Descriptive Text to the 1995 Geological Map of Greenland, 1:2 500 000

Total Page:16

File Type:pdf, Size:1020Kb

Descriptive Text to the 1995 Geological Map of Greenland, 1:2 500 000 GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN 18 2009 Greenland from Archaean to Quaternary Descriptive text to the 1995 Geological map of Greenland, 1:2 500 000. 2nd edition Niels Henriksen, A.K. Higgins, Feiko Kalsbeek and T. Christopher R. Pulvertaft GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF CLIMATE AND ENERGY Geological Survey of Denmark and Greenland Bulletin 18 Keywords Archaean, Caledonides, Cenozoic, economic geology, geological map, Greenland, ice sheet, Mesozoic, offshore, orogenic belts, Palaeozoic, petroleum, Phanerozoic, Proterozoic, sedimentary basins. Cover illustration The cover design depicts mountains of the East Greenland Caledonian fold belt. The view, west of Mestersvig (located on map, page 4), is north over Bersærkerbræ and the northern part of the Stauning Alper to Kong Oscar Fjord with Traill Ø in the right backgro- und. The mountains up to 1800 m high are of the Neoproterozoic Eleonore Bay Supergroup. To the right: first author Niels Henriksen, for many years head of geological mapping at GGU/GEUS, and participant in field work in Greenland for more than 45 years. Frontispiece: facing page Major Caledonian syncline involving reactivated Archaean basement gneisses containing amphibolite bands. Overlying rusty coloured Mesoproterozoic metasediments (Krummedal supracrustal sequence) just visible in tight core of the fold. The intensity of deformation in the syncline clearly increases towards the core, where the basement gneisses become more strongly foliated. Some of the amphibolite bands were derived from cross-cutting basic intrusions, which are still discernable in the less severely deformed parts of the Archaean basement (Fig. 17, p. 31). The height of the section is c. 2000 m. South-west of innermost Nordvestfjord / Kangersik Kiatteq (c. 71°30´N), Scoresby Sund region, central East Greenland. Chief editor of this series: Adam A. Garde Editorial board of this series: John A. Korstgård, Geological Institute, University of Aarhus; Minik Rosing, Geological Museum, University of Copenhagen; Finn Surlyk, Department of Geography and Geology, University of Copenhagen Scientific editor: Adam A. Garde Editorial secretaries: Jane Holst and Esben W. Glendal Referees: C.R.L. Friend (UK), Gordon N. Oakey (Canada) and Henrik Stendal (Greenland) Illustrations: Eva Melskens, Helle Zetterwall, Lis Duegaard and Jette Halskov Digital photographic work: Benny M. Schark Graphic production: Annabeth Andersen Printers: Rosendahls - Schultz Grafisk, Albertslund, Denmark Manuscript submitted: 29 May, 2009 Final version approved: 8 October 2009 Printed: 27 November 2009 ISBN 987-87-7871-258-5 ISSN 1604-8156 Citation of the name of this series It is recommended that the name of this series is cited in full, viz. Geological Survey of Denmark and Greenland Bulletin. If abbreviation of this volume is necessary, the following form is suggested: Geol. Surv. Den. Green. Bull. 18, 126 pp. Available from Geological Survey of Denmark and Greenland (GEUS) Øster Voldgade 10, DK-1350 Copenhagen K, Denmark Phone: +45 38 14 20 00, fax: +45 38 14 20 50, e-mail: [email protected] or at www.geus.dk/publications/bull © De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS), 2009 For the full text of the GEUS copyright clause, please refer to www.geus.dk/publications/bull Arctic Ocean Ellesmere Geographical subdivisions of Greenland Island Peary Station Nord 80° Land used by the Survey Canada Map showing the Survey’s geographical subdivisions of Greenland, it tra central S es western both onshore and offshore, used in this bulletin. Thus Nares Strait, ar eastern N North the seaway separating Greenland from Ellesmere Island, Canada, borders North-West Greenland and western North Greenland. However, application of these subdivisions has not been rigorously Pituffik / Thule Air Base 76° applied in all parts of the text in order to avoid unwieldy phrases. It should also be noted that ‘West Greenland’ and ‘East Greenland’ Melville Bugt are used both as shown on the map (each with two subdivisions, viz. North- West North - East central and southern) and for the entire western and eastern sides of Daneborg Greenland. In this broader sense, West Greenland covers the four west- Inland Ice ern subdivisions, viz. North-West, central West, southern West and Upernavik 72° South-West Greenland whereas East Greenland covers the four east- ern subdivisions, viz. North-East, central East, southern East and Mestersvig South-East Greenland. Svartenhuk Halvø central Scoresby The subdivisions are used throughout the text and also in the Sund Disko cent ral East Legend explanation (pp. 110–112) and Index (pp. 117 –126). Disko West Bugt t s y K Aasiaat 68° lle southern vi se East os Bl Sisimiut Kangerlussuaq South - southern Iceland East Tasiilaq / West 64° Ammassalik Nuuk North Atlantic South - West Ocean Ivittuut 60° Qaqortoq 400 km South 52° 44° Kap Farvel 36° 28° Editorial note This bulletin is a revised 2nd edition of the descriptive text to the 200 new references to cited papers, to give the reader a possibility to Geological map of Greenland 1:2 500 000. The description was follow up on new data and details in agreement with modern inter- first published in 2000 as Geology of Greenland Survey Bulletin pretations. 185 by Henriksen et al. 2000. The map, compiled by Escher & The 1:2 500 000 map presents a general overview of Green land ge - Pulvertaft in 1995 and printed the same year, accompanies the ology, but as a basis for this overview there also exists a wealth of more present description. detailed published maps. A set of 14 geological maps at scale 1:500 000 Since the first edition of this work was published, large amounts covers the onshore areas of the entire country and a special map at scale of new data have been acquired, especially in the offshore regions, in 1:1 000 000 covers onshore areas in North-East Greenland. In addition relation to mineral prospecting and in connection with general geo- to these maps more than 60 geological maps at 1:100 000 have been pub- logical research mainly in West Greenland. The present description lished, covering mainly areas in central and southern West Greenland. aims at providing an up dated overview of the geology of Greenland A wide range of special geological and geophysical maps has also been with reference to the enclosed geolo gical map from 1995 that in gen- published covering both onshore and offshore areas. Details of all these eral terms is still valid. The first edition included an extensive refer- publications can be obtained from the Survey’s website. ence list designed as a key to the most relevant sources for the For a catalogue of Greenland publications and data see: explanation of the Geological map of Greenland 1:2 500 000. In this www.geus.dk/publications/publ-uk.htm. This list will be updated at second edition the reference list has been expanded with more than intervals, when relevant new data become available. 4 Contents Abstract . 9 Preface . 11 Introduction. 12 Concept of the geological legend . 12 Topographic base . 13 Crystalline rocks older than 1600 Ma: the Greenland Precambrian shield . 14 Archaean craton . 15 Eoarchaean supracrustal rocks. 17 Eoarchaean (‘Amîtsoq’) gneisses . 18 Meso- and Neoarchaean supracrustal rocks. 19 Anorthositic rocks . 19 Meso- and Neoarchaean gneisses . 19 Intrusive rocks . 20 Palaeoproterozoic orogenic terrains. 21 Nagssugtoqidian orogen, West Greenland. 22 Supracrustal rocks. 23 Felsic and intermediate intrusions. 24 Nagssugtoqidian orogen in South-East Greenland . 24 Palaeoproterozoic plutonic rocks. 24 Rinkian fold belt. 25 Archaean and Palaeoproterozoic supracrustal rocks: Disko Bugt and Nuussuaq . 26 Gneisses and intrusions: Disko Bugt and Nuussuaq . 26 Palaeoproterozoic supracrustal rocks north of Nuussuaq: the Karrat Group . 26 Gneisses and intrusive rocks north of Nuussuaq . 27 North-West Greenland and the Inglefield orogenic belt . 27 Ketilidian orogen . 28 Palaeoproterozoic supracrustal rocks in the northern border zone . 28 Palaeoproterozoic granitoids and basic–intermediate intrusions, the Julianehåb batholith . 29 Metasedimentary rocks in the south-eastern part of the Ketilidian orogen . 30 The Ketilidian rapakivi suite. 30 Archaean–Palaeoproterozoic basement in the East Greenland Caledonian orogen. 31 Archaean–Palaeoproterozoic basement beneath the Inland Ice . 32 Proterozoic to Phanerozoic geological development after formation of the Precambrian shield 33 Palaeo- to Mesoproterozoic unfolded units . 33 Independence Fjord Group, North Greenland . 33 Zig-Zag Dal Basalt Formation, North Greenland . 33 Correlation with similar rocks in the northernmost part of the East Greenland Caledonides . 35 Gardar Province, South Greenland . 35 Early Neoproterozoic orogenic units reworked in the East Greenland Caledonian fold belt . 38 Supracrustal rocks. 38 Migmatites and granites . 39 Mesoproterozoic – early Neoproterozoic sedimentary basin in North-West Greenland and Ellesmere Island . 39 5 Thule Supergroup . 39 Neoproterozoic sedimentary basins in North, North-East and East Greenland. 40 Hagen Fjord Group, North Greenland. 40 Eleonore Bay Supergroup, East and North-East Greenland . 41 Tillite Group, East Greenland . 42 Sedimentary rocks of unknown age in the East Greenland Caledonides . 43 Carbonatites, kimberlites and associated rocks, West Greenland. 44 The Palaeozoic Franklinian Basin of North Greenland and Ellesmere Island . 45 Uppermost Neoproterozoic – Silurian in North Greenland . 45 Proterozoic–Silurian exotic
Recommended publications
  • Seismic Reflection Profiles from Kane to Hall Basin, Nares Strait: Evidence for Faulting
    Polarforschung 74 (1-3), 21 – 39, 2004 (erschienen 2006) Seismic Reflection Profiles from Kane to Hall Basin, Nares Strait: Evidence for Faulting by H. Ruth Jackson1, Tim Hannon1, Sönke Neben2, Karsten Piepjohn2 and Tom Brent3 Abstract: Three major tectonic boundaries are predicted to be present beneath durch eine folgende kompressive Phase reaktiviert wurde. Als Arbeitshypo- the waters of this segment of Nares Strait: (1) the orogenic front of the Paleo- these fassen wir die oberflächennahen Teile dieses Systems als Stirn der Plat- zoic Ellesmerian Foldbelt between thrust sheets on Ellesmere Island and flat- tengrenze zwischen Nordamerika und Grönland auf. lying foreland rocks on Greenland, (2) the supposed sinistral strike-slip plate boundary of Paleocene age between the Ellemere Island section of the North America plate and the Greenland plate, and (3) the orogenic front of the Eocene to Oligocene Eurekan Foldbelt that must lie between thrust tectonics INTRODUCTION on Ellesmere Island and undeformed rocks of Greenland. To understand this complicated situation and to look for direct evidence of the plate boundary, The Late Cretaceous and Tertiary deformation on Ellesmere new seismic reflection profiles were collected and, together with industry data in the south, interpreted. The profiles are clustered in three areas controlled by Island (Fig. 1) called the Eurekan Orogeny has been attributed the distribution of the sea ice. Bathymetry is used to extrapolate seismic to the counter clockwise rotation of Greenland (e.g., OKULITCH features with a topographic expression between the regions. Based on high- & TRETTIN 1991). However reconciling the geology on oppo- resolution boomer and deeper penetration airgun profiles five seismic units are mapped.
    [Show full text]
  • People of the Ice Bridge: the Future of the Pikialasorsuaq
    People of the ice bridge: The future of the Pikialasorsuaq National Advisory Panel on Marine Protected Area Standards, Iqaluit, Nunavut June 9, 2018 FINDINGS, RECOMMENDATIONS AND NEXT STEPS FROM THE PIKIALASORSUAQ COMMISSION Map of Pikialasorsuaq between Nunavut, Canada and Greenland CONTEXT: INTERNATIONAL • Growing momentum in ocean protection by applying conservation measures to designated marine areas • Convention on Biological Diversity (CBD) Aichi Target 11: NOAA Arct1047, Fairweather. >10% of marine and coastal areas to be conserved • The Arctic Council’s working group Protection of the Arctic Marine Environment has created toolboxes to help Arctic countries and regions develop Marine Protected Areas. • Many organizations supporting and promoting marine protection of key areas in Circumpolar Arctic (WWF, IUCN) Photo credit:Crew & officers of NOAA ship NOAA of officers & credit:Crew Photo CONTEXT: CANADA • Federal commitment to Aichi Target • Mechanisms under different federal departments, e.g.: – Marine Protected Areas (DFO) – National Wildlife Areas (ECCC) – National Marine Conservation Area (Parks Canada) • 2017 proposal by Mary Simon—create Indigenous Protected Areas (IPA) Iglunaksuak Point/Kangeq. On the way from Siorapaluk to Qaanaaq. Photo credit: Kuupik Kleist Kuupik credit: Photo PIKIALASORSUAQ COMMISSION • Inuit Circumpolar Council (ICC) initiated the Inuit-led Pikialasorsuaq Commission Commissioners Kuupik Kleist, Okalik Eegeesiak, Eva Aariak Photo credit: Byarne Lyberth Byarne credit: Photo PIKIALASORSUAQ COMMISSION •
    [Show full text]
  • Udenrigspolitisk Redegørelse 2018
    EM/2018/14 Udenrigspolitisk Redegørelse 2018 Billede: National Aeronautics and Space Administration (NASA) EM 2018/14 Sags nr. 2018 – 2195 EM 2018/14 Side 1 af 86 1. Indledning For at sikre Grønlands synlighed og interesser internationalt, er det vigtigt at vores land er en aktiv aktør i den internationale politik. Det er derfor vigtigt med en nødvendig repræsentation i vores primære samarbejdslande, samt videre vigtigt at deltage og markere sig i internationale møder og konferencer. Jeg havde således fornøjelsen, sammen med Udenrigsminister Anders Samuelsen, den 22. og 23. maj 2018, at markere 10 året for vedtagelsen af Ilulissat erklæringen, en absolut skelsættende begivenhed for vores land og Arktisk og en erklæring som har været med til at sikre fred og stabilitet i den arktiske region. Foruden værterne deltog repræsentanter fra USA, Canada, Rusland, Finland, Sverige, Norge, Island og Færøerne samt repræsentanter for ICC og Samerådet. Alle medlemslandene fra Arktisk Råd, samt de 6 oprindelige folks organisationer repræsenteret i Arktisk Råd, var således inviteret til markeringen, således en større kreds, end de 5 arktiske kyststater, der vedtog erklæringen tilbage i 2008. Denne udvidelse af kredsen blev gennemført med henblik på større medinddragelse af de aktører, som implementerer principperne i erklæringen. På ministermødet blev vigtigheden af at fokusere på den arktiske befolkning fremhævet. Vores mest fremtrædende opgave i Arktisk er at vi som folk er med til at lede dialogen om, og udviklingen af, vores region. Den grønlandske repræsentation i Reykjavik er nu under etablering, og forventes endelig officielt åbnet i 4. kvartal af 2018. Repræsentationen forventes at bidrage til at vedligeholde og udvide de eksisterende samarbejder med Island, samt styrke de politiske og handelsmæssige forbindelser.
    [Show full text]
  • Geology of Greenland Bulletin 185, 67-93
    Sedimentary basins concealed by Acknowledgements volcanic rocks The map sheet was compiled by J.C. Escher (onshore) In two areas, one off East Greenland between latitudes and T.C.R. Pulvertaft (offshore), with final compilation 72° and 75°N and the other between 68° and 73°N off and legend design by J.C. Escher (see also map sheet West Greenland, there are extensive Tertiary volcanic legend). In addition to the authors’ contributions to the rocks which are known in places to overlie thick sedi- text (see Preface), drafts for parts of various sections mentary successions. It is difficult on the basis of exist- were provided by: L. Melchior Larsen (Gardar in South ing seismic data to learn much about these underlying Greenland, Tertiary volcanism of East and West Green- sediments, but extrapolation from neighbouring onshore land); G. Dam (Cretaceous–Tertiary sediments of cen- areas suggests that oil source rocks are present. tral West Greenland); M. Larsen (Cretaceous–Tertiary Seismic data acquired west of Disko in 1995 have sediments in southern East Greenland); J.C. Escher (map revealed an extensive direct hydrocarbon indicator in of dykes); S. Funder (Quaternary geology); N. Reeh the form of a ‘bright spot’ with a strong AVO (Amplitute (glaciology); B. Thomassen (mineral deposits); F.G. Versus Offset) anomaly, which occurs in the sediments Christiansen (petroleum potential). Valuable comments above the basalts in this area. If hydrocarbons are indeed and suggestions from other colleagues at the Survey are present here, they could either have been generated gratefully acknowledged. below the basalts and have migrated through the frac- Finally, the bulletin benefitted from thorough reviews tured lavas into their present position (Skaarup & by John Korstgård and Hans P.
    [Show full text]
  • Moving Archives Agency, Emotions and Visual Memories of Industrialization in Greenland Jørgensen, Anne Mette
    Moving Archives Agency, emotions and visual memories of industrialization in Greenland Jørgensen, Anne Mette Publication date: 2017 Document version Other version Document license: CC BY-NC-ND Citation for published version (APA): Jørgensen, A. M. (2017). Moving Archives: Agency, emotions and visual memories of industrialization in Greenland. Det Humanistiske Fakultet, Københavns Universitet. Download date: 26. Sep. 2021 UNIVERSITY OF COPENHAGEN FACULTY OR HUMANITIES PhD Thesis Anne Mette Jørgensen Moving Archives. Agency, emotions and visual memories of industrialization in Greenland Supervisor: Associate Professor Ph.D. Kirsten Thisted Submitted on: 15 February 2017 Name of department: Department of Cross-Cultural and Regional Studies Name of department: Minority Studies Section Author(s): Anne Mette Jørgensen Title and subtitle: Moving Archives. Agency, emotions and visual memories of industrialization in Greenland Topic description: Memory, emotion, agency, history, visual anthropology, methodology, museums, post-colonialism, Greenland Supervisor: Kirsten Thisted Submitted on: 15 February 2017 Cover photography: A table during a photo elicitation interview, Ilulissat April 2015 ©AMJørgensen 2 CONTENTS Pre-face 5 Abstract 7 Resumé in Danish 8 1. Introduction 9 a. Aim and argument 9 b. Research questions 13 c. Analytical framework 13 d. Moving archives - Methodological engagements 16 e. The process 18 f. Outline of the Thesis 23 2. Contexts 27 a. Themes, times, spaces 27 b. Industrialization in Greenland 28 c. Colonial and postcolonial archives and museums 40 d. Industrialization in the Disko Bay Area 52 3. Conceptualizing Memory as Moving Archives 60 a. Analytical framework: Memory, agency and emotion 61 b. Memory as agency 62 c. Memory as practice 65 d. Memory as emotion 67 e.
    [Show full text]
  • Exploring Greenland: Science and Technology in Cold War Settings Matthias Heymann, Henrik Knudsen, Maiken L
    Document generated on 09/28/2021 8:37 a.m. Scientia Canadensis Canadian Journal of the History of Science, Technology and Medicine Revue canadienne d'histoire des sciences, des techniques et de la médecine Exploring Greenland: Science and Technology in Cold War Settings Matthias Heymann, Henrik Knudsen, Maiken L. Lolck, Henry Nielsen, Kristian H. Nielsen and Christopher J. Ries Comparative Issues in the History of Circumpolar Science and Article abstract Technology This paper explores a vacant spot in the Cold War history of science: the Volume 33, Number 2, 2010 development of research activities in the physical environmental sciences and in nuclear science and technology in Greenland. In the post-war period, URI: https://id.erudit.org/iderudit/1006149ar scientific exploration of the polar areas became a strategically important DOI: https://doi.org/10.7202/1006149ar element in American and Soviet defence policy. Particularly geophysical fields like meteorology, geology, seismology, oceanography, and others profited greatly from military interest. While Denmark maintained formal sovereignty See table of contents over Greenland, research activities were strongly dominated by U.S. military interests. This paper sets out to summarize the limited current state of knowledge about activities in the environmental physical sciences in Publisher(s) Greenland and their entanglement with military, geopolitical, and colonial interests of both the USA and Denmark. We describe geophysical research in CSTHA/AHSTC the Cold War in Greenland as a multidimensional colonial endeavour. In a period of decolonization after World War II, Greenland, being a Danish colony, ISSN became additionally colonized by the American military. Concurrently, in a 0829-2507 (print) period of emerging scientific internationalism, the U.S.
    [Show full text]
  • The Committee for Greenlandic Mineral Resources to the Benefit of Society
    to the benefit of greenland The Committee for Greenlandic Mineral Resources to the Benefit of Society Ilisimatusarfik, University of Greenland · P.O.Box 1061 · Manutooq 1 · DK-3905 Nuussuaq · +299 36 23 00 · [email protected] University of Copenhagen · Nørregade 10 · DK-1165 Copenhagen K · +45 35 32 26 26 · [email protected] table of contents foreword .................................................................................................................................................................4 structure .................................................................................................................................................................5 introduction .........................................................................................................................................................6 exploitation of greenlandic natural resources for the benefit of society ................8 Scenarios for Greenland’s future ............................................................................................................................ 16 Scenario 1: Status quo ........................................................................................................................................... 16 Scenario 2: Greenland becomes a natural resource exporter ................................................................................... 17 Scenario 3: Resource value is optimised through a wealth fund .............................................................................. 20 Scenario 4:
    [Show full text]
  • Volume 12, 1959
    THE ARCT IC CIRCLE THE COMMITTEE 1959 Officers President: Dr. D.C. Rose Vice -Presidents Mr. L.A.C.O. Hunt Secretary: Mr. D. Snowden Treasurer: Mr. J .E. Cleland Publications Secretary: Miss Mary Murphy Editor: Mrs .G.W. Rowley Members Mr. Harvey Blandford Mr. Welland Phipps Mr. J. Cantley Mr. A. Stevenson Mr. F..A. Cate Mr. Fraser Symington L/Cdr. J.P. Croal, R.C.N. Mr. J .5. Tener Miss Moira Dunbar Dr. R. Thorsteinsson W IC K. R. Greenaway, R.C.A.F. Dr. J.S. Willis Mr. T .H. Manning Mr. J. Wyatt Mr. Elijah Menarik CONTENTS VOLUME XlI, 1959 NO.1 Meetings of the Arctic Circle 1 Officers and Committee Members for 1959 Z Research in the Lake Hazen region of northern Ellesmere Island in the International Geophysical Year Z Anthropological work in the Eastern Arctic, 1958 13 Geomorphological studies on Southampton Island, 1958 15 Bird Sanctuaries in Southampton Island 17 Subscriptions for 1959 18 Change of Address 18 Editorial Note 18 NO. Z U.S. Navy airship flight to Ice Island T3 19 Firth River archaeological activities. 1956 and 1958 Z6 A light floatplane operation in the far northern islands, 1958 Z9 Change of Address 31 Editorial Note 31 NO.3 Meetings of the Arctic Circle 3Z The Polar Continental Shelf Project, 1959 3Z Jacobsen-McGill Arctic Research Expedition to Axel Heiberg Island 38 Biological work on Prince of Wales Island in the summer of 1958 40 Geographical Branch Survey in southern Melville Peninsula, 1959 43 Pilot of Arctic Canada 48 Subsc riptions for 1960 50 Change of Address 51 • Editorial Note 51 I NO.4 Meetings of the Arctic Circle 52 Officers and Committee Members for 1960 52 Some factors regarding northern oil and gas 53 Nauyopee.
    [Show full text]
  • Appeal to the Greenlandic and Danish Governments Not to Abolish the Uranium Zero Tolerance Policy in the Danish Realm 1
    Appeal to the Greenlandic and Danish governments not to abolish 1 the uranium zero tolerance policy in the Danish realm Nuuk and Copenhagen, 26 April 2013 The following statement has been signed by 48 NGOs The newly elected Greenlandic government and the Danish government have given notice that they intend to abolish the uranium zero tolerance policy which has been in effect in the Danish realm for twenty-five years and was carried unanimously in the Greenlandic parliament. Hence, there could be several uranium mining projects underway in Greenland in the near future. The mining project in Kuannersuit at Narsaq in Southern Greenland could alone make Greenland the fifth largest uranium exporter in the world. In addition, there are uranium deposits at Illorsuit, Puissattaq, Ivittuut and Motzfeldt Lake in Southern Greenland, Sarfartoq, Nassuttooq, Qaqqaarsuk and Attu in Western Greenland and Randbøldal and Milne Land in Eastern Greenland, and there might be deposits that have not yet been discovered. WE APPEAL to the Greenlandic and the Danish governments not to abolish the uranium zero tolerance policy, because uranium mining could contaminate the vulnerable Arctic environment and lead to nuclear proliferation. WE APPEAL to the Greenlandic and the Danish governments to prevent the combination of rare earth elements and uranium mining and to work proactively to promote renewable energies and energy efficiency in the Danish realm, the European Union and the rest of the world. WE ALSO APPEAL to the Greenlandic and the Danish governments to discourage nuclear proliferation and promote global nuclear disarmament. THE REASONS FOR OUR APPEAL ARE THE FOLLOWING: In addition to substantial chemical pollution from sulphuric acid, uranium mining leaves behind millions of tonnes of tailings containing radioactive materials.
    [Show full text]
  • Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait
    Polarforschung 74 (1-3), 129 – 160, 2004 (erschienen 2006) In Search of the Wegener Fault: Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait by J. Christopher Harrison1 Abstract: A total of 28 geological-geophysical markers are identified that lich der Bache Peninsula und Linksseitenverschiebungen am Judge-Daly- relate to the question of strike slip motions along and bordering Nares Strait. Störungssystem (70 km) und schließlich die S-, später SW-gerichtete Eight of the twelve markers, located within the Phanerozoic orogen of Kompression des Sverdrup-Beckens (100 + 35 km). Die spätere Deformation Kennedy Channel – Robeson Channel region, permit between 65 and 75 km wird auf die Rotation (entgegen dem Uhrzeigersinn) und ausweichende West- of sinistral offset on the Judge Daly Fault System (JDFS). In contrast, eight of drift eines semi-rigiden nördlichen Ellesmere-Blocks während der Kollision nine markers located in Kane Basin, Smith Sound and northern Baffin Bay mit der Grönlandplatte zurückgeführt. indicate no lateral displacement at all. Especially convincing is evidence, presented by DAMASKE & OAKEY (2006), that at least one basic dyke of Neoproterozoic age extends across Smith Sound from Inglefield Land to inshore eastern Ellesmere Island without any recognizable strike slip offset. INTRODUCTION These results confirm that no major sinistral fault exists in southern Nares Strait. It is apparent to both earth scientists and the general public To account for the absence of a Wegener Fault in most parts of Nares Strait, that the shape of both coastlines and continental margins of the present paper would locate the late Paleocene-Eocene Greenland plate boundary on an interconnected system of faults that are 1) traced through western Greenland and eastern Arctic Canada provide for a Jones Sound in the south, 2) lie between the Eurekan Orogen and the Precam- satisfactory restoration of the opposing lands.
    [Show full text]
  • Ilulissat Icefjord
    World Heritage Scanned Nomination File Name: 1149.pdf UNESCO Region: EUROPE AND NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Ilulissat Icefjord DATE OF INSCRIPTION: 7th July 2004 STATE PARTY: DENMARK CRITERIA: N (i) (iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 28th Session of the World Heritage Committee Criterion (i): The Ilulissat Icefjord is an outstanding example of a stage in the Earth’s history: the last ice age of the Quaternary Period. The ice-stream is one of the fastest (19m per day) and most active in the world. Its annual calving of over 35 cu. km of ice accounts for 10% of the production of all Greenland calf ice, more than any other glacier outside Antarctica. The glacier has been the object of scientific attention for 250 years and, along with its relative ease of accessibility, has significantly added to the understanding of ice-cap glaciology, climate change and related geomorphic processes. Criterion (iii): The combination of a huge ice sheet and a fast moving glacial ice-stream calving into a fjord covered by icebergs is a phenomenon only seen in Greenland and Antarctica. Ilulissat offers both scientists and visitors easy access for close view of the calving glacier front as it cascades down from the ice sheet and into the ice-choked fjord. The wild and highly scenic combination of rock, ice and sea, along with the dramatic sounds produced by the moving ice, combine to present a memorable natural spectacle. BRIEF DESCRIPTIONS Located on the west coast of Greenland, 250-km north of the Arctic Circle, Greenland’s Ilulissat Icefjord (40,240-ha) is the sea mouth of Sermeq Kujalleq, one of the few glaciers through which the Greenland ice cap reaches the sea.
    [Show full text]
  • Road Construction in Greenland – the Greenlandic Case
    THIS PROJECT IS BEING PART-FINANCED BY THE EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND ROAD CONSTRUCTION IN GREENLAND – THE GREENLANDIC CASE October 2007 Arne Villumsen Anders Stuhr Jørgensen Abdel Barten Janne Fritt-Rasmussen Laust Løgstrup Niels Brock Niels Hoedeman Ragnhildur Gunnarsdóttir Sara Borre Thomas Ingeman-Nielsen ROAD CONSTRUCTION IN GREENLAND – THE GREENLANDIC CASE October 2007 Arne Villumsen Anders Stuhr Jørgensen Abdel Barten Janne Fritt-Rasmussen Laust Løgstrup Niels Brock Niels Hoedeman Ragnhildur Gunnarsdóttir Sara Borre Thomas Ingeman-Nielsen Translation: J. Richard Wilson CONTENTS 1. GEOLOGY, NatURE AND CLIMate OF GREENLAND ........................... 4 1.1. GEOLOGY. 4 1.2. CLIMate . .5 1.3. Weather AND CLIMate IN AND AROUND GREENLAND . .5 1.4. Precipitation . .5 1.5. Weather- AND CLIMate REGIONS IN GREENLAND . .6 1.6. PERMAFROST. .9 1.7. Vegetation. .10 2. Relevant INFORMation FOR ROAD-BUILDING PROJECTS IN GREENLAND ........................................................................................... 11 3. EXISTING ROADS IN towns AND VILLAGES IN GREENLAND ......... 17 3.1. EXAMination OF EXISTING ROADS IN towns AND VILLAGES IN GREENLAND. 19 3.1.1. ROADS IN SISIMIUT town. .19 3.1.2. SISIMIUT Airport . 19 3.1.3. THE ROAD FROM KANGERLUSSSUAQ to THE INLAND ICE. 20 3.1.4. KANGERLUSSUAQ Airport. 21 3.2. STUDIES OF ROADS ELSEWHERE IN GREENLAND. .22 3.2.1. SOUTH GREENLAND . 23 3.2.2. ILLORSUIT. .27 4. THE SISIMIUT-KANGERLUSSUAQ ROAD ............................................ 32 4.1. GEOLOGICAL AND GEOGRAPHICAL overview. .32 4.2. SUitable Materials FOR ROAD CONSTRUCTION AND PERMAFROST. .35 4.3. GEOLOGICAL MODEL FOR THE AREA. 39 4.4. SUMMARY. .55 4.5. ENVIRONMental AND conservation ASPECTS. .55 4.6. ROUTE PROPOSAL – GENERAL ASPECTS.
    [Show full text]