Selective Loss of RPGRIP1-Dependent Ciliary Targeting of NPHP4, RPGR and SDCCAG8 Underlies the Degeneration of Photoreceptor Neurons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Educational Paper Ciliopathies
Eur J Pediatr (2012) 171:1285–1300 DOI 10.1007/s00431-011-1553-z REVIEW Educational paper Ciliopathies Carsten Bergmann Received: 11 June 2011 /Accepted: 3 August 2011 /Published online: 7 September 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Cilia are antenna-like organelles found on the (NPHP) . Ivemark syndrome . Meckel syndrome (MKS) . surface of most cells. They transduce molecular signals Joubert syndrome (JBTS) . Bardet–Biedl syndrome (BBS) . and facilitate interactions between cells and their Alstrom syndrome . Short-rib polydactyly syndromes . environment. Ciliary dysfunction has been shown to Jeune syndrome (ATD) . Ellis-van Crefeld syndrome (EVC) . underlie a broad range of overlapping, clinically and Sensenbrenner syndrome . Primary ciliary dyskinesia genetically heterogeneous phenotypes, collectively (Kartagener syndrome) . von Hippel-Lindau (VHL) . termed ciliopathies. Literally, all organs can be affected. Tuberous sclerosis (TSC) . Oligogenic inheritance . Modifier. Frequent cilia-related manifestations are (poly)cystic Mutational load kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous Introduction system, occurring either isolated or as part of syn- dromes. Characterization of ciliopathies and the decisive Defective cellular organelles such as mitochondria, perox- role of primary cilia in signal transduction and cell isomes, and lysosomes are well-known -
SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling
SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling Airik, Rannar; Schueler, Markus; Airik, Merlin; Cho, Jang; Ulanowicz, Kelsey A; Porath, Jonathan D; Hurd, Toby W; Bekker-Jensen, Simon; Schrøder, Jacob Morville; Andersen, Jens S.; Hildebrandt, Friedhelm Published in: P L o S One DOI: 10.1371/journal.pone.0156081 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Airik, R., Schueler, M., Airik, M., Cho, J., Ulanowicz, K. A., Porath, J. D., Hurd, T. W., Bekker-Jensen, S., Schrøder, J. M., Andersen, J. S., & Hildebrandt, F. (2016). SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. P L o S One, 11(5), [e0156081]. https://doi.org/10.1371/journal.pone.0156081 Download date: 04. Oct. 2021 RESEARCH ARTICLE SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling Rannar Airik1¤‡*, Markus Schueler1, Merlin Airik1, Jang Cho1, Kelsey A. Ulanowicz2, Jonathan D. Porath1, Toby W. Hurd3, Simon Bekker-Jensen4, Jacob M. Schrøder5, Jens S. Andersen5, Friedhelm Hildebrandt1,6‡* 1 Department of Medicine, Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, United States of America, 2 Department of Pediatrics, Division of Nephrology, Children’s Hospital of a11111 Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America, 3 Medical Research Council Human Genetics Unit, Institute of -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
Ciliopathies Gene Panel
Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases. -
The Role of Primary Cilia in the Crosstalk Between the Ubiquitin–Proteasome System and Autophagy
cells Review The Role of Primary Cilia in the Crosstalk between the Ubiquitin–Proteasome System and Autophagy Antonia Wiegering, Ulrich Rüther and Christoph Gerhardt * Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany; [email protected] (A.W.); [email protected] (U.R.) * Correspondence: [email protected]; Tel.: +49-(0)211-81-12236 Received: 29 December 2018; Accepted: 11 March 2019; Published: 14 March 2019 Abstract: Protein degradation is a pivotal process for eukaryotic development and homeostasis. The majority of proteins are degraded by the ubiquitin–proteasome system and by autophagy. Recent studies describe a crosstalk between these two main eukaryotic degradation systems which allows for establishing a kind of safety mechanism. If one of these degradation systems is hampered, the other compensates for this defect. The mechanism behind this crosstalk is poorly understood. Novel studies suggest that primary cilia, little cellular protrusions, are involved in the regulation of the crosstalk between the two degradation systems. In this review article, we summarise the current knowledge about the association between cilia, the ubiquitin–proteasome system and autophagy. Keywords: protein aggregation; neurodegenerative diseases; OFD1; BBS4; RPGRIP1L; hedgehog; mTOR; IFT; GLI 1. Introduction Protein aggregates are huge protein accumulations that develop as a consequence of misfolded proteins. The occurrence of protein aggregates is associated with the development of neurodegenerative diseases, such as Huntington’s disease, prion disorders, Alzheimer’s disease and Parkinson’s disease [1–3], demonstrating that the degradation of incorrectly folded proteins is of eminent importance for human health. In addition to the destruction of useless and dangerous proteins (protein quality control), protein degradation is an important process to regulate the cell cycle, to govern transcription and also to control intra- and intercellular signal transduction [4–6]. -
Intraflagellar Transport Proteins Are Essential for Cilia Formation and for Planar Cell Polarity
BASIC RESEARCH www.jasn.org Intraflagellar Transport Proteins Are Essential for Cilia Formation and for Planar Cell Polarity Ying Cao, Alice Park, and Zhaoxia Sun Department of Genetics, Yale University School of Medicine, New Haven, Connecticut ABSTRACT The highly conserved intraflagellar transport (IFT) proteins are essential for cilia formation in multiple organisms, but surprisingly, cilia form in multiple zebrafish ift mutants. Here, we detected maternal deposition of ift gene products in zebrafish and found that ciliary assembly occurs only during early developmental stages, supporting the idea that maternal contribution of ift gene products masks the function of IFT proteins during initial development. In addition, the basal bodies in multiciliated cells of the pronephric duct in ift mutants were disorganized, with a pattern suggestive of defective planar cell polarity (PCP). Depletion of pk1, a core PCP component, similarly led to kidney cyst formation and basal body disorganization. Furthermore, we found that multiple ift genes genetically interact with pk1. Taken together, these data suggest that IFT proteins play a conserved role in cilia formation and planar cell polarity in zebrafish. J Am Soc Nephrol 21: 1326–1333, 2010. doi: 10.1681/ASN.2009091001 The cilium is a cell surface organelle that is almost In zebrafish, mutants of ift57, ift81, ift88, and ubiquitously present on vertebrate cells. Pro- ift172 have numerous defects commonly associated truding from the cell into its environment, the with ciliary abnormalities.13,14 -
Renal Cystic Disorders Infosheet 6-14-19
Next Generation Sequencing Panel for Renal Cystic Disorders Clinical Features: Renal cystic diseases are a genetically heterogeneous group of conditions characterized By isolated renal disease or renal cysts in conjunction with extrarenal features (1). Age of onset of renal cystic disease ranges from neonatal to adult onset. Common features of renal cystic diseases include renal insufficiency and progression to end stage renal disease (ESRD). Identification of the genetic etiology of renal cystic disease can aid in appropriate clinical management of the affected patient. Our Renal Cystic Disorders Panel includes sequence and deletion/duplicaton analysis of all 79 genes listed below. Renal Cystic Disorders Sequencing Panel AHI1 BMPER HNF1B NEK8 TCTN3 WDPCP ANKS6 C5orf42 IFT27 NOTCH2 TFAP2A WDR19 ARL13B CC2D2A IFT140 NPHP1 TMEM107 XPNPEP3 ARL6 CDC73 IFT172 NPHP3 TMEM138 ZNF423 B9D1 CEP104 INPP5E NPHP4 TMEM216 B9D2 CEP120 INVS OFD1 TMEM231 BBIP1 CEP164 IQCB1 PDE6D TMEM237 BBS1 CEP290 JAG1 PKD2 TMEM67 BBS10 CEP41 KIAA0556 PKHD1 TRIM32 BBS12 CEP83 KIAA0586 REN TSC1 BBS2 CRB2 KIF14 RPGRIP1L TSC2 BBS4 CSPP1 KIF7 SALL1 TTC21B BBS5 DCDC2 LZTFL1 SDCCAG8 TTC8 BBS7 GLIS2 MKKS TCTN1 UMOD BBS9 GLIS3 MKS1 TCTN2 VHL Disorder Genes Inheritance Clinical features/molecular genetics Bardet Biedl ARL6 AR Bardet-Biedl syndrome (BBS) is an autosomal syndrome BBS1 recessive multi-systemic ciliopathy characterized By BBS10 retinal dystrophy, oBesity, postaxial polydactyly, BBS12 leaning difficulties, renal involvement and BBS2 genitourinary abnormalities (2). Visual prognosis is BBS4 poor, and the mean age of legal Blindness is 15.5 BBS5 years. Birth weight is typically normal But significant BBS7 weight gain Begins within the first year. Renal BBS9 disease is a major cause of morBidity and mortality. -
Blueprint Genetics Nephronophthisis Panel
Nephronophthisis Panel Test code: KI1901 Is a 20 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of nephronopthisis. The genes on this panel are included in the comprehensive Ciliopathy Panel. About Nephronophthisis Nephronophthisis (NPHP) is a heterogenous group of autosomal recessive cystic kidney disorders that represents the most frequent genetic cause of chronic and end-stage renal disease (ESRD) in children and young adults. It is characterized by chronic tubulointerstitial nephritis that progress to ESRD during the second decade (juvenile form) or before the age of five years (infantile form). Late-onset form of nephronophthisis is rare. The estimated prevalence is 1:100,000 individuals. NPHP may be seen with other clinical manifestations, such as liver fibrosis, situs inversus, cardiac malformations, intellectual deficiency, cerebellar ataxia, or bone anomalies. When NPHP is associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation it is known as Joubert syndrome. When nephronophthisis is combined with retinitis pigmentosa, the disorder is known as Senior-Loken syndrome. In combination with multiple developmental and neurologic abnormalities, the disorder is often known as Meckel syndrome. Because most NPHP gene products localize to the cilium or its associated structures, nephronophthisis and the related syndromes have been termed ciliopathies. Availability 4 weeks Gene Set Description Genes in the Nephronophthisis Panel and their -
Functional Characterization of the Human RPGR Proximal Promoter
Biochemistry and Molecular Biology Functional Characterization of the Human RPGR Proximal Promoter Xinhua Shu,*,1,2 Julie R. Simpson,2 Alan W. Hart,2 Zhihong Zeng,3 Sarita Rani Patnaik,1 Philippe Gautier,2 Emma Murdoch,2 Brian Tulloch,2 and Alan F. Wright*,2 PURPOSE. Mutations in the retinitis pigmentosa (RP) GTPase promoter will facilitate understanding of the functional role regulator (RPGR) gene account for more than 70% of X-linked of RPGR in the retina and gene therapy of X-linked RP. (Invest RP cases. This study aims to characterize the proximal Ophthalmol Vis Sci. 2012;53:3951–3958) DOI:10.1167/ promoter region of the human RPGR gene. iovs.11-8811 0 METHODS. The 5 -flanking region (5 kb) of human RPGR was cloned and sequenced. A potential transcription start site and etinitis pigmentosa (RP) is a genetically heterogeneous transcription factor binding motifs were identified by bio- Rgroup of retinal degenerations that affect 1 in 4000 in the informatic analysis. Constructs containing the putative human general population.1,2 Most cases are inherited in an autosomal RPGR promoter region upstream of a luciferase reporter gene dominant, autosomal recessive, X-linked, or mitochondrial were generated and analyzed by transient transfection and manner, but oligogenic inheritance has been established in a luciferase assays. Transgenic mouse lines carrying a 3-kb small proportion of families.3 X-linked RP (XLRP) is one of the human RPGR promoter sequence fused to lacZ were generated most consistently severe forms of RP, with a reported average and RPGR proximal promoter activity was analyzed by X-gal age at onset of 7.2 6 1.7 years.4 XLRP affects 10% to 20% of all staining. -
And Cone-Rod Dystrophy in Dogs
University of Pennsylvania ScholarlyCommons Departmental Papers (Vet) School of Veterinary Medicine 2012 RPGRIP1 and Cone-Rod Dystrophy in Dogs Tatyana N. Kuznetsova Barbara Zangerl University of Pennsylvania, [email protected] Gustavo D. Aguirre University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/vet_papers Part of the Eye Diseases Commons, Geriatrics Commons, Medical Biotechnology Commons, Medical Genetics Commons, Medical Immunology Commons, Ophthalmology Commons, and the Veterinary Medicine Commons Recommended Citation Kuznetsova, T. N., Zangerl, B., & Aguirre, G. D. (2012). RPGRIP1 and Cone-Rod Dystrophy in Dogs. Retinal Degenerative Diseases: Advances in Experimental Medicine and Biology, 723 321-328. http://dx.doi.org/ 10.1007/978-1-4614-0631-0_42 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/vet_papers/85 For more information, please contact [email protected]. RPGRIP1 and Cone-Rod Dystrophy in Dogs Abstract Cone–rod dystrophies (crd) represent a group of progressive inherited blinding diseases characterized by primary dysfunction and loss of cone photoreceptors accompanying or preceding rod death. Recessive crd type 1 was described in dogs associated with an RPGRIP1 exon 2 mutation, but with lack of complete concordance between genotype and phenotype. This review highlights role of the RPGRIP1, a component of complex protein networks, and its function in the primary cilium, and discusses the potential mechanisms of genotype–phenotype discordance observed in dogs with the RPGRIP1 mutation. Keywords RPGRIP1, polymorphism, cone-rod dystrophy, protein network, photoreceptor cilia Disciplines Eye Diseases | Geriatrics | Medical Biotechnology | Medical Genetics | Medical Immunology | Ophthalmology | Veterinary Medicine This journal article is available at ScholarlyCommons: https://repository.upenn.edu/vet_papers/85 Published in final edited form as: Adv Exp Med Biol. -
An RPGRIP1 Mutation
Hindawi Publishing Corporation Stem Cells International Volume 2012, Article ID 685901, 12 pages doi:10.1155/2012/685901 Research Article Assessment of Hereditary Retinal Degeneration in the English Springer Spaniel Dog and Disease Relationship to an RPGRIP1 Mutation Kristina Narfstrom,¨ 1, 2 Manbok Jeong,3 Jennifer Hyman,4 Richard W. Madsen,5 and Tomas F. Bergstrom¨ 6 1 Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA 2 Department of Ophthalmology, Mason Eye Institute, University of Missouri, Columbia, MO 65211, USA 3 Department of Veterinary Medicine and Surgery, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea 4 Eye Care For Animals, VA, 20176-3367, USA 5 Biostatistics, School of Medicine, University of Missouri, Columbia, MO 65211, USA 6 Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden Correspondence should be addressed to Kristina Narfstrom,¨ [email protected] Received 12 September 2011; Revised 9 November 2011; Accepted 15 November 2011 Academic Editor: Henry J. Klassen Copyright © 2012 Kristina Narfstrom¨ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Intensive breeding and selection on desired traits have produced high rates of inherited diseases in dogs. Hereditary retinal degeneration, often called progressive retinal atrophy (PRA), is prevalent in dogs with disease entities comparable to human retinitis pigmentosa (RP) and Leber’s congenital amaurosis (LCA). Recent molecular studies in the English Springer Spaniel (ESS) dog have shown that PRA cases are often homozygous for a mutation in the RPGRIP1 gene, the defect also causing human RP, LCA, and cone rod dystrophies. -
Ciliary Dyneins and Dynein Related Ciliopathies
cells Review Ciliary Dyneins and Dynein Related Ciliopathies Dinu Antony 1,2,3, Han G. Brunner 2,3 and Miriam Schmidts 1,2,3,* 1 Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany; [email protected] 2 Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands; [email protected] 3 Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands * Correspondence: [email protected]; Tel.: +49-761-44391; Fax: +49-761-44710 Abstract: Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel Citation: Antony, D.; Brunner, H.G.; developments in the field.