Α4βδ GABAA Receptors Are High-Affinity Targets for Γ

Total Page:16

File Type:pdf, Size:1020Kb

Α4βδ GABAA Receptors Are High-Affinity Targets for Γ α4βδ GABAA receptors are high-affinity targets for γ-hydroxybutyric acid (GHB) Nathan Absaloma,1, Laura F. Eghornb,1, Inge S. Villumsenb, Nasiara Karima, Tina Bayb, Jesper V. Olsenc, Gitte M. Knudsend, Hans Bräuner-Osborneb, Bente Frølundb, Rasmus P. Clausenb, Mary Chebiba,2, and Petrine Wellendorphb,2 aFaculty of Pharmacy A15, University of Sydney, Sydney, New South Wales 2006, Australia; bDepartment of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; cNovo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; and dNeurobiology Research Unit and Center for Integrated Molecular Brain Imaging (Cimbi), Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark Edited by Leslie Lars Iversen, University of Oxford, Oxford, United Kingdom, and approved June 6, 2012 (received for review March 13, 2012) γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity BnOPh-GHB) (8). Furthermore, several reports point to GHB- sites is well-established and proposed to explain both physiolog- induced effects that cannot be consequences of GABAB receptor ical and pharmacological actions. However, the mechanistic links activation alone: Fos expression studies with GHB indicate between these lines of data are unknown. To identify molecular a unique pattern of neuronal activation, which in several ways, is fi fi targets for speci c GHB high-af nity binding, we undertook pho- different from the pattern produced by the GABAB receptor tolinking studies combined with proteomic analyses and identified agonist baclofen (9). Numerous effects induced by GHB, including several GABAA receptor subunits as possible candidates. A subse- sedation, catalepsy (10), increased striatal dopamine release, quent functional screening of various recombinant GABAA recep- changes in EEG pattern (11), discriminative stimulus properties tors in Xenopus laevis oocytes using the two-electrode voltage (12), and reinforcing effects (13), are dose-dependently decreased clamp technique showed GHB to be a partial agonist at αβδ- but by pretreatment with the GHB receptor-specific ligand NCS-382. not αβγ-receptors, proving that the δ-subunit is essential for po- Additionally, ataxia seems to be mediated through the high-af- tency and efficacy. GHB showed preference for α4 over α(1,2,6)- finity GHB sites (14). The reported euphoric effect of GHB and α β δ α β NEUROSCIENCE subunits and preferably activated 4 1 (EC50 = 140 nM) over 4 its therapeutic effect in narcolepsy cannot be mimicked by bac- δ α (2/3) (EC50 = 8.41/1.03 mM). Introduction of a mutation, 4F71L, in lofen (3) and thus, might involve other targets. Drug discrimina- α4β1(δ)-receptors completely abolished GHB but not GABA func- tion studies also show that rats are able to distinguish between tion, indicating nonidentical binding sites. Radioligand binding GHB and baclofen, further supporting that the effects and 3 studies using the specific GHB radioligand [ H](E,RS)-(6,7,8,9-tetra- mechanisms of the two drugs are different (15). Taken together, hydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid showed these findings strongly suggest that GHB acts at targets in addition a 39% reduction (P = 0.0056) in the number of binding sites in α4 to the GABAB receptor. KO brain tissue compared with WT controls, corroborating the direct Structurally and behaviorally, GHB, in many ways, resembles α fi involvement of the 4-subunit in high-af nity GHB binding. Our its endogenous precursor GABA. Thus, in addition to effects at data link specific GHB forebrain binding sites with α4-containing GABAB receptors, ionotropic GABAA receptors have also been GABAA receptors and postulate a role for extrasynaptic α4δ-contain- studied as possible GHB targets. The role of GABAA receptors ing GABAA receptors in GHB pharmacology and physiology. This in mediating effects of GHB has been controversial, in part be- fi nding will aid in elucidating the molecular mechanisms behind cause of the heterogeneity of this receptor class and the lack of the proposed function of GHB as a neurotransmitter and its unique recombinant functional studies performed; thus, the large number therapeutic effects in narcolepsy and alcoholism. of subtype combinations that can be formed from the numerous known subunits [α(1–6), β(1–3), γ(1–3), δ, ε, θ, π,andρ(1–3)] (16) γ-hydroxybutyric acid receptor | γ-hydroxybutyric acid high-affinity binding have not been investigated. sites | α4-subunit knockout | photoaffinity ligand Depending on composition, GABAA receptors can be found at both synaptic and extrasynaptic locations and mediate phasic γ he GABA metabolite -Hydroxybutyric acid (GHB) is pres- and tonic inhibition, respectively (17). The majority of GABAA Tent in micromolar concentrations in the mammalian brain, receptors contain a γ-subunit, and these receptors can be found where it has been proposed to act as a neurotransmitter (1). Ad- at both synaptic and extrasynaptic locations, whereas the δ-sub- ditionally, GHB is a drug of abuse (Fantasy) and a registered drug unit predominates on peri- and extrasynaptic locations (18, 19), for treating narcolepsy (2) and alcoholism (3). GHB binds to at most commonly accompanied by α(4/6)-subunits. least two distinct populations of low- and high-affinity binding sites In 1987, the work by Snead and Nichols (20) reported evi- in the brain (4). When GHB is ingested in high doses and rea- dence for coupling of the GHB binding site to a GABA-gated ches millimolar concentrations in the brain, it induces behavioral chloride channel; whereas effects of GHB on the major GABAA effects such as sedation, motor incoordination and hypothermia (synaptic) receptors have been refuted (21, 22), effects at (3). These actions are largely mediated by metabotropic GABAB receptors, because effects are prevented by GABAB receptor an- tagonist pretreatment (5) and completely abolished in GABAB(1) Author contributions: N.A., L.F.E., H.B.-O., M.C., and P.W. designed research; N.A., L.F.E., KO mice (6). In addition to the validated GABA receptor effects I.S.V., N.K., T.B., J.V.O., and P.W. performed research; J.V.O., B.F., and R.P.C. contributed B new reagents/analytic tools; N.A., L.F.E., I.S.V., J.V.O., G.M.K., M.C., and P.W. analyzed and other suggested receptors (7), GHB binds with nanomolar to data; and N.A., L.F.E., and P.W. wrote the paper. fi micromolar af nity to a remarkably abundant protein of distinct The authors declare no conflict of interest. spatial distribution and ontogenesis (4), representing an additional This article is a PNAS Direct Submission. functional target. Interestingly, this high-affinity binding protein 1 fi N.A. and L.F.E. contributed equally to this work. is preserved in GABAB(1) KO mice (6) and can be speci cally 2 3 E RS H To whom correspondence may be addressed. E-mail: [email protected] or pw@ probed with [ H]( , )-(6,7,8,9-tetrahydro-5-hydroxy-5 - farma.ku.dk. 3 benzocyclohept-6-ylidene)acetic acid ([ H]NCS-382) (6) and This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 125 125 [ I]4-hydroxy-4-[4-(2-iodobenzyloxy)phenyl]butanoate ([ I] 1073/pnas.1204376109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1204376109 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 extrasynaptic receptors have, until now, not been systematically and higher was without effect. However, when oocytes were investigated. In fact, several studies infer a role for GHB at injected with the combination of α4-, β(1–3)-, and δ-subunits, extrasynaptic GABAA receptors, such as a correlation between GHB induced inward currents, exhibiting both an intriguing de- elevated GHB levels and increased tonic extrasynaptic inhibition pendence on α4/δ for efficacy and β1 for potency (Table 1). GHB α β δ through GABAA receptors (23). More specifically, effects in- activated 4 1 receptors with high nanomolar potency [EC50 = volved receptor subtypes containing α4- and δ-subunits (24–26). 140 nM (30–660)], inducing a maximum current of 74 ± 10% In this study, we have exploited an in-house–developed, high- relative to GABA (Fig. 2 A and C). At α4β1andα4β1γ2L, 3 mM affinity, and selective GHB photoligand (8, 27, 28) to cross-link GHB elicited a small response (3 ± 0.2%, P =0.01and2± 2%, and partially purify the high-affinity GHB binding protein from P =0.31,Z test compared with control, respectively) (Fig. 2B and α β rat brain cortex, with several GABAA subunits emerging as Table 1). In oocytes injected with RNA for neither 4and 1nor candidate proteins. Functional studies in Xenopus laevis oocytes α4, β1, and δ did we find any indication that GHB could antag- and radioligand binding studies in KO mouse brain tissue veri- onize the GABA response (Fig. S1). Substitution of the β1-subunit fied α4βδ-receptors as high-affinity targets for GHB. Thus, we with β2orβ3 led to a slight reduction in the relative agonist ef- fi – > present direct molecular evidence for a GHB–GABA receptor cacy (53 76%) but a 7,000-fold reduction in potency [EC50 = A – – C interaction in both recombinant and native systems. 8.4 mM (4.0 17) and 1.0 mM (0.6 2.8), respectively] (Fig. 2 ). Construction of a current–voltage (I-V) curve in X. laevis oocytes Results expressing α4β1δ-receptors confirmed that GHB activated a chlo- D α β Proteomics Identify GABA Receptor Subunits as Candidates for High- ride channel (Fig. 2 ). Effects of GHB were undetectable in 4 3-, A α β γ α β γ Affinity GHB Binding Sites. Using an engineered GHB photo- 4 3 2L-, and 4 2 2L-receptors (Table 1).
Recommended publications
  • GABAA Transmission Is a Critical Step in the Process of Triggering Homeostatic Increases in Quantal Amplitude
    GABAA transmission is a critical step in the process of triggering homeostatic increases in quantal amplitude Jennifer C. Wilhelm and Peter Wenner* Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322 Communicated by Lynn T. Landmesser, Case Western Reserve University, Cleveland, OH, June 23, 2008 (received for review March 1, 2008) When activity levels are altered over days, a network of cells is models suggests that reducing network activity produces a corre- capable of recognizing this perturbation and triggering several dis- sponding reduction in cellular spiking activity, thereby reducing tinct compensatory changes that should help to recover and maintain intracellular calcium levels in a postsynaptic cell. In this model, the original activity levels homeostatically. One feature commonly which we will refer to as the cell activity model, the postsynaptic cell observed after activity blockade has been a compensatory increase in senses changes in intracellular calcium levels as a measure of altered excitatory quantal amplitude. The sensing machinery that detects activity and triggers compensatory changes in mPSC amplitude. altered activity levels is a central focus of the field currently, but thus However, the studies that have inspired this model not only block far it has been elusive. The vast majority of studies that reduce spiking activity, they also block or reduce neurotransmitter binding network activity also reduce neurotransmission. We address the to its receptor and any associated downstream signaling cascades. possibility that reduced neurotransmission can trigger increases in Thus, it remains possible that neurotransmission is a critical step in quantal amplitude. In this work, we blocked glutamatergic or GABAA the sensing process that triggers changes in quantal amplitude.
    [Show full text]
  • Neurotransmitters-Drugs Andbrain Function.Pdf
    Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Edited by R. A. Webster Department of Pharmacology, University College London, UK JOHN WILEY & SONS, LTD Chichester Á New York Á Weinheim Á Brisbane Á Singapore Á Toronto Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Copyright # 2001 by John Wiley & Sons Ltd. Bans Lane, Chichester, West Sussex PO19 1UD, UK National 01243 779777 International ++44) 1243 779777 e-mail +for orders and customer service enquiries): [email protected] Visit our Home Page on: http://www.wiley.co.uk or http://www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P0LP,UK, without the permission in writing of the publisher. Other Wiley Editorial Oces John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany John Wiley & Sons Australia, Ltd.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Bicuculline and Gabazine Are Allosteric Inhibitors of Channel Opening of the GABAA Receptor
    The Journal of Neuroscience, January 15, 1997, 17(2):625–634 Bicuculline and Gabazine Are Allosteric Inhibitors of Channel Opening of the GABAA Receptor Shinya Ueno,1 John Bracamontes,1 Chuck Zorumski,2 David S. Weiss,3 and Joe Henry Steinbach1 Departments of 1Anesthesiology and 2Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, and 3University of Alabama at Birmingham, Neurobiology Research Center and Department of Physiology and Biophysics, Birmingham, Alabama 35294-0021 Anesthetic drugs are known to interact with GABAA receptors, bicuculline only partially blocked responses to pentobarbital. both to potentiate the effects of low concentrations of GABA and These observations indicate that the blockers do not compete to directly gate open the ion channel in the absence of GABA; with alphaxalone or pentobarbital for a single class of sites on the however, the site(s) involved in direct gating by these drugs is not GABAA receptor. Finally, at receptors containing a1b2(Y157S)g2L known. We have studied the ability of alphaxalone (an anesthetic subunits, both bicuculline and gabazine showed weak agonist steroid) and pentobarbital (an anesthetic barbiturate) to directly activity and actually potentiated responses to alphaxalone. These activate recombinant GABAA receptors containing the a1, b2, and observations indicate that the blocking drugs can produce allo- g2L subunits. Steroid gating was not affected when either of two steric changes in GABAA receptors, at least those containing this mutated b2 subunits [b2(Y157S) and b2(Y205S)] are incorporated mutated b2 subunit. We conclude that the sites for binding ste- into the receptors, although these subunits greatly reduce the roids and barbiturates do not overlap with the GABA-binding site.
    [Show full text]
  • Mechanism of Action of Ethylenediamine On
    Stone, T.W., Lui, C. and Addae, J.I. (2010) Effects of ethylenediamine – a putative GABA-releasing agent – on rat hippocampal slices and neocortical activity in vivo. European Journal of Pharmacology, 650 (2-3). pp. 568-578. ISSN 0014-2999. http://eprints.gla.ac.uk/46340/ Deposited on: 22 November 2010 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Effects of ethylenediamine – a putative GABA-releasing agent – on rat hippocampal slices and neocortical activity in vivo Trevor W Stone1 , Caleb Lui1 and Jonas I. Addae2 1 Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K. 2 Dept of Preclinical Sciences, St. Augustine Campus University of the West Indies, Trinidad and Tobago. Correspondence: Prof T. W. Stone, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK. Tel - +44 141 330 4481; fax - +44 141 330 5481; e-mail - [email protected] 1 ABSTRACT The simple diamine diaminoethane (ethylenediamine, EDA) has been shown to activate GABA receptors in the central and peripheral nervous systems, partly by a direct action and partly by releasing endogenous GABA. These effects have been shown to be produced by the complexation of EDA with bicarbonate to form a carbamate. The present work has compared EDA, GABA and β-alanine responses in rat CA1 neurons using extracellular and intracellular recordings, as well as neocortical evoked potentials in vivo. Superfusion of GABA onto hippocampal slices produced depolarisation and a decrease of field epsps, both effects fading rapidly, but showing sensitivity to blockade by bicuculline.
    [Show full text]
  • Metabolic and Homeostatic Changes In
    University of Dundee Metabolic and Homeostatic Changes in Seizures and Acquired Epilepsy-Mitochondria, Calcium Dynamics and Reactive Oxygen Species Kovac, Stjepana; Dinkova Kostova, Albena T; Herrmann, Alexander M; Melzer, Nico; Meuth, Sven G; Gorji, Ali Published in: International Journal of Molecular Sciences DOI: 10.3390/ijms18091935 Publication date: 2017 Licence: CC BY Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Kovac, S., Dinkova Kostova, A. T., Herrmann, A. M., Melzer, N., Meuth, S. G., & Gorji, A. (2017). Metabolic and Homeostatic Changes in Seizures and Acquired Epilepsy-Mitochondria, Calcium Dynamics and Reactive Oxygen Species. International Journal of Molecular Sciences, 18(9), 1-19. [1935]. https://doi.org/10.3390/ijms18091935 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 29. Sep. 2021 International Journal of Molecular Sciences Review Metabolic and Homeostatic Changes in Seizures and Acquired Epilepsy—Mitochondria, Calcium Dynamics and Reactive Oxygen Species Stjepana Kovac 1,*, Albena T.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Investigating the Neural Circuits That Control Cataplexy
    Investigating the Neural Circuits that Control Cataplexy by Zoltán Torontali A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Cell & Systems Biology University of Toronto © Copyright by Zoltán Torontali 2019 Investigating the Neural Circuits that Mediate Cataplexy Zoltan Torontali Doctor of Philosophy Department of Cell & Systems Biology University of Toronto 2019 Abstract In this thesis I explored a long-standing hypothesis that the paralysis occurring during REM sleep and cataplexy share a common neural mechanism. Cataplexy, a debilitating symptom of narcolepsy, is the abrupt onset of skeletal muscle paralysis during wakefulness. Under normal conditions, neurons of the sublaterodorsal tegmental region have been shown to be active during REM sleep and either activate GABA/glycine neurons of the ventral medulla or inhibitory interneurons in the spinal cord which in turn silences motoneurons and results in REM sleep muscle paralysis. The mechanism mediating the paralysis of cataplexy has not been fully characterized but is hypothesized to result from the abnormal activation of SLD neurons during wakefulness. First, I investigated if activation of all cells in the SLD nucleus could trigger cataplexy in wildtype (hypocretin-intact) mice and narcoleptic (hypocretin knockout) mice. Next, I investigated if glutamatergic, VGLUT2-expressing, neurons of the SLD were the cellular phenotype responsible for triggering cataplexy in wildtype and narcoleptic mice models. This final investigation required the development of a new hypocretin knockout mouse line (hypocretin-/-, VGLUT2-Cre mice). This new model is scientifically important as it provides an innovative toolkit for neuroscientists to examine the role of glutamatergic cell populations throughout the brain of mice with a narcolepsy phenotype.
    [Show full text]
  • A Acetylcholine Anticholinergic Drugs, 49 Cholinergic Wake-Promoting
    Index A C Acetylcholine Cataplexy anticholinergic drugs, 49 GHB, 37 cholinergic wake-promoting system, 48 narcolepsy type 1, 215 cholinesterase inhibitors, 48–49 narcolepsy type 2, 215 milameline, 49 sleep-promoting orexinergic inhibitors, 46 nicotine, 49 SXB, 238–240 receptors, 48 tricyclic antidepressants, 253 sleep-promoting cholinergic Cell replacement therapy, 253 inhibitors, 49 Central sleep apnea (CSA) syndrome, 76 Adenosine Cheyne–Stokes breathing (CSB), 76 adenosine-mediated sleep-promoting Cholinesterase inhibitors system, 41 donepezil, 49 receptors, 42 physostigmine, 48 sleep-promoting adenosine receptor Chronic insomnia agonists, 42 dose discrimination, lack of, 168 wake-promoting adenosine receptor psychiatric comorbidities, 169 antagonists, 42 short-term efficacy and long-term safety, Amantadine, 77 167–168 Armodafinil sleep induction and maintenance, 168–169 chemical structure, 212 Chronic obstructive sleep apnea multiple sclerosis, 222 (OSA), 178–179 narcolepsy, 218 Chronic primary insomnia obstructive sleep apnea, 219–221 adverse effects, 165, 167 pharmacokinetics, 214 comorbid psychiatric disorders, 164 R enantiomer, 213 double-blind trial, 164 safety, 224–225 efficacy, 165 shift work disorder, 223 long-term trial, 165 open-label extension phase, 165 post hoc analysis, 165–166 B psychomotor performance, 164–165 Benzodiazepine Withdrawal Symptom rebound insomnia, 164 Questionnaire (BWSQ), 183 WASO, 164–165 © Springer International Publishing Switzerland 2015 289 A. Guglietta (ed.), Drug Treatment of Sleep Disorders, Milestones
    [Show full text]
  • Phasic, Suprathreshold Excitation and Sustained Inhibition Underlie Neuronal Selectivity for Short-Duration Sounds
    Phasic, suprathreshold excitation and sustained PNAS PLUS inhibition underlie neuronal selectivity for short-duration sounds Rishi K. Alluria, Gary J. Rosea,1, Jessica L. Hansona, Christopher J. Learyb, Gustavo A. Vasquez-Opazoa, Jalina A. Grahamc, and Jeremy Wilkersond aDepartment of Biology, University of Utah, Salt Lake City, UT 84112; bDepartment of Biology, University of Mississippi, Oxford, MS 38677; cNeuroscience Program, University of California, Davis, CA 95616; and dTalkingApe.org, Redwood City, CA 94063 Edited by Eric I. Knudsen, Stanford University School of Medicine, Stanford, CA, and approved January 29, 2016 (received for review October 23, 2015) Sound duration is important in acoustic communication, including experiments (18), suggested that sustained inhibition might be speech recognition in humans. Although duration-selective auditory critical for generating duration tuning. Whole-cell patch record- neurons have been found, the underlying mechanisms are unclear. ings in bats (19, 20) provided direct evidence that interplay be- To investigate these mechanisms we combined in vivo whole-cell tween excitation and inhibition contributed to duration selectivity. patch recordings from midbrain neurons, extraction of excitatory This work inspired a second type of coincidence model of duration and inhibitory conductances, and focal pharmacological manipula- selectivity (Fig. 1B) in which delayed, subthreshold excitation tions. We show that selectivity for short-duration stimuli results maximally summates with rebound from short-latency inhibition from integration of short-latency, sustained inhibition with delayed, (and/or offset excitation) over a narrow range of durations. Al- phasic excitation; active membrane properties appeared to amplify ternatively, Fuzessery and Hall (21) proposed an anticoincidence responses to effective stimuli. Blocking GABA receptors attenuated A model (Fig.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,636,316 B2 Cohen Et Al
    USOO9636316B2 (12) United States Patent (10) Patent No.: US 9,636,316 B2 Cohen et al. (45) Date of Patent: May 2, 2017 (54) BACLOFENAND ACAMPROSATE BASED (58) Field of Classification Search THERAPY OF NEUROLOGICAL DISORDERS CPC ... A61K 31/197; A61K 31/445; A61K 31/42: A61K 31/44; A61K 31/195; A61 K (71) Applicant: PHARNEXT, Issy les Moulineaux (FR) 31/185; A61K 31/138: A61K 31/164 (72) Inventors: Daniel Cohen, Saint Cloud (FR); Ilya USPC ................................. 514/567, 555, 568, 665 Chumakov, Vaux-le-Penil (FR); See application file for complete search history. Serguei Nabirochkin, Chatenay-Malabry (FR); Emmanuel Vial, Paris (FR); Mickael Guedj. Paris (56) References Cited (FR) U.S. PATENT DOCUMENTS (73) Assignee: PHARNEXT, Issy les Moulineaux (FR) 6,391922 B1 5/2002 Fogel 8,741,886 B2 6, 2014 Cohen et al. Notice: Subject to any disclaimer, the term of this 2001, 0004640 A1 6/2001 Inada et al. (*) 2001 OO23246 A1 9, 2001 Barritault et al. patent is extended or adjusted under 35 2004.0102525 A1 5, 2004 KOZachuk U.S.C. 154(b) by 0 days. 2008. O18851.0 A1 8, 2008 Yoshino 2009 OO69419 A1 3/2009 Jandeleit et al. (21) Appl. No.: 14/861,169 2009/O197958 A1 8/2009 Sastry et al. 2011 O230659 A1 9/2011 Tsukamoto et al. (22) Filed: Sep. 22, 2015 2012fO27083.6 A1 10, 2012 Cohen et al. (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2016/OOOO736A1 Jan. 7, 2016 EP 1 S63 846 8, 2005 EP 1837 O34 9, 2007 WO WO O1, 58.476 8, 2001 WO WO O3,OOT993 1, 2003 Related U.S.
    [Show full text]
  • Hydroxybutyric Acid in Sensory Thalamus and Its Relevance to Absence Seizures
    The Journal of Neuroscience, December 10, 2003 • 23(36):11469–11478 • 11469 Cellular/Molecular Pathway-Specific Action of ␥-Hydroxybutyric Acid in Sensory Thalamus and Its Relevance to Absence Seizures Nicolas Gervasi,1* Zohreh Monnier,1* Pierre Vincent,1 Danie`le Paupardin-Tritsch,1 Stuart W. Hughes,2 Vincenzo Crunelli,2 and Nathalie Leresche1 1Neurobiologie des Processus Adaptatifs, Unite´ Mixte de Recherche, Centre National de la Recherche Scientifique 7102–Universite´ Pierre et Marie Curie, F-75005 Paris, France, and 2School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom The systemic injection of ␥-hydroxybutyric acid (GHB) elicits spike and wave discharges (SWDs), the EEG hallmark of absence seizures, and represents a well established, widely used pharmacological model of this nonconvulsive epilepsy. Despite this experimental use of GHB, as well as its therapeutic use in narcolepsy and its increasing abuse, however, the precise cellular mechanisms underlying the different pharmacological actions of this drug are still unclear. Because sensory thalamic nuclei play a key role in the generation of SWDs and sleep rhythms, and because direct injection of GHB in the ventrobasal (VB) thalamus elicits SWDs, we investigated GHB effects on corticothalamic EPSCs and GABAergic IPSCs in VB thalamo- ␮ cortical (TC) neurons. GHB (250 M–10 mM) reversibly decreased the amplitude of electrically evoked EPSCs and GABAA IPSCs via ϳ ␮ activation of GABAB receptors; however, 60% of the IPSCs were insensitive to low (250 M-1.0 mM) GHB concentrations. The putative GHB receptor antagonist NSC 382 applied alone had a number of unspecific effects, whereas it either had no action on, or further increased, the GHB-elicited effects on synaptic currents.
    [Show full text]