Biochemical and Physiological Research on the Disposition and Fate of Ethanol in the Body

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical and Physiological Research on the Disposition and Fate of Ethanol in the Body Garriott's Medicolegal Aspects of Alcohol, 5th edition, Edited by James Garriott PhD Lawyers & Judges Publishing Co., Tuscon, AZ, 2008 Chapter 3 Biochemical and Physiological Research on the Disposition and Fate of Ethanol in the Body A.W. Jones, Ph.D., D.Sc. Synopsis . Repetitive F Drinking 3.1 Introduction G. Effect of Age on Widmark Parameters 3.2 Fate of Drugs in the Body H. Blood-Alcohol Profiles after Drinking Beer 3.3 Forensic Science Aspects of Alcohol I. Retrograde Extrapolation 3.4 Ethyl Alcohol J. Massive Ingestion of Alcohol under Real-World Conditions A. Chemistry K. Effects of Drugs on Metabolism of Ethanol . B Amounts of Alcohol Consumed L. Elimination Rates Ethanol in Alcoholics During Detoxification C. Alcoholic Beverages M. Ethanol Metabolism in Pathological States . D Analysis of Ethanol in Body Fluids N. Short-Term Fluctuations in Blood-Alcohol Profiles E. Reporting Blood Alcohol Concentration . Intravenous O vs. Oral Route of Ethanol Administration . F Water Content of Biofluids 3.8 Ethanol in Body Fluids and Tissues 3.5 Alcohol in the Body A. Water Content of Specimens A. Endogenous Ethanol . Urine B . B Absorption 1. Diuresis 1. Uptake from the gut 2. Urine-blood ratios 2. Importance of gastric emptying 3. Concentration-time profiles 3. Inhalation of ethanol vapors C. Breath 4. Absorption through skin 1. Breath alcohol physiology 5. Concentration of ethanol in the beverage consumed 2. Blood-breath ratios C. Distribution 3. Concentration-time profiles 1. Arterial-venous differences . Saliva D 2. Plasma/blood and serum/blood ratios 1. Saliva production 3. Volume of distribution 2. Saliva-blood ratios . Metabolism D 3. Concentration-time profiles 1. Oxidative metabolism E. Cerebrospinal Fluid (CSF) 2. Hepatic alcohol dehydrogenase 1. Production and origin of CSF 3. Inhibition of alcohol dehydrogenase 2. Concentration-time profiles 4. Gastric alcohol dehydrogenase . F Tears 5. Hepatic aldehyde dehydrogenase G. Sweat 6. Microsomal oxidative enzymes CYP2E1 H. Mother’s Milk 7. Non-oxidative metabolism of ethanol I. Brain and Body Organs 3.6 Pharmacokinetics of Ethanol J. Vitreous Humor A. First-Order Kinetics K. Hair . Zero-Order B Kinetics 3.9 Concluding Remarks C. Non-Linear Saturation Kinetics References . D The Widmark Equation E. Updating the Widmark Equation 1. Body mass index 2. Total body water 3.1 Introduction . Pharmacokinetics F of Ethanol Metabolites Few if any drugs have been studied as extensively and over G. Physiological Range of Ethanol Elimination Rates so many years as ethanol or ethyl alcohol (CH CH OH), the 3.7 Characteristics of Blood-Alcohol Curves 3 2 A. Ingestion of Alcohol on an Empty Stomach principal psychoactive substance in all alcoholic beverages. Inter- B and Intra-Individual Variations Much has already been written and published about the ab- C. Factors Influencing C and t max max sorption, distribution and metabolism of man’s favourite D. Effects of Food in the Stomach E. Gender Differences drug, both from the viewpoint of forensic science and legal 47 48 Garriott’s Medicolegal Aspects of Alcohol medicine as well as substance abuse and biomedical alcohol cesses (Benet et al., 1990; Kalant et al., 2006; Waller et al., research. Knowledge about the disposition and fate of ethanol 2005). Knowledge about the disposition and fate of ethanol in the body is important in forensic science and toxicology be- in the body predates that of all other drugs and xenobiotics cause of the role played by over-consumption of alcohol and thanks mainly to the early availability of a reliable method drunkenness in many crimes of violence, sudden deaths and for quantitative analysis of ethanol in small volumes of blood particularly in connection with police investigations of drunk- (Widmark, 1922). This involved a micro-diffusion method, en driving (Doll et al., 1994; Hume and Fitzgerald, 1983). which utilized only 100 µL of fingertip capillary blood, thus Historically, the first scientific efforts to interpret blood making it possible to take repetitive blood samples and to alcohol concentration (BAC) in relation to the quantities plot the concentration-time profiles of ethanol (Widmark, consumed and the detrimental effects on body functioning 1922; Widmark, 1932). can be traced to the pioneer work and publications of Pro- The word pharmacokinetics was coined in 1953 by a fessor Erik MP Widmark (1889-1945) of Sweden (Widmark, German scientist Friedrich Hartmut Dost (1910-1985) and 1920). Widmark’s research was done during the 1920-1930s is concerned with the way that drugs and their metabolites and was summarized in his famous German monograph, are absorbed, distributed and eliminated from the body which first appeared in print in 1932 and was translated into and representation of these processes in quantitative terms English 50 years later (Widmark, 1932; Widmark, 1981; (Dost, 1953; Gabrielsson and Weiner, 2000; Wagner, 1993). Andréasson and Jones, 1996). Kinetics comes from the Greek word kinesis, which means Information about the absorption, distribution, metabo- motion; so pharmacokinetics has to do with the movement lism and excretion of ethanol can be obtained from various or time-course of a drug (Greek=pharmacon) in the body textbooks and periodicals devoted to biomedical alcohol re- (Kalant et al., 2006; Wagner, 1991). Monitoring the concen- search (Wilkinson, 1980; Von Wartburg, 1989; Batt, 1989; tration (or amount) of a drug in blood or other body fluid Kalant, 1996b; Lands, 1998; Matsumoto and Fukui, 2002; and showing how the concentrations change as a function Ramachandani et al., 2001b). The articles by Kalant (1971; of time forms the basis of clinical pharmacokinetics and 1996b; 2005) are particularly useful and give a detailed in- therapeutic drug monitoring (Greenblatt and Koch-Weser, sight into the uptake, distribution and elimination of alcohol 1975a,b; Rowland and Tozer, 1995). in the human body. Comprehensive Handbook of Alcohol Related Pathology was the title of a three volume set of books edited by Preedy and Watson (2005). This handbook contained an impressive compilation of information on all aspects of biomedical alcohol research. Journals specializ- ing in clinical pharmacology and toxicology occasionally publish articles dealing with the metabolism and pharma- cokinetics of ethanol and adverse drug-alcohol interactions of interest in certain forensic investigations (Holford, 1987; Fraser, 1997; Norberg et al., 2003). The present chapter combines and updates two separate chapters published in the fourth edition of “Medical-Legal Aspects of Alcohol.” One chapter dealt with biochemistry and physiology of ethanol metabolism (Jones 2003a) and the other covered the basic principles and concepts underly- ing studies on the disposition and fate of ethanol in the body (Jones, 2003b). 3.2 Fate of Drugs in the Body Disposition relates to what happens to a drug after it enters Figure 3.1 Definitions and distinction between the body and therefore starts with absorption and other pre- pharmacokinetics and pharmacodynamics, both of systemic processes followed by the events occurring after which are key concepts in studies of the disposition the drug enters the blood circulation, particularly its distri- and fate of drugs in the body. bution and elimination via metabolism and excretion pro- 3. Disposition and Fate of Ethanol in the Body 49 The subject of pharmacodynamics is concerned with ments raised during the prosecution and defense of drunken the physiological effects of drugs and their mechanism of drivers (Gullberg, 2004; Jones, 1991b; Breen et al., 1998; action in the body (Buxton, 2006). This entails investiga- Wigmore and Wilkie, 2002). tions of how a drug treatment influences normal body func- The science and law of drunken-driving litigation has tioning or results in a change in performance and behavior been extensively covered from the perspective of legislation of the patient. Dose-response and concentration-effect rela- in the United States (Erwin, 1991; Cohen and Green, 1995; tionships, risk of toxicity and overdose and the development Fitzgerald, 2006; Bartell and Imobersteg, 2007). These of tolerance and dependence also fall under the rubric of books often run into several volumes and include regular pharmacodynamics (Ross, 1990; Buxton, 2006). The terms, updates and supplements dwelling on the interface between pharmacokinetics and pharmacodynamics, are defined and science and law. The target readers are mainly lawyers and distinguished in Figure 3.1. Detailed knowledge of the dy- law firms that specialize in defending drunken drivers and namics of drug action is of major importance for a proper therefore need to be kept abreast of developments in case understanding of the forensic pharmacology of ethanol and law as well as the pros and cons of a multitude of science- other abused drugs. related defense arguments (Lewis, 1986b; Jones, 1991b; Ferner and Norman, 1996; Langford et al., 1999; Gullberg, 3.3 Forensic Science Aspects of Alcohol 2004). Books by Rockerbie (1999) and Drummer (2001) Medical and legal aspects of alcohol, which are the subjects also focused on the forensic pharmacology of ethanol and of this book, are closely related to excessive use of alco- other abused drugs. hol and the many negative consequences associated with Forensic alcohol research has developed alongside binge drinking and drunkenness (Brewer and Swahn, 2005; biomedical alcohol research and is tightly linked to the dis- MacMillan and Wathen, 2005; Cherpitel, 2007). A person’s position and fate of alcohol in the body and the analytical ability to perform skilled tasks, such as driving a motor ve- methods used to determine ethanol in body fluids such as hicle safely, is compromised as blood alcohol concentration blood, plasma, breath, saliva and urine (Jones, 2000a; Jones, increases (Hindmarch et al., 1992). Road traffic crash sta- 2006). Some studies are undertaken for the sole purpose of tistics show that 30-50% of all deaths on the roads in U.S. evaluating the strengths and weaknesses of a plethora of de- states and European nations are alcohol-related and involve fense arguments raised to cast a doubt on evidence used dur- a drunken driver (Voas et al., 2006).
Recommended publications
  • Identification of the Enzymatic Mechanism of Nitroglycerin Bioactivation
    Identification of the enzymatic mechanism of nitroglycerin bioactivation Zhiqiang Chen*†, Jian Zhang†, and Jonathan S. Stamler*†‡§ *Howard Hughes Medical Institute, Departments of †Medicine and §Biochemistry, Duke University Medical Center, Durham, NC 27710 Communicated by Irwin Fridovich, Duke University Medical Center, Durham, NC, April 15, 2002 (received for review March 26, 2002) Nitroglycerin (glyceryl trinitrate, GTN), originally manufactured by synthesized according to ref. 17 and purified by TLC. 1,2-GDN Alfred Nobel, has been used to treat angina and heart failure for and 1,3-GDN was prepared by hydrolysis of GTN and purified over 130 years. However, the molecular mechanism of GTN bio- by TLC (18). [2-14C] GTN (55 mCi͞mmol) was obtained from transformation has remained a mystery and it is not well under- American Radiolabeled Chemicals (St. Louis). Disulfiram, chlo- stood why ‘‘tolerance’’ (i.e., loss of clinical efficacy) manifests over ral hydrate, cyanamide, acetaldehyde, phenylephrine, sodium time. Here we purify a nitrate reductase that specifically catalyzes nitroprusside (SNP), Q-Sepharose, DEAE-cellulose, and butyl- the formation of 1,2-glyceryl dinitrate and nitrite from GTN, lead- Sepharose were obtained from Sigma. Hydroxyapatite and ing to production of cGMP and relaxation of vascular smooth protease inhibitor (mixture set III) were from CalBiochem. muscle both in vitro and in vivo, and we identify it as mitochondrial The cGMP assay (125I) kit was purchased from Amersham aldehyde dehydrogenase (mtALDH). We also show that mtALDH is Pharmacia. inhibited in blood vessels made tolerant by GTN. These results demonstrate that the biotransformation of GTN occurs predomi- Enzyme Purification. Mouse RAW264.7 cells (50-g pellet; Ϸ1010 nantly in mitochondria through a novel reductase action of cells) were disrupted by sonication in 30 mM phosphate buffer mtALDH and suggest that nitrite is an obligate intermediate in (KPi), pH 7.5 containing 1 mM DTT, 0.5 mM EDTA, and generation of NO bioactivity.
    [Show full text]
  • Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Addendum CSS 2021
    Addendum regarding: The 2021 Certified Specialist of Spirits Study Guide, as published by the Society of Wine Educators Note: This document outlines the substantive changes to the 2021 Study Guide as compared to the 2020 version of the CSW Study Guide. All page numbers reference the 2020 version. Please note that in addition to the information noted below, the tables concerning top-selling brands of particular types of spirits have been updated to reflect the most current statistics available. Page 10: The information regarding congeners was expanded to include the following: Congeners: The preceding explanation of distillation has been simplified by using the example of a solution made of only ethyl alcohol and water. However, many other compounds are created during fermentation and as a result, there are other compounds besides water and alcohol present in a fermented solution. Known as congeners, these compounds are responsible for much of the aroma and flavor—besides that of pure ethyl alcohol and water—of a fermented beverage or a distilled spirit. Specific congeners include the various acids, esters, aldehydes, fusel oils, and alcohols (other than ethanol) that are developed during fermentation. During distillation, congeners may vaporize and blend in with the ethanol–water vapors; however, each specific congener will react differently based on three factors: boiling point, solubility (in ethanol and water), and specific gravity. In addition, the heat of the distillation process—via a series of chemical changes known as pyrolysis—may cause some compounds to change form, creating new and different congeners that may be passed onto the finished product.
    [Show full text]
  • Safer Cocktail for an Ethanol/Water/Ammonia Solvent
    L A S C P LSC in Practice C P O C L Safer Cocktail for an Ethanol/Water/ K T I A I C Ammonia Solvent Mixture L S A Problem T A laboratory had been under pressure to move towards Using this mixture, the sample uptake capacity of I the newer generation of safer liquid scintillation ULTIMA-Flo AP, ULTIMA-Flo M and ULTIMA Gold O cocktails. Unfortunately, the sample composition of LLT (PerkinElmer 6013599, 6013579 and 6013377, one of their targets kept giving the researchers problems. respectively) at 20 °C was determined and N Before the lead researcher contacted PerkinElmer, the results were: they had tried PerkinElmer’s Opti-Fluor®, ULTIMA ULTIMA-Flo AP 4.00 mL in 10 mL cocktail N Gold LLT, and ULTIMA Gold XR. All of the safer O ™ ULTIMA-Flo M 4.25 mL in 10 mL cocktail cocktails could incorporate each of the constituents T as indicated by their sample capacity graphs. ULTIMA Gold LLT 4.25 mL in 10 mL cocktail E The problematic sample was an extraction solvent From these results, we observed that it was possible consisting of 900 mL ethanol, 50 mL ammonium to get 4.0 mL of the sample into all of these cocktails. hydroxide, 500 mL water and an enzyme containing In addition, we determined that it was not possible to 14C. The mixture had a pH in the range of 10 to 11. get 4 mL sample into 7 mL of any of these cocktails. To complete this work, we also checked for lumines- Discussion cence using 4 mL of sample in 10 mL of each cocktail.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Liquichek Ethanol/Ammonia Control SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control
    Bio-Rad Laboratories SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control A liquid control used to monitor the precision of Ethanol and Ammonia test procedures in the clinical laboratory. • Liquid • Normal, elevated and toxic concentrations of Ammonia • 2 year shelf life at 2–8°C • 20 day open-vial stability at 2–8°C Analytes Ammonia Ethanol Refer to the package insert of currently available lots for specific analyte and stability claims Ordering Information Cat # Description 544 Level 1 ..................................................................................... 6 x 3 mL 545 Level 2 ..................................................................................... 6 x 3 mL 546 Level 3 ..................................................................................... 6 x 3 mL 545X Trilevel MiniPak (1 of each level) .................................................................. 3 x 3 mL EQAS Independent QC Unity An independent, external assessment of laboratory Ongoing, proactive, unbiased daily QC that QC Data Management tools that help you create performance in comparison to your peers. helps identify errors as they occur or begin to trend. a strategy to reduce risk and streamline QC workflow. QCNet.com/eqas QCNet.com/independentqc QCNet.com/datamanagement Bio-Rad For further information, please contact the Bio-Rad office nearest you Laboratories, Inc. or visit our website at www.bio-rad.com/qualitycontrol Clinical Website www.bio-rad.com/diagnostics Australia
    [Show full text]
  • Cellulosic Ethanol Production Via Aqueous Ammonia Soaking Pretreatment and Simultaneous Saccharification and Fermentation Asli Isci Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Cellulosic ethanol production via aqueous ammonia soaking pretreatment and simultaneous saccharification and fermentation Asli Isci Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Isci, Asli, "Cellulosic ethanol production via aqueous ammonia soaking pretreatment and simultaneous saccharification and fermentation" (2008). Retrospective Theses and Dissertations. 15695. https://lib.dr.iastate.edu/rtd/15695 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Cellulosic ethanol production via aqueous ammonia soaking pretreatment and simultaneous saccharification and fermentation by Asli Isci A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Agricultural and Biosystems Engineering; Biorenewable Resources and Technology Program of Study Committee: Robert P. Anex, Major Professor D. Raj Raman Anthony L. Pometto III. Kenneth J. Moore Robert C. Brown Iowa State University Ames, Iowa
    [Show full text]
  • Dehydrogenation of Ethanol to Acetaldehyde Over Different Metals Supported on Carbon Catalysts
    catalysts Article Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts Jeerati Ob-eye , Piyasan Praserthdam and Bunjerd Jongsomjit * Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] (J.O.-e.); [email protected] (P.P.) * Correspondence: [email protected]; Tel.: +66-2-218-6874 Received: 29 November 2018; Accepted: 27 December 2018; Published: 9 January 2019 Abstract: Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation of distinct chemicals, such as ethylene, diethyl ether, acetaldehyde, and ethyl acetate, starting from ethanol as a raw material. In this paper, ethanol dehydrogenation to acetaldehyde in a one-step reaction was investigated by using commercial activated carbon with four different metal-doped catalysts. The reaction was conducted in a packed-bed micro-tubular reactor under a temperature range of 250–400 ◦C. The best results were found by using the copper doped on an activated carbon catalyst. Under this specified condition, ethanol conversion of 65.3% with acetaldehyde selectivity of 96.3% at 350 ◦C was achieved. This was probably due to the optimal acidity of copper doped on the activated carbon catalyst, as proven by the temperature-programmed desorption of ammonia (NH3-TPD). In addition, the other three catalyst samples (activated carbon, ceria, and cobalt doped on activated carbon) also favored high selectivity to acetaldehyde (>90%).
    [Show full text]
  • Computer Simulation Applied to Studying Continuous Spirit Distillation and Product Quality Control
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food Control 22 (2011) 1592e1603 Contents lists available at ScienceDirect Food Control journal homepage: www.elsevier.com/locate/foodcont Computer simulation applied to studying continuous spirit distillation and product quality control Fabio R.M. Batista, Antonio J.A. Meirelles* Laboratory EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas e UNICAMP, Campinas, Brazil article info abstract Article history: This work aims to study continuous spirit distillation by computational simulation, presenting some Received 7 June 2010 strategies of process control to regulate the volatile content. The commercial simulator Aspen (Plus and Received in revised form dynamics) was selected. A standard solution containing ethanol, water and 10 minor components rep- 2 March 2011 resented the wine to be distilled. A careful investigation of the vaporeliquid equilibrium was performed Accepted 8 March 2011 for the simulation of two different industrial plants. The simulation procedure was validated against experimental results collected from an industrial plant for bioethanol distillation. The simulations were Keywords: conducted with and without the presence of a degassing system, in order to evaluate the efficiency of Spirits fi Distillation this system in the control of the volatile content. To improve the ef ciency of the degassing system, fl Simulation a control loop based on a feedback controller was developed. The results showed that re ux ratio and Aspen Plus product flow rate have an important influence on the spirit composition. High reflux ratios and spirit Degassing flow rates allow for better control of spirit contamination.
    [Show full text]
  • Building a Home Distillation Apparatus
    BUILDING A HOME DISTILLATION APPARATUS A Step by Step Guide Building a Home Distillation Apparatus i BUILDING A HOME DISTILLATION APPARATUS Foreword The pages that follow contain a step-by-step guide to building a relatively sophisticated distillation apparatus from commonly available materials, using simple tools, and at a cost of under $100 USD. The information contained on this site is directed at anyone who may want to know more about the subject: students, hobbyists, tinkers, pure water enthusiasts, survivors, the curious, and perhaps even amateur wine and beer makers. Designing and building this apparatus is the only subject of this manual. You will find that it confines itself solely to those areas. It does not enter into the domains of fermentation, recipes for making mash, beer, wine or any other spirits. These areas are covered in detail in other readily available books and numerous web sites. The site contains two separate design plans for the stills. And while both can be used for a number of distillation tasks, it should be recognized that their designs have been optimized for the task of separating ethyl alcohol from a water-based mixture. Having said that, remember that the real purpose of this site is to educate and inform those of you who are interested in this subject. It is not to be construed in any fashion as an encouragement to break the law. If you believe the law is incorrect, please take the time to contact your representatives in government, cast your vote at the polls, write newsletters to the media, and in general, try to make the changes in a legal and democratic manner.
    [Show full text]
  • Alcohol Hangover- Its Effects on Human Body: Review
    DOI: 10.26717/BJSTR.2018.04.001112 Loveleen Bajaj. Biomed J Sci & Tech Res ISSN: 2574-1241 Mini Review Open Access Alcohol Hangover- its Effects on Human Body: Review Loveleen Bajaj* and Ranjeet Singh Department of Food science & technology, Khalsa College, India Received: May 20 2018; Published: May 25, 2018 *Corresponding author: Loveleen Bajaj, Department of Food science & technology, Khalsa College, Amritsar, India Abstract A hangover is a syndrome of physical and mental symptoms that occurs after 8 to 16 hours of consumption with a zero level of alcohol. The objective of the study is to explore effects of the alcohol hangover. The impairing effects on memory functioning such as delayed recall, response to battle infection leading to unpleasant effects include nausea, vomiting, dizziness, fatigue and hormonal imbalance in the body. Dehydrationirritation, lack is ofbelieved concentration to be the and cause after ofacute hangover alcohol as intoxication. it leads to anti-diuresisNormally the state body in might the body.use cytokines The most to compelling trigger fever theory of inflammatory that, at the moment, is that hangover results from a buildup of acetaldehyde, a toxic compound in the body. The congener amount in the particular alcoholic beverage is believed to be increase the extent of severity of hangover. Methanol, found in highest levels in whiskey and red wine has received a larger amount of blame for showing that it can linger in the body after all alcohol has been eliminated, perhaps accounting for the enduring effects of hangover. Abbreviations: BAC: Blood Alcohol Concentration; AW: Alcohol Withdrawal; FASD: Fetal Alcohol Spectrum Disorders Introduction Anes and colleagues revealed that half of the interrogated workers during hangover were at the work.
    [Show full text]
  • Sudan University of Science and Technology College of Graduate
    Sudan University of Science and Technology College of Graduate Studies Detection of CDX2 Tumor Marker and Human Papilloma Virus in Esophageal Tumors اﻟﻜﺸﻒ ﻋﻦ اﻟﻮاﺳﻤﺔ اﻟﻮرﻣﯿﺔ CDX2 و ﻓﯿﺮوس اﻟﻮرم اﻟﺤﻠﯿﻤﻲ اﻟﺒﺸﺮي ﻓﻰ اورام اﻟﻤﺮيء A dissertation submitted for partial fulfillment for the requirement for M.Sc degree in Medical laboratory Science (Histopathology and cytology) Submitted by: Eslam Mohamed khoghali Ahmed B.SC (honors) in chemical pathology and histopathology – National Ribat University (2010) Supervised by: Dr. Mohammed Siddig Abdelaziz 2014 ﻗﺎل ﷲ ﺗﻌﺎﻟﻰ ۖ◌ ٰ◌ ﺻدق ﷲ اﻟﻌظﯾم ﺳورة اﻟﺗوﺑﺔ اﻵﯾﺔ 105 Dedication To my father…. My mother…. My brothers…. My friends… Eslam, 2014 Acknowledgement All great thanks are firstly to Allah. I would like to send thanks to my supervisor Dr. Mohamed Siddige Abdalaziz for his guidance and continuous assistance. Thanks are also extend to staff of histopathology and cytology in Ibn-Seina hospital and to members of histopathology and cytology department in Sudan University for science and technology for providing me materials and equipment, finally thanks to every one helped me. Eslam, 2014 Abstract This is a descriptive retrospective study conducted at Ibn Seina hospital and Sudan University of Science and Technology during the period from April 2014 to October 2014. The study aimed at detecting CDX2 and association of Human Papilloma Virus (HPV) in esophageal tumor among Sudanese patients using immune-histochemistry and polymerase chain reaction. Samples from 30 patients previously diagnosed with esophageal tumor (20 with esophageal cancer and 10 with benign). Their ages ranging between 8 to 82 years with mean age 37. From each block two slides were cut one for CDX2 and other for HPV detection, also 10µ was cut from each block in eppendorf tube for detection of HPV type 18 gene using PCR.SPSS version 16 computer program was used to analyze the data.
    [Show full text]