Efficient Inter-Core Communications on Manycore Machines

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Inter-Core Communications on Manycore Machines ZIMP: Efficient Inter-core Communications on Manycore Machines Pierre-Louis Aublin Sonia Ben Mokhtar Gilles Muller Vivien Quema´ Grenoble University CNRS - LIRIS INRIA CNRS - LIG Abstract—Modern computers have an increasing num- nication mechanisms enabling both one-to-one and one- ber of cores and, as exemplified by the recent Barrelfish to-many communications. Current operating systems operating system, the software they execute increasingly provide various inter-core communication mechanisms. resembles distributed, message-passing systems. To sup- port this evolution, there is a need for very efficient However it is not clear yet how these mechanisms be- inter-core communication mechanisms. Current operat- have on manycore processors, especially when messages ing systems provide various inter-core communication are intended to many recipient cores. mechanisms, but it is not clear yet how they behave In this report, we study seven communication mech- on manycore processors. In this report, we study seven anisms, which are considered state-of-the-art. More mechanisms, that are considered state-of-the-art. We show that these mechanisms have two main drawbacks that precisely, we study TCP, UDP and Unix domain sock- limit their efficiency: they perform costly memory copy ets, pipes, IPC and POSIX message queues. These operations and they do not provide efficient support mechanisms are supported by traditional operating sys- for one-to-many communications. We do thus propose tems such as Linux. We also study Barrelfish message ZIMP, a new inter-core communication mechanism that passing, the inter-process communication mechanism of implements zero-copy inter-core message communications and that efficiently handles one-to-many communications. Barrelfish OS [1]. We show that all these mechanisms We evaluate ZIMP on three manycore machines, hav- have two main drawbacks that limit their efficiency. ing respectively 8, 16 and 24 cores, using both micro- Firstly, they perform costly memory copy operations. and macro-benchmarks (a consensus and a checkpointing Indeed, to send a message, multiple copies of the latter protocol). Our evaluation shows that ZIMP consistently have to be created in memory. Secondly, they do not improves the performance of existing mechanisms, by up to one order of magnitude. provide efficient support for one-to-many communica- tions. Indeed, to send a message to N receivers, N calls to the send primitive of the communication mechanism I. INTRODUCTION need to be performed. Modern computers have an increasing number of We propose ZIMP (Zero-copy Inter-core Message cores and as envisioned by the designers of the recent Passing), a new, efficient, inter-core communication Barrelfish operating system [1], the software they run mechanism. More particularly, ZIMP provides a zero- increasingly resemble distributed, message passing sys- copy send primitive by allocating messages directly in a tems. Moreover, it is now admitted that one of the major shared area of memory. It also efficiently handles one- challenges of the next decade for system researchers, to-many communications by allowing a message to be will be to enable modern manycore systems to toler- sent once and read multiple times. ate both software [2], [3] and hardware failures [4]. We evaluate ZIMP on three manycore machines, hav- To tolerate failures in such message-passing manycore ing respectively 8, 16 and 24 cores, using both micro- systems, agreement [5] and broadcast protocols [6], [7] and macro-benchmarks. Our macro-benchmarks consist can be used for maintaining a consistent state across of two real world applications, namely PaxosInside [17] cores. Furthermore, checkpointing algorithms [8], [9], and a checkpointing protocol [8]. The performance [10], [11], [12], [13], [14], [15], [16] can provide a mean evaluation shows that for PaxosInside, ZIMP improves to resist failures of software distributed across cores. In the throughput of the best state-of-the-art mechanism this area, Yabandeh and Guerraoui have pioneered fault by up to 473%. It also shows that for the checkpointing tolerance for manycore architectures with PaxosInside, protocol, ZIMP reduces the latency of the best state-of- an adaptation of the Paxos protocol for manycore ma- the-art mechanism by up to 58%. chines [17]. The remaining of the report is organized as follows: In order to support efficient execution of such proto- In Section II, we describe the existing communication cols, there is a need for very efficient inter-core commu- mechanisms that can be used for inter-core commu- nications. In Section III, we present ZIMP, our effi- require large messages to be fragmented into smaller cient communication mechanism devised for manycore packets (the maximum packet size is 16kB using the machines. We then evaluate the performance of the loopback interface). Moreover, to send a set of packets state-of-the-art mechanisms and of ZIMP in Section IV. TCP and UDP sockets first places them on the sender’s We finally discuss related work in Section V, before socket list. Packets are then pushed by the kernel on concluding the report in Section VI. the loopback interface. Upon an interruption, the kernel receives the packets and places them on the receiver’s II. BACKGROUND socket list. Note that TCP and UDP do not offer the In this section, we start by reviewing seven state- same interface and do not provide the same guarantees. of-the-art inter-core communication mechanisms. We More precisely, TCP is loss-less and stream-oriented then analyze the drawbacks of all presented mechanisms while UDP can lose messages (if the receiver socket and discuss the need for a new efficient inter-core list is full) and is datagram oriented. Finally, UDP communication mechanism. datagrams have a maximum size of 65kB. Hence, to send larger messages using UDP, the application needs A. Inter-core communication mechanisms to fragment them into chunks of 65kB or less, resulting We review seven inter-core communication mecha- in additional system calls. nisms. Six of them are provided by traditional Lin- ux/Unix operating systems. Among these mechanisms, 3) Pipes: A pipe is a data structure stored in kernel Unix domain sockets, Pipes, IPC message queues and space and containing a circular list of small buffer POSIX message queues have been devised for the entries. Each entry has a size of 4kB, which corresponds communication between processes residing on the same to the size of a memory page. To send a message using host. We also review TCP and UDP sockets that have a pipe, a process uses the write() system call. Then, been designed for communication over an IP network the kernel splits the message in 4kB chunks and copies but that are often used for communication on the same the chunks from the user space to the pipe’s circular host. We finally present Barrelfish message passing, a list. To receive messages from a pipe, a receiver uses communication mechanism that has been specifically the read() system call. This system call copies the devised for manycore machines. content of the pipe to a user space buffer. 1) Unix domain sockets: Unix Domain sockets is 4) IPC and POSIX message queues: IPC and POSIX a communication mechanism specifically designed for message queues (noted IPC MQ and POSIX MQ in communications between processes residing on the the following, respectively) are queues of messages same host. In order to use Unix domain sockets, the residing in kernel space. Although the design of both sender and the receiver both create a socket, i.e., a data mechanisms is similar, they exhibit some differences. structure with a pointer to a linked list of datagrams. For instance, an IPC MQ can be used between several To send a message, a sender creates a buffer and uses senders and several receivers, while a POSIX MQ can the sendto() system call. Then, the kernel copies the be used between multiple senders but only one receiver. buffer from the user space to the kernel space and adds To send a message, a sender uses the msgsnd() it to the list. To receive messages, a receiver uses the system call1. Then, the kernel copies the message from recvfrom() system call. Finally, the kernel copies the user space to the kernel space and adds the message the last entry of the list from the kernel space to the to the queue. To receive a message, a receiver uses the user space. msgrcv() system call. When a message is present, it is copied from the kernel space to the user space. 2) TCP and UDP sockets: TCP and UDP sockets are two mechanisms that have been designed to allow 5) Barrelfish message passing: Barrelfish message processes residing on distinct machines to communicate passing (noted Barrelfish MP) is a user-level point-to- over an IP network. Nevertheless, these mechanisms can point communication mechanism that has been devised also be used by processes residing on the same host for the Barrelfish operating system2. For each sender- to communicate by using the loopback interface. From receiver pair, there are two circular buffers of messages a design point of view, UDP and TCP sockets share that act as unidirectional communication channels. The similarities with Unix domain sockets: they use the 1 same system calls and messages have to be copied from We describe the interface used in IPC message queues. The interface used in POSIX message queues is similar. the user to the kernel space, and vice versa. There are 2We use the publicly available Barrelfish source code release of nevertheless some differences: UDP and TCP sockets march 2011, available at http://www.barrelfish.org. 2 size of these channels, S, is defined when they are the N receivers. The second line of the table shows created. Messages have a fixed size, which is a multiple that for receiving a message, the latter is copied N of the size of a cache line, and they are aligned on a times by the N receivers (once for each receiver).
Recommended publications
  • D-Bus, the Message Bus System Training Material
    Maemo Diablo D-Bus, The Message Bus System Training Material February 9, 2009 Contents 1 D-Bus, The Message Bus System 2 1.1 Introduction to D-Bus ......................... 2 1.2 D-Bus architecture and terminology ................ 3 1.3 Addressing and names in D-Bus .................. 4 1.4 Role of D-Bus in maemo ....................... 6 1.5 Programming directly with libdbus ................. 9 1 Chapter 1 D-Bus, The Message Bus System 1.1 Introduction to D-Bus D-Bus (the D originally stood for "Desktop") is a relatively new inter process communication (IPC) mechanism designed to be used as a unified middleware layer in free desktop environments. Some example projects where D-Bus is used are GNOME and Hildon. Compared to other middleware layers for IPC, D-Bus lacks many of the more refined (and complicated) features and for that reason, is faster and simpler. D-Bus does not directly compete with low level IPC mechanisms like sock- ets, shared memory or message queues. Each of these mechanisms have their uses, which normally do not overlap the ones in D-Bus. Instead, D-Bus aims to provide higher level functionality, like: Structured name spaces • Architecture independent data formatting • Support for the most common data elements in messages • A generic remote call interface with support for exceptions (errors) • A generic signalling interface to support "broadcast" type communication • Clear separation of per-user and system-wide scopes, which is important • when dealing with multi-user systems Not bound to any specific programming language (while providing a • design that readily maps to most higher level languages, via language specific bindings) The design of D-Bus benefits from the long experience of using other mid- dleware IPC solutions in the desktop arena and this has allowed the design to be optimised.
    [Show full text]
  • Message Passing Model
    Message Passing Model Giuseppe Anastasi [email protected] Pervasive Computing & Networking Lab. (PerLab) Dept. of Information Engineering, University of Pisa PerLab Based on original slides by Silberschatz, Galvin and Gagne Overview PerLab Message Passing Model Addressing Synchronization Example of IPC systems Message Passing Model 2 Operating Systems Objectives PerLab To introduce an alternative solution (to shared memory) for process cooperation To show pros and cons of message passing vs. shared memory To show some examples of message-based communication systems Message Passing Model 3 Operating Systems Inter-Process Communication (IPC) PerLab Message system – processes communicate with each other without resorting to shared variables. IPC facility provides two operations: send (message ) – fixed or variable message size receive (message ) If P and Q wish to communicate, they need to: establish a communication link between them exchange messages via send/receive The communication link is provided by the OS Message Passing Model 4 Operating Systems Implementation Issues PerLab Physical implementation Single-processor system Shared memory Multi-processor systems Hardware bus Distributed systems Networking System + Communication networks Message Passing Model 5 Operating Systems Implementation Issues PerLab Logical properties Can a link be associated with more than two processes? How many links can there be between every pair of communicating processes? What is the capacity of a link? Is the size of a message that the link can accommodate fixed or variable? Is a link unidirectional or bi-directional? Message Passing Model 6 Operating Systems Implementation Issues PerLab Other Aspects Addressing Synchronization Buffering Message Passing Model 7 Operating Systems Overview PerLab Message Passing Model Addressing Synchronization Example of IPC systems Message Passing Model 8 Operating Systems Direct Addressing PerLab Processes must name each other explicitly.
    [Show full text]
  • Message Passing
    COS 318: Operating Systems Message Passing Jaswinder Pal Singh Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Sending A Message Within A Computer Across A Network P1 P2 Send() Recv() Send() Recv() Network OS Kernel OS OS COS461 2 Synchronous Message Passing (Within A System) Synchronous send: u Call send system call with M u send system call: l No buffer in kernel: block send( M ) recv( M ) l Copy M to kernel buffer Synchronous recv: u Call recv system call M u recv system call: l No M in kernel: block l Copy to user buffer How to manage kernel buffer? 3 API Issues u Message S l Buffer (addr) and size l Message type, buffer and size u Destination or source send(dest, msg) R l Direct address: node Id, process Id l Indirect address: mailbox, socket, recv(src, msg) channel, … 4 Direct Addressing Example Producer(){ Consumer(){ ... ... while (1) { for (i=0; i<N; i++) produce item; send(Producer, credit); recv(Consumer, &credit); while (1) { send(Consumer, item); recv(Producer, &item); } send(Producer, credit); } consume item; } } u Does this work? u Would it work with multiple producers and 1 consumer? u Would it work with 1 producer and multiple consumers? u What about multiple producers and multiple consumers? 5 Indirect Addressing Example Producer(){ Consumer(){ ... ... while (1) { for (i=0; i<N; i++) produce item; send(prodMbox, credit); recv(prodMbox, &credit); while (1) { send(consMbox, item); recv(consMbox, &item); } send(prodMbox, credit); } consume item; } } u Would it work with multiple producers and 1 consumer? u Would it work with 1 producer and multiple consumers? u What about multiple producers and multiple consumers? 6 Indirect Communication u Names l mailbox, socket, channel, … u Properties l Some allow one-to-one mbox (e.g.
    [Show full text]
  • Multiprocess Communication and Control Software for Humanoid Robots Neil T
    IEEE Robotics and Automation Magazine Multiprocess Communication and Control Software for Humanoid Robots Neil T. Dantam∗ Daniel M. Lofaroy Ayonga Hereidx Paul Y. Ohz Aaron D. Amesx Mike Stilman∗ I. Introduction orrect real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for Clocomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multi-process software design increases robustness by isolating errors to a single process, allowing the rest of the system to continue operating. This approach also assists with modularity and concurrency. For real-time tasks such as dynamic balance and force control of manipulators, it is critical to communicate the latest data sample with minimum latency. There are many communication approaches intended for both general purpose and real-time needs [19], [17], [13], [9], [15]. Typical methods focus on reliable communication or network-transparency and accept a trade-off of increased mes- sage latency or the potential to discard newer data. By focusing instead on the specific case of real-time communication on a single host, we reduce communication latency and guarantee access to the latest sample. We present a new Interprocess Communication (IPC) library, Ach,1 which addresses this need, and discuss its application for real-time, multiprocess control on three humanoid robots (Fig. 1). There are several design decisions that influenced this robot software and motivated development of the Ach library. First, to utilize decades of prior development and engineering, we implement our real-time system on top of a POSIX-like Operating System (OS)2.
    [Show full text]
  • Message Passing
    Message passing CS252 • Sending of messages under control of programmer – User-level/system level? Graduate Computer Architecture – Bulk transfers? Lecture 24 • How efficient is it to send and receive messages? – Speed of memory bus? First-level cache? Network Interface Design • Communication Model: Memory Consistency Models – Synchronous » Send completes after matching recv and source data sent » Receive completes after data transfer complete from matching send – Asynchronous Prof John D. Kubiatowicz » Send completes after send buffer may be reused http://www.cs.berkeley.edu/~kubitron/cs252 4/27/2009 cs252-S09, Lecture 24 2 Synchronous Message Passing Asynch. Message Passing: Optimistic Source Destination Source Destination (1) Initiate send Recv Psrc, local VA, len (1) Initiate send (2) Address translation on Psrc Send Pdest, local VA, len (2) Address translation (3) Local/remote check Send (P , local VA, len) (3) Local/remote check dest (4) Send-ready request Send-rdy req (4) Send data (5) Remote check for (5) Remote check for posted receive; on fail, Tag match allocate data buffer posted receive Wait Tag check Data-xfer req (assume success) Processor Allocate buffer Action? (6) Reply transaction Recv-rdy reply (7) Bulk data transfer Source VA Dest VA or ID Recv P , local VA, len Time src Data-xfer req Time • More powerful programming model • Constrained programming model. • Wildcard receive => non-deterministic • Deterministic! What happens when threads added? • Destination contention very limited. • Storage required within msg layer? • User/System boundary? 4/27/2009 cs252-S09, Lecture 24 3 4/27/2009 cs252-S09, Lecture 24 4 Asynch. Msg Passing: Conservative Features of Msg Passing Abstraction Destination • Source knows send data address, dest.
    [Show full text]
  • Inter-Process Communication
    QNX Inter-Process Communication QNX IPC 2008/01/08 R08 © 2006 QNX Software Systems. QNX and Momentics are registered trademarks of QNX Software Systems in certain jurisdictions NOTES: QNX, Momentics, Neutrino, Photon microGUI, and “Build a more reliable world” are registered trademarks in certain jurisdictions, and PhAB, Phindows, and Qnet are trademarks of QNX Software Systems Ltd. All other trademarks and trade names belong to their respective owners. 1 IntroductionIntroduction IPC: • Inter-Process Communication • two processes exchange: – data – control – notification of event occurrence IPC Thread Thread Process A Process B QNX IPC 2008/01/08 R08 2 © 2006, QNX Software Systems. QNX and Momentics are registered trademarks of QNX Software Systems in certain jurisdictions NOTES: 2 IntroductionIntroduction QNX Neutrino supports a wide variety of IPC: – QNX Core (API is unique to QNX or low-level) • includes: – QNX Neutrino messaging – QNX Neutrino pulses – shared memory – QNX asynchronous messaging • the focus of this course module – POSIX/Unix (well known, portable API’s ) • includes: – signals – shared memory – pipes (requires pipe process) – POSIX message queues (requires mqueue or mq process) – TCP/IP sockets (requires io-net process) • the focus of the POSIX IPC course module QNX IPC 2008/01/08 R08 3 © 2006, QNX Software Systems. QNX and Momentics are registered trademarks of QNX Software Systems in certain jurisdictions NOTES: API: Application Programming Interface 3 InterprocessInterprocess Communication Communication Topics: Message Passing Designing a Message Passing System (1) Pulses How a Client Finds a Server Server Cleanup Multi-Part Messages Designing a Message Passing System (2) Client Information Structure Issues Related to Priorities Designing a Message Passing System (3) Event Delivery Asynchronous Message Passing QNET Shared Memory Conclusion QNX IPC 2008/01/08 R08 4 © 2006, QNX Software Systems.
    [Show full text]
  • 1 Interprocess Communication
    COMP 242 Class Notes Section 3: Interprocess Communication 1 Interprocess Communication Readings: Chapter 7, Comer. An operating system provides interprocess communication to allow processes to exchange informa- tion. Interprocess communication is useful for creating cooperating processes. For instance an ‘ls’ process and a ‘more’ process can cooperate to produce a paged listing of a directory. There are several mechanisms for interprocess communication. We discuss some of these below. 1.1 Shared Memory Processes that share memory can exchange data by writing and reading shared variables. As an example, consider two processes p and q that share some variable s. Then p can communicate information to q by writing new data in s, which q can then read. The above discussion raises an important question. How does q know when p writes new information into s? In some cases, q does not need to know. For instance, if it is a load balancing program that simply looks at the current load in p’s machine stored in s. When it does need to know, it could poll, but polling puts undue burden on the cpu. Another possibility is that it could get a software interrupt, which we discuss below. A familiar alternative is to use semaphores or conditions. Process q could block till p changes s and sends a signal that unblocks q. However, these solutions would not allow q to (automatically) block if s cannot hold all the data it wants to write. (The programmer could manually implement a bounded buffer using semaphores.) Moreover, conventional shared memory is accessed by processes on a single machine, so it cannot be used for communicating information among remote processes.
    [Show full text]
  • Shared Memory Introduction
    12 Shared Memory Introduction 12.1 Introduction Shared memory is the fastest form of IPC available. Once the memory is mapped into the address space of the processes that are sharing the memory region, no kernel involvement occurs in passing data between the processes. What is normally required, however, is some form of synchronization between the processes that are storing and fetching information to and from the shared memory region. In Part 3, we discussed various forms of synchronization: mutexes, condition variables, read–write locks, record locks, and semaphores. What we mean by ‘‘no kernel involvement’’ is that the processes do not execute any sys- tem calls into the kernel to pass the data. Obviously, the kernel must establish the mem- ory mappings that allow the processes to share the memory, and then manage this memory over time (handle page faults, and the like). Consider the normal steps involved in the client–server file copying program that we used as an example for the various types of message passing (Figure 4.1). • The server reads from the input file. The file data is read by the kernel into its memory and then copied from the kernel to the process. • The server writes this data in a message, using a pipe, FIFO, or message queue. These forms of IPC normally require the data to be copied from the process to the kernel. We use the qualifier normally because Posix message queues can be implemented using memory-mapped I/O (the mmap function that we describe in this chapter), as we showed in Section 5.8 and as we show in the solution to Exercise 12.2.
    [Show full text]
  • The Client/Server Architecture DES-0005 Revision 4
    PNNL-22587 The Client/Server Architecture DES-0005 Revision 4 Charlie Hubbard February 2012 The Client/Server Architecture Charlie Hubbard DES-0005 Revision 4 February 2012 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062 ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service,
    [Show full text]
  • MODELS of DISTRIBUTED SYSTEMS Basic Elements
    Distributed Systems Fö 2/3- 1 Distributed Systems Fö 2/3- 2 MODELS OF DISTRIBUTED SYSTEMS Basic Elements • Resources in a distributed system are shared between users. They are normally encapsulated within one of the computers and can be accessed from other computers by communication. 1. Architectural Models • Each resource is managed by a program, the resource manager; it offers a communication 2. Interaction Models interface enabling the resource to be deceased by its users. 3. Failure Models • Resource managers can be in general modelled as processes. If the system is designed according to an object- oriented methodology, resources are encapsulated in objects. Petru Eles, IDA, LiTH Petru Eles, IDA, LiTH Distributed Systems Fö 2/3- 3 Distributed Systems Fö 2/3- 4 Architectural Models Client - Server Model How are responsibilities distributed between system components and how are these components placed? ☞ The system is structured as a set of processes, called servers, that offer services to the users, called • Client-server model clients. • Proxy server • Peer processes (peer to peer) • The client-server model is usually based on a simple request/reply protocol, implemented with send/receive primitives or using remote procedure calls (RPC) or remote method invocation (RMI): - the client sends a request message to the server asking for some service; - the server does the work and returns a result (e.g. the data requested) or an error code if the work could not be performed. Petru Eles, IDA, LiTH Petru Eles, IDA, LiTH Distributed Systems Fö 2/3- 5 Distributed Systems Fö 2/3- 6 Client - Server Model (cont’d) Proxy Server ☞ A proxy server provides copies (replications) of resources which are managed by other servers.
    [Show full text]
  • A Ugni-Based Asynchronous Message-Driven Runtime System for Cray Supercomputers with Gemini Interconnect
    A uGNI-based Asynchronous Message-driven Runtime System for Cray Supercomputers with Gemini Interconnect Yanhua Sun, Gengbin Zheng, Laxmikant V. Kale´ Terry R. Jones Ryan Olson Department of Computer Science Computer Science and Mathematics Division Cray Inc University of Illinois at Urbana-Champaign Oak Ridge National Lab [email protected] Urbana, Illinois Oak Ridge, Tennessee fsun51, gzheng, [email protected] [email protected] Abstract—Gemini, the network for the new Cray XE/XK user-level Generic Network Interface (uGNI) [?] is pro- systems, features low latency, high bandwidth and strong scal- vided as a low-level interface for Gemini, on top of which ability. Its hardware support for remote direct memory access the Cray MPI is implemented. Gemini-based interconnects enables efficient implementation of the global address space programming languages. Although the user Generic Network have been deployed in two petaflop supercomputers, Cielo Interface (uGNI) provides a low-level interface for Gemini with at Los Alamos National Lab and Hopper at Lawrence support to the message-passing programming model (MPI), it Berkeley National Lab. Jaguar, one of the most powerful remains challenging to port alternative programming models supercomputers, is being upgraded to a XK6 system with with scalable performance. Gemini interconnect. The newly announced Blue Waters CHARM++ is an object-oriented message-driven program- ming model. Its applications have been shown to scale up to supercomputer, which will deliver sustained performance of the full Jaguar Cray XT machine. In this paper, we present 1 petaflop, will also be equipped with a Gemini interconnect. an implementation of this programming model on uGNI for As Cray supercomputers with Gemini interconnects become the Cray XE/XK systems.
    [Show full text]
  • Message-Passing Network Daemons
    Metanet: Message-Passing Network Daemons Erik Walthinsen [email protected], http://www.omegacs.net/˜omega/ Abstract ficult to accomplish the task at hand, or more likely they are simply too big to fit on the MetaNet is a message-passing architecture de- target device. The platform example used in signed for the construction of network services this paper is that of an intelligent wireless daemons. Services are implemented as a series access point (AP) running Linux. The M1 of mailboxes with attached functions to pro- from Musenki [Musenki] is just such an access vide the functionality. The mailbox namespace point, consisting of a Motorola MPC8241 em- is global across all services, allowing new dae- bedded PPC processor, 32MB of RAM, 8MB mons to hook into existing daemons to mod- of flash, a 10/100 NIC, and a MiniPCI slot for ify their behavior. A simple example is a stock a wireless card. It runs Linux natively and must DHCP daemon hooked by an external applica- be able to provide all the normal network ser- tion that does an LDAP lookup for a machine’s vices, as well as be useful to the PersonalTelco IP before falling back to the normal DHCP al- Project [PTP] in its city-wide free networking location scheme. This paper covers the archi- projects. This drives some of the more inter- tecture of the MetaNet system, and uses the ex- esting requirements, pushing well beyond the ample of a Captive Portal as used for public boundaries of current software. wireless network control to show how multi- MetaNet is an attempt at creating an infras- ple services can be quite easily tied together to tructure that enables these services to be not provide more complex services.
    [Show full text]