Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling BASIC RESEARCH www.jasn.org Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling † ‡ | Rannar Airik,* Gisela G. Slaats, Zhi Guo, Anna-Carina Weiss,§ Naheed Khan, †† ‡‡ Amiya Ghosh,¶ Toby W. Hurd,** Simon Bekker-Jensen, Jacob M. Schrøder, ‡ ‡‡ Steve J. Elledge, Jens S. Andersen, Andreas Kispert,§ Maddalena Castelli,§§ † || Alessandra Boletta,§§ Rachel H. Giles, and Friedhelm Hildebrandt* *Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts; †Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; ‡Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts; §Institute of Molecular Biology, Hannover Medical School, Hannover, Germany; |Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan; ¶Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; **Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom; ††Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; ‡‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; §§Division of Genetics and Cell Biology, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy; and ||Howard Hughes Medical Institute, Chevy Chase, Maryland ABSTRACT Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8gt/gt mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to pro- gressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8gt/gt-derived cells, characterized by elevated levels of gH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8gt/gt mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specificdisease mechanisms. J Am Soc Nephrol 25: 2573–2583, 2014. doi: 10.1681/ASN.2013050565 Nephronophthisis-related ciliopathies (NPHP-RCs) Received May 31, 2013. Accepted February 25, 2014. (Online Mendelian Inheritance in Man [OMIM] Published online ahead of print. Publication date available at 256100) are heterogenetic autosomal recessive dis- www.jasn.org. orders that feature nephronophthisis, a degeneration Correspondence: Dr. Friedhelm Hildebrandt, Division of Ne- 1 . disorder of the kidney. To date, mutations in 20 phrology, Boston Children’s Hospital, 300 Longwood Avenue, NPHP-RC genes have been identified2 that manifest HU319, Boston MA 02115. Email: Friedhelm.Hildebrandt@ nephronophthisis as part of their pathogenesis in the childrens.harvard.edu context of ciliopathy syndromes such as Senior–Loken Copyright © 2014 by the American Society of Nephrology J Am Soc Nephrol 25: 2573–2583, 2014 ISSN : 1046-6673/2511-2573 2573 BASIC RESEARCH www.jasn.org syndrome (OMIM 266900), Bardet–Biedl syndrome (BBS; mouse embryonic fibroblasts (Supplemental Figure 1C). Im- OMIM 209900), Joubert syndrome (OMIM 213300), and orofa- munoblotting (Supplemental Figure 1D) confirmed the ab- ciodigital syndrome (OFD; OMIM 311200). sence of Sdccag8 protein from lung and kidney lysates of We recently showed that mutations in serologically defined Sdccag8gt/gt mice. Two isoforms of the Sdccag8 protein (78 colon cancer antigen 8 (SDCCAG8) cause nephronophthisis kD and 83 kD) were detected in Sdccag8wt/gt kidneys (Supple- type 10, characterized by retinal and renal degeneration, mild mental Figure 1D).3 Sdccag8gt/gt mice were present at Mende- intellectual disability, obesity, hypogonadism, and recurrent re- lian ratios at weaning age, indicating that the Sdccag8 gene-trap spiratory infections in humans.3,4 Because several of the clinical allele does not cause embryonic or early postnatal lethality. features are shared with BBS, with the exception of the absence of polydactyly, individuals with SDCCAG8 mutations are also con- Sdccag8 Is Expressed in Kidney and Lung Epithelia sidered as part of the BBS spectrum.3,4 SDCCAG8 encodes a Mutations in SDCCAG8 were previously reported to affect two coiled-coil domain protein with no additional conserved do- parenchymal organs in humans, the kidneys and the lungs, caus- mains.5 The protein localizes to the centrioles throughout the ing nephronophthisis and, infrequently, bronchiectasis.3,4 To cell cycle,3,5 to the basal body of cilia, and also to the spermato- understand the underlying pathogenetic mechanisms, we first cytes in the rat testis.3,6 Immunohistochemical analysis of retina examined the expression pattern of Sdccag8 in these organs by has shown SDCCAG8 colocalization with retinitis pigmentosa taking advantage of the lacZ cassette in the Sdccag8 gene-trap allele. protein 1 (RP1), retinitis pigmentosa GTPase regulator (RPGR), b-Galactosidase activity staining of wild-type and Sdccag8wt/gt and retinitis pigmentosa GTPase regulator interacting protein 1 whole urogenital systems at E16.5 showed strong Sdccag8 (RPGRIP1) in the connecting cilium of the photoreceptors.3,7 expression in the corticomedullary region of the Sdccag8wt/gt Biochemical studies have demonstrated SDCCAG8 homodime- kidneys (Figure 1A) and no staining in the wild-type control rization and direct interaction with two ciliopathy proteins: (1) (Supplemental Figure 2A). Examination of the X-gal–stained OFD1 and (2) family with sequence similarity 161, member A kidney sections at higher resolution showed staining in the (FAM161A).3,5,8 Despite the data on SDCCAG8 protein locali- renal tubule epithelia in a pattern compatible with the distal zation and its interaction partners, the precise molecular func- convoluted tubule (DCT) and cortical collecting ducts (CCDs) tion at centrosomes and cilia remains unknown. (Figure 1B). Sdccag8 expression in the collecting ducts was also Werecentlydemonstrated that mutations inthe gene encoding observed in postnatal P14 and P100 kidneys by in situ hybrid- the centrosomal protein CEP164 cause NPHP-RC whose path- ization (Figure 1, C and D), whereas the sense probe showed no ogenesis involves defects in the DNA damage response (DDR) staining (Supplemental Figure 2, B and C). In the lung, X-gal signaling pathway.9 The same study also implicated SDCCAG8 in staining in Sdccag8wt/gt mice at E16.5 showed Sdccag8 expres- this pathway through its colocalization with CEP164 and Tat- sion in the epithelium of the developing bronchi and bron- interactive protein 60 in the cell nucleus.9 Indeed, there is a wealth chioles (Figure 1E). Examination of lung sections at higher of evidence in the literature that implicates centrosomal protein resolution confirmed this observation and further showed 2 function in the regulation of genome stability, including the that the blue lacZ+ cells were interspersed with lacZ cells in NPHP-RC proteins AHI1,10 NIMA-related kinase 8 (NEK8/ the bronchioles (Figure 1F). No b-galactosidase staining was NPHP9),11 and the SDCCAG8-interacting protein OFD1.12,13 detected in the epithelial cells of alveoli—the terminal ends of To study the role of Sdccag8 in the pathogenesis of NPHP- the airways, which do not have cilia (Figure 1F, delineated with RC, we generated a transgenic Sdccag8gt/gt mouse model. We dashed line). To determine whether the lacZ+ cells in the lung demonstrate that Sdccag8gt/gt mice recapitulate aspects of the epithelium represent the multiciliated cells, we performed im- human disease phenotype. Furthermore, we show that munofluorescence analysis on E16.5 CETN2-GFP mouse lung Sdccag8 is involved in cell cycle S-phase progression and its sections using the cilia marker anti-polyglutamylated tubulin loss leads to replication stress–related DDR activation. antibody and anti-SDCCAG8 antibody. CETN2-GFP fusion protein localizes to centrioles,14 which are presented in hun- dreds of copies in the multiciliated cells of the respiratory RESULTS epithelium.15 Because centriologenesis precedes multiciliogen- esis, almost no cilia were detected in E16.5 distal bronchioles Generation of Sdccag8gt/gt Mice (Supplemental Figure 2, D–F), as previously described.16 To investigate the function of the Sdccag8 gene, the embryonic However, we found that the CETN2-GFP–positive structures stem cell line OST40418 containing the gene-trap cassette (Figure 1G) in the progenitors of the multiciliated cells fully VICTR24 in the intronic region downstream of Sdccag8 exon overlapped with SDCCAG8 antibody staining in E16.5 bron- 1 (Supplemental Figure 1A) was microinjected and founders chioles (Figure 1, H and
Recommended publications
  • Educational Paper Ciliopathies
    Eur J Pediatr (2012) 171:1285–1300 DOI 10.1007/s00431-011-1553-z REVIEW Educational paper Ciliopathies Carsten Bergmann Received: 11 June 2011 /Accepted: 3 August 2011 /Published online: 7 September 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Cilia are antenna-like organelles found on the (NPHP) . Ivemark syndrome . Meckel syndrome (MKS) . surface of most cells. They transduce molecular signals Joubert syndrome (JBTS) . Bardet–Biedl syndrome (BBS) . and facilitate interactions between cells and their Alstrom syndrome . Short-rib polydactyly syndromes . environment. Ciliary dysfunction has been shown to Jeune syndrome (ATD) . Ellis-van Crefeld syndrome (EVC) . underlie a broad range of overlapping, clinically and Sensenbrenner syndrome . Primary ciliary dyskinesia genetically heterogeneous phenotypes, collectively (Kartagener syndrome) . von Hippel-Lindau (VHL) . termed ciliopathies. Literally, all organs can be affected. Tuberous sclerosis (TSC) . Oligogenic inheritance . Modifier. Frequent cilia-related manifestations are (poly)cystic Mutational load kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous Introduction system, occurring either isolated or as part of syn- dromes. Characterization of ciliopathies and the decisive Defective cellular organelles such as mitochondria, perox- role of primary cilia in signal transduction and cell isomes, and lysosomes are well-known
    [Show full text]
  • SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling
    SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling Airik, Rannar; Schueler, Markus; Airik, Merlin; Cho, Jang; Ulanowicz, Kelsey A; Porath, Jonathan D; Hurd, Toby W; Bekker-Jensen, Simon; Schrøder, Jacob Morville; Andersen, Jens S.; Hildebrandt, Friedhelm Published in: P L o S One DOI: 10.1371/journal.pone.0156081 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Airik, R., Schueler, M., Airik, M., Cho, J., Ulanowicz, K. A., Porath, J. D., Hurd, T. W., Bekker-Jensen, S., Schrøder, J. M., Andersen, J. S., & Hildebrandt, F. (2016). SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. P L o S One, 11(5), [e0156081]. https://doi.org/10.1371/journal.pone.0156081 Download date: 04. Oct. 2021 RESEARCH ARTICLE SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling Rannar Airik1¤‡*, Markus Schueler1, Merlin Airik1, Jang Cho1, Kelsey A. Ulanowicz2, Jonathan D. Porath1, Toby W. Hurd3, Simon Bekker-Jensen4, Jacob M. Schrøder5, Jens S. Andersen5, Friedhelm Hildebrandt1,6‡* 1 Department of Medicine, Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America, 2 Department of Pediatrics, Division of Nephrology, Children’s Hospital of a11111 Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America, 3 Medical Research Council Human Genetics Unit, Institute of
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Ciliopathies Gene Panel
    Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases.
    [Show full text]
  • Renal Cystic Disorders Infosheet 6-14-19
    Next Generation Sequencing Panel for Renal Cystic Disorders Clinical Features: Renal cystic diseases are a genetically heterogeneous group of conditions characterized By isolated renal disease or renal cysts in conjunction with extrarenal features (1). Age of onset of renal cystic disease ranges from neonatal to adult onset. Common features of renal cystic diseases include renal insufficiency and progression to end stage renal disease (ESRD). Identification of the genetic etiology of renal cystic disease can aid in appropriate clinical management of the affected patient. Our Renal Cystic Disorders Panel includes sequence and deletion/duplicaton analysis of all 79 genes listed below. Renal Cystic Disorders Sequencing Panel AHI1 BMPER HNF1B NEK8 TCTN3 WDPCP ANKS6 C5orf42 IFT27 NOTCH2 TFAP2A WDR19 ARL13B CC2D2A IFT140 NPHP1 TMEM107 XPNPEP3 ARL6 CDC73 IFT172 NPHP3 TMEM138 ZNF423 B9D1 CEP104 INPP5E NPHP4 TMEM216 B9D2 CEP120 INVS OFD1 TMEM231 BBIP1 CEP164 IQCB1 PDE6D TMEM237 BBS1 CEP290 JAG1 PKD2 TMEM67 BBS10 CEP41 KIAA0556 PKHD1 TRIM32 BBS12 CEP83 KIAA0586 REN TSC1 BBS2 CRB2 KIF14 RPGRIP1L TSC2 BBS4 CSPP1 KIF7 SALL1 TTC21B BBS5 DCDC2 LZTFL1 SDCCAG8 TTC8 BBS7 GLIS2 MKKS TCTN1 UMOD BBS9 GLIS3 MKS1 TCTN2 VHL Disorder Genes Inheritance Clinical features/molecular genetics Bardet Biedl ARL6 AR Bardet-Biedl syndrome (BBS) is an autosomal syndrome BBS1 recessive multi-systemic ciliopathy characterized By BBS10 retinal dystrophy, oBesity, postaxial polydactyly, BBS12 leaning difficulties, renal involvement and BBS2 genitourinary abnormalities (2). Visual prognosis is BBS4 poor, and the mean age of legal Blindness is 15.5 BBS5 years. Birth weight is typically normal But significant BBS7 weight gain Begins within the first year. Renal BBS9 disease is a major cause of morBidity and mortality.
    [Show full text]
  • Blueprint Genetics Nephronophthisis Panel
    Nephronophthisis Panel Test code: KI1901 Is a 20 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of nephronopthisis. The genes on this panel are included in the comprehensive Ciliopathy Panel. About Nephronophthisis Nephronophthisis (NPHP) is a heterogenous group of autosomal recessive cystic kidney disorders that represents the most frequent genetic cause of chronic and end-stage renal disease (ESRD) in children and young adults. It is characterized by chronic tubulointerstitial nephritis that progress to ESRD during the second decade (juvenile form) or before the age of five years (infantile form). Late-onset form of nephronophthisis is rare. The estimated prevalence is 1:100,000 individuals. NPHP may be seen with other clinical manifestations, such as liver fibrosis, situs inversus, cardiac malformations, intellectual deficiency, cerebellar ataxia, or bone anomalies. When NPHP is associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation it is known as Joubert syndrome. When nephronophthisis is combined with retinitis pigmentosa, the disorder is known as Senior-Loken syndrome. In combination with multiple developmental and neurologic abnormalities, the disorder is often known as Meckel syndrome. Because most NPHP gene products localize to the cilium or its associated structures, nephronophthisis and the related syndromes have been termed ciliopathies. Availability 4 weeks Gene Set Description Genes in the Nephronophthisis Panel and their
    [Show full text]
  • Selective Loss of RPGRIP1-Dependent Ciliary Targeting of NPHP4, RPGR and SDCCAG8 Underlies the Degeneration of Photoreceptor Neurons
    Citation: Cell Death and Disease (2012) 3, e355; doi:10.1038/cddis.2012.96 & 2012 Macmillan Publishers Limited All rights reserved 2041-4889/12 www.nature.com/cddis Selective loss of RPGRIP1-dependent ciliary targeting of NPHP4, RPGR and SDCCAG8 underlies the degeneration of photoreceptor neurons H Patil1,3, N Tserentsoodol1,3, A Saha1, Y Hao1, M Webb1 and PA Ferreira*,1,2 The retinitis pigmentosa GTPase regulator (RPGR) and nephrocystin-4 (NPHP4) comprise two key partners of the assembly complex of the RPGR-interacting protein 1 (RPGRIP1). Mutations in RPGR and NPHP4 are linked to severe multisystemic diseases with strong retinal involvement of photoreceptor neurons, whereas those in RPGRIP1 cause the fulminant photoreceptor dystrophy, Leber congenital amaurosis (LCA). Further, mutations in Rpgrip1 and Nphp4 suppress the elaboration of the outer segment compartment of photoreceptor neurons by elusive mechanisms, the understanding of which has critical implications in uncovering the pathogenesis of syndromic retinal dystrophies. Here we show RPGRIP1 localizes to the photoreceptor connecting cilium (CC) distally to the centriole/basal body marker, centrin-2 and the ciliary marker, acetylated-a- tubulin. NPHP4 abuts proximally RPGRIP1, RPGR and the serologically defined colon cancer antigen-8 (SDCCAG8), a protein thought to partake in the RPGRIP1 interactome and implicated also in retinal–renal ciliopathies. Ultrastructurally, RPGRIP1 localizes exclusively throughout the photoreceptor CC and Rpgrip1nmf247 photoreceptors present shorter cilia with a ruffled membrane. Strikingly, Rpgrip1nmf247 mice without RPGRIP1 expression lack NPHP4 and RPGR in photoreceptor cilia, whereas the SDCCAG8 and acetylated-a-tubulin ciliary localizations are strongly decreased, even though the NPHP4 and SDCCAG8 expression levels are unaffected and those of acetylated-a-tubulin and c-tubulin are upregulated.
    [Show full text]
  • Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
    Eye Disorders Comprehensive Panel Test Code D4306 Test Summary This test analyzes 211 genes that have been associated with ocular disorders. Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing Individuals with an eye disease suspected to be genetic in origin Individuals with a family history of eye disease Individuals suspected to have a syndrome associated with an eye disease Test Description This panel analyzes 211 genes that have been associated with ocular disorders. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Diseases associated with this panel include microphtalmia, anophthalmia, coloboma, progressive external ophthalmoplegia, optic nerve atrophy, retinal dystrophies, retinitis pigementosa, macular degeneration, flecked-retinal disorders, Usher syndrome, albinsm, Aloprt syndrome, Bardet Biedl syndrome, pulmonary fibrosis, and Hermansky-Pudlak
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Are Renal Ciliopathies (Replication) Stressed Out?
    Forum Are renal ciliopathies (replication) stressed out? Gisela G. Slaats and Rachel H. Giles Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands Juvenile renal failure is commonly caused by the cilio- [5]. Supporting this hypothesis, a Sdccag8 (Nphp10) mouse pathy nephronophthisis (NPHP). Since all NPHP genes model showed increased DNA damage signaling, as evi- regulate cilia function, it has been assumed that NPHP denced by increased phosphorylation of ATM and H2AX in onset is due to cilia loss. However, recent data suggest vivo and in vitro and disturbed cell cycle progression that DNA damage caused by replication stress, possibly [3]. These findings strengthen the link between DNA concomitant with or upstream of cilia dysfunction, damage signaling and NPHP but fail to address the mo- causes NPHP. lecular mechanism of how enhanced DDR signaling is initiated in NPHP. Is DDR signaling activated by phos- phorylation of proteins followed by repair and cell cycle Renal ciliopathies: not just loss of cilia arrest or are DNA breaks actually accumulating? The leading genetic causes of pediatric as well as adult kidney failure can be traced back to an organelle called the Replication stress at the root of the stalk cilium. Cilia loss of function is thought to be the cellular Recent studies with cells depleted for CEP164, SDCCAG8, defect responsible for two classes of renal ciliopathies: the and NEK8 are beginning to address the relation between common autosomal dominant polycystic kidney disease the DDR and NPHP onset [1–3,5]. Mutation in one of the (ADPKD), which affects adults; and the rare, recessive less-frequently mutated NPHP proteins, the ciliary kinase pediatric/juvenile ciliopathies collectively referred to as NEK8 (NPHP9), which associates with NPHP and poly- NPHP-related ciliopathies (NPHP-RCs) (Box 1).
    [Show full text]
  • Cystic Kidney Diseases and During Vertebrate Gastrulation
    Pediatr Nephrol (2011) 26:1181–1195 DOI 10.1007/s00467-010-1697-5 REVIEW Cystic diseases of the kidney: ciliary dysfunction and cystogenic mechanisms Cecilia Gascue & Nicholas Katsanis & Jose L. Badano Received: 3 August 2010 /Revised: 15 September 2010 /Accepted: 15 October 2010 /Published online: 27 November 2010 # IPNA 2010 Abstract Ciliary dysfunction has emerged as a common Introduction factor underlying the pathogenesis of both syndromic and isolated kidney cystic disease, an observation that has Cystic diseases of the kidney are a significant contributor to contributed to the unification of human genetic disorders of renal malformations and a common cause of end stage renal the cilium, the ciliopathies. Such grouping is underscored disease (ESRD). This classification encompasses a number by two major observations: the fact that genes encoding of human disorders that range from conditions in which ciliary proteins can contribute causal and modifying cyst formation is either the sole or the main clinical mutations across several clinically discrete ciliopathies, manifestation, to pleiotropic syndromes where cyst forma- and the emerging realization that an understanding of the tion is but one of the observed pathologies, exhibits clinical pathology of one ciliopathy can provide valuable variable penetrance, and can sometimes be undetectable insight into the pathomechanism of renal cyst formation until later in life or upon necropsy (Table 1;[1]). elsewhere in the ciliopathy spectrum. In this review, we Importantly, although the different cystic kidney disorders discuss and attempt to stratify the different lines of are clinically discrete entities, an extensive body of data proposed cilia-driven mechanisms for cystogenesis, ranging fueled by a combination of mutation identification in from mechano- and chemo-sensation, to cell shape and humans and studies in animal models suggests a common polarization, to the transduction of a variety of signaling thread, where virtually all known renal cystic disease- cascades.
    [Show full text]
  • Ciliopathies
    T h e new england journal o f medicine Review article Mechanisms of Disease Robert S. Schwartz, M.D., Editor Ciliopathies Friedhelm Hildebrandt, M.D., Thomas Benzing, M.D., and Nicholas Katsanis, Ph.D. iverse developmental and degenerative single-gene disor- From the Howard Hughes Medical Insti- ders such as polycystic kidney disease, nephronophthisis, retinitis pigmen- tute and the Departments of Pediatrics and Human Genetics, University of Michi- tosa, the Bardet–Biedl syndrome, the Joubert syndrome, and the Meckel gan Health System, Ann Arbor (F.H.); the D Renal Division, Department of Medicine, syndrome may be categorized as ciliopathies — a recent concept that describes dis- eases characterized by dysfunction of a hairlike cellular organelle called the cilium. Center for Molecular Medicine, and Co- logne Cluster of Excellence in Cellular Most of the proteins that are altered in these single-gene disorders function at the Stress Responses in Aging-Associated Dis- level of the cilium–centrosome complex, which represents nature’s universal system eases, University of Cologne, Cologne, for cellular detection and management of external signals. Cilia are microtubule- Germany (T.B.); and the Center for Hu- man Disease Modeling and the Depart- based structures found on almost all vertebrate cells. They originate from a basal ments of Pediatrics and Cell Biology, body, a modified centrosome, which is the organelle that forms the spindle poles Duke University Medical Center, Durham, during mitosis. The important role that the cilium–centrosome complex plays in NC (N.K.). Address reprint requests to Dr. Hildebrandt at Howard Hughes Med- the normal function of most tissues appears to account for the involvement of mul- ical Institute, Departments of Pediatrics tiple organ systems in ciliopathies.
    [Show full text]