtain a new reference genome for Söhle, 2010), and South and Southwest China (Peng et al., the Chinese tree shrew. We also generated a single 1991). They possesses many unique characteristics that are nucleotide polymorphism (SNP) map of the tree shrew by Chromosomal level assembly and population useful in biomedical research models, such as small adult whole-genome sequencing of six individuals. We updated the body size (100–150 g), easy and low cost maintenance, short TreeshrewDB v2.0 (http://www. treeshrewdb. org) to sequencing of the Chinese tree shrew genome reproductive cycle (~6 weeks), moderate life span (6–8 years), incorporate the new reference genome and population genetic high brain-to-body mass ratio, and very close relationship to variations. primates (Fan et al., 2013; Xiao et al., 2017; Xu et al., 2012; Yu Fan1,2, Mao-Sen Ye1,3, Jin-Yan Zhang1,3, Ling Xu1,2, Dan-Dan Yu1,2, Tian-Le Gu1,3, Yu-Lin Yao1,3, Jia-Qi Chen4, Long-Bao Yao, 2017; Zheng et al., 2014). Hitherto, tree shrews have 4 2,3,4,5,6,7 2,6 2,6 1,2,3,4,5,* MATERIALS AND METHODS Lv , Ping Zheng , Dong-Dong Wu , Guo-Jie Zhang , Yong-Gang Yao been used in a wide variety of studies, including research on 1 Key Laboratory of -
Page 1 of 14 Molecular Biosystems
Molecular BioSystems Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/molecularbiosystems Page 1 of 14 Molecular BioSystems Model-based investigation of metabolism, immunometabolism of CD4+ T cell (CD4T1670) and the application of CD4T1670 in drug development. Manuscript Accepted BioSystems Molecular PleaseMolecular do not BioSystemsadjust margins Page 2 of 14 Journal Name ARTICLE Genome-wide metabolic model shed light on understanding CD4 + T cell metabolically, immunometabolically and in drug design Received 00th January 20xx, ab a a †acd Accepted 00th January 20xx Feifei Han , Gonghua Li , Shaoxing Dai , Jingfei Huang + DOI: 10.1039/x0xx00000x CD4 T cells play a critical role in adaptive immunity and have been well studied in past decade years. -
Plk1 Polyclonal Antibody Catalog # AP73237
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Plk1 Polyclonal Antibody Catalog # AP73237 Specification Plk1 Polyclonal Antibody - Product Information Application WB Primary Accession P53350 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Plk1 Polyclonal Antibody - Additional Information Gene ID 5347 Other Names PLK1; PLK; Serine/threonine-protein kinase PLK1; Polo-like kinase 1; PLK-1; Serine/threonine-protein kinase 13; STPK13 Dilution WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/20000. Not yet tested in other Plk1 Polyclonal Antibody - Background applications. Serine/threonine-protein kinase that performs Format several important functions throughout M Liquid in PBS containing 50% glycerol, 0.5% phase of the cell cycle, including the regulation BSA and 0.02% sodium azide. of centrosome maturation and spindle assembly, the removal of cohesins from Storage Conditions chromosome arms, the inactivation of -20℃ anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis. Polo-like kinase proteins Plk1 Polyclonal Antibody - Protein Information acts by binding and phosphorylating proteins are that already phosphorylated on a specific Name PLK1 motif recognized by the POLO box domains. Phosphorylates BORA, BUB1B/BUBR1, CCNB1, Synonyms PLK CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, Function NPM1, NUDC, PKMYT1/MYT1, KIZ, Serine/threonine-protein kinase that PPP1R12A/MYPT1, PRC1, RACGAP1/CYK4, performs several important functions SGO1, STAG2/SA2, TEX14, TOPORS, p73/TP73, throughout M phase of the cell cycle, TPT1, WEE1 and HNRNPU. Plays a key role in including the regulation of centrosome centrosome functions and the assembly of maturation and spindle assembly, the bipolar spindles by phosphorylating KIZ, removal of cohesins from chromosome NEDD1 and NINL.