THE GLOW DISCHARGE - a MULTIFACETED OPTICAL EMISSION SOURCE: from SOLIDS ANALYSIS to METALLOPROTEINS Timothy Brewer Clemson University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

THE GLOW DISCHARGE - a MULTIFACETED OPTICAL EMISSION SOURCE: from SOLIDS ANALYSIS to METALLOPROTEINS Timothy Brewer Clemson University, Tbrewer@Clemson.Edu Clemson University TigerPrints All Dissertations Dissertations 5-2007 THE GLOW DISCHARGE - A MULTIFACETED OPTICAL EMISSION SOURCE: FROM SOLIDS ANALYSIS TO METALLOPROTEINS Timothy Brewer Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Analytical Chemistry Commons Recommended Citation Brewer, Timothy, "THE GLOW DISCHARGE - A MULTIFACETED OPTICAL EMISSION SOURCE: FROM SOLIDS ANALYSIS TO METALLOPROTEINS" (2007). All Dissertations. 62. https://tigerprints.clemson.edu/all_dissertations/62 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE GLOW DISCHARGE - A MULTIFACETED OPTICAL EMISSION SOURCE: FROM SOLIDS ANALYSIS TO METALLOPROTEINS _____________________________________________ A Dissertation Presented to the Graduate School of Clemson University _____________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Chemistry _____________________________________________ by Tim M. Brewer May 2007 _____________________________________________ Accepted by: Dr. R. Kenneth Marcus, Committee Chair Dr. Kenneth Christensen Dr. Stephen Creager Dr. Julia Brumaghim ABSTRACT Glow discharges (GD) are well known for their application to direct solids elemental analysis of metals and alloys by optical emission spectroscopy (GD-OES). The most successful application of GD-OES has been the analysis of solid materials since the GD provides rapid, direct bulk and depth profiling analysis of solids, metals, powders, polymers, glasses and ceramics. However, solids analysis has typically suffered from the lack of true analytical blanks and the inability to study particulate solids in their native state. An approach for the analysis of solid powdered material entrapped in a sol-gel matrix by radio frequency glow discharge optical emission spectroscopy (rf-GD-OES) is described. Using the sol-gel method, analytical blanks were obtained by the use of an undoped sol-gel. Through sol-gel chemistry, entrapment of solid powdered material (i.e., Portland cement and oligonucleotides) in a solid glass matrix is achieved. Slurries of powdered materials were incorporated into the films and analyzed for both metallic and non-metallic elemental components. Rf- GD-OES is capable of easily determining non-metals due to the inert atmosphere. Cast films are analyzed to determine the optimum discharge operating conditions and effects of particle size as well as deposited layer thickness. iii Even though depth profiling of solid layered surfaces and thin films has been the major area of application for GDs, recent trends have focused on the analysis of liquid solutions for elemental species studies. The coupling of particle beam sample introduction and hollow cathode optical emission spectroscopy (PB/HC-OES) was applied for empirical formula determinations of a group of nucleotides. The phosphorous and carbon atomic emission from ribonucleotide compounds was monitored and the analyte element response (P (I) and C (I)) to the glow discharge operation conditions was studied. To further demonstrate the capability of the PB/HC-OES as a liquid chromatography detector for biomolecules, iron containing metalloproteins were separated and determined by PB/HC-OES through monitoring of iron atomic emission. Reversed phase high performance liquid chromatography was used to separate and isolate an iron-protein mixture followed by PB/HC-OES iron specific detection. Parametric optimization for sample introduction, nebulization and hollow cathode source conditions were performed for the analysis of iron-containing metalloproteins. iv DEDICATION This work is dedicated to my parents Marty and Janet Brewer and to my entire family, who support and encourage me through all that I do and have done, and especially to my wife Becky, who makes it all worthwhile and brings such a joy into my life. v vi ACKNOWLEDGEMENTS First I would like to thank my research advisor Dr. R. Kenneth Marcus, for his guidance and the opportunities that he gave me as a graduate student. I want to thank him for the opportunity to explore a wide range of projects and for encouraging me to follow some of my own ideas in the later part of my tenure. Additionally, the opportunity he gave me to present at national conferences and the interactions with other professionals from academia and industry have greatly influenced my professional development. The time I have spent working for him has been one second to none and will value forever. Assistance from Paula Cable-Dunlap at Savannah River National Laboratory and the Clemson University Department of Chemistry for instrumentation and financial support is greatly appreciated. I would like to express my sincere thanks to Paula R. Cable-Dunlap and W. Clay Davis for research collaboration opportunities throughout the past few years as well as leadership and mentoring. Without Paula Cable-Dunlap’s help my time as a graduate student would not have been possible. I would also like the present and past member of the Marcus group, which has made my graduate experience all the more enjoyable. First and foremost, I would like to thank my mentor, W. Clay Davis. His guidance and support provided a solid background throughout the development of my graduate research career. The friendship and helpful advice of vii Rayman Stanelle has played an important part throughout my graduate school tenure. Most of all, I want to express my sincere appreciation to my family and friends, who have stood strong throughout my seemingly endless education. I am truly blessed for their continuing love, support, and understanding throughout my education at Clemson University. I would like to thank Bill Medler, who gave me the courage to pursue a degree in chemistry. viii TABLE OF CONTENTS Page TITLE PAGE...................................................................................... i ABSTRACT ....................................................................................... iii DEDICATION .................................................................................... v ACKNOWLEDGEMENTS.................................................................. vii LIST OF TABLES .............................................................................. xv LIST OF FIGURES ............................................................................ xix CHAPTER 1. INTRODUCTION ......................................................................... 1 Glow Discharge........................................................................ 1 Glow Discharge Devices .......................................................... 1 Spatial Regions of Glow Discharge Plasma......................... 5 Cathodic Sputtering.............................................................. 10 Excitation and Ionization ...................................................... 12 Hollow Cathode Discharge................................................... 18 Radio Frequency Operating Modes ..................................... 21 Liquid Sample Analysis by Hollow Cathode Glow Discharge .......................................................................... 24 Transport Type Liquid Chromatography-Mass Spectrometry Interfaces .................................................... 26 Particle Beam Transport Type Interface............................... 28 Liquid Chromatography Coupling and Speciation Analysis ........................................................... 31 Summary.................................................................................. 33 ix Table of Contents (Continued) Page 2. PLASMA PARAMTER AND FILM CASTING OPTIMIZATION FOR THE DETERMINATION OF PARTICULATE MATTER IN A SOL-GEL MATRIX BY RADIOFREQUENCY GLOW DISCHARGE OPTICAL EMISSION SPECTROMETRY (RF-GD-OES)............................................ 35 Introduction .............................................................................. 35 Experimental ............................................................................ 39 Sol-gel Film Preparation....................................................... 39 Instrumentation .................................................................... 41 Results and Discussion............................................................ 43 Optimization of Discharge Operation Parameters........................................................................ 43 Sputter Analysis and Analyte Emission Responses for Sol-gels ..................................................... 46 Effect of Particle Size on Emission Characteristics .................................................................. 53 Effect of Cast-Film Thickness on Emission Characteristics .................................................................. 57 Analytical Figures of Merit.................................................... 60 Conclusions.............................................................................. 64 Acknowledgements .................................................................. 65 3. NON-METAL ELEMENTAL DETECTION BY RADIO-FREQUENCY GLOW DISCHARGE OPTICAL-EMISSION SPECTROMETRY (RF-GD-OES) FOR DETERMINATION OF SOL-GEL IMMOBILIZED NUCLEOTIDES............................... 67 Introduction .............................................................................
Recommended publications
  • Characterization of a Glow Discharge Ion Source for the Mass Spectrometric Analysis of Organic Compounds
    Characterization of a Glow Discharge Ion Source for the Mass Spectrometric Analysis of Organic Compounds D. Carazzato and M. J. Bertrand Regional Center for Mass Spectrometry, Department of Chemistry, University of Montreal, Montreal, Canada A glow discharge ion source has been constructed for the mass spectrometric analysis of organic compounds. Characterization of the source has been made by studying the effect of pressure and discharge current on ionic distributions by anodic ion sampling along the discharge axis. Ion and electron densities and electronic temperatures have been calculated by using the single Langmuir probe technique to correlate the extraction efficiency with measured ion distributions and gain some insight into the ionization of organic molecules. The spectra obtained for several classes of organic compounds show that formation of parent-molecular ions by proton transfer, resulting partly from the background water molecules, is a major low energy process while charge transfer, Penning ionization, and electron ionization are probably responsible for the fragmentation observed. The spectra result from the simultaneous occurrence of high and low energy reactions, and their structural information content is very high, yielding both molecular and extensive fragment ion information. The glow discharge ion source has proved to be essentially maintenance-free, easy to operate, stable, and can be used at reasonable mass resolution (up to 7000). The source also provides picogram range detection limits and has a linear response range of about six orders of magnitude, which makes it an interesting ion source for routine analysis. Preliminary work conducted with chromatographic interfaces indicates that its use can be easily extended to both gas and liquid chromatography.
    [Show full text]
  • Calibration Factors for Fast Flow Glow Discharge Mass Spectrometry (FF-GD-MS) in Continuous and Pulsed Mode
    POSTER NOTE 30687 Calibration factors for Fast Flow Glow Discharge Mass Spectrometry (FF-GD-MS) in continuous and pulsed mode Authors: Torsten Lindemann, Joachim Hinrichs, Nicholas Lloyd, Thermo Fisher Scientific, Bremen, Germany Abstract The Thermo Scientific™ Element GD Plus™ GD-MS was used to measure a set of 13 iron based certified reference materials. Calibration factors for 29 elements were obtained in continuous and pulsed mode. In continuous mode operation, the calibration factors obtained confirm most of those factors previously used for semiquantitative analyses. However, significantly improved Introduction accuracy can be expected for Ti, V, Cr, and Zr with the Sector field glow discharge mass spectrometry is data obtained during this study. applied for the analysis of high purity bulk metals and alloys, semiconductors and ceramics, especially by the In pulsed mode operation, the calibration factors for many aerospace, electronics and photovoltaic industries. elements are similar to the ones in continuous mode. In detail though, some elements show lower calibration The Element GD Plus GD-MS features a fast flow glow factors. Therefore, a dedicated RSF table for pulsed mode discharge source that can be operated in continuous is recommended to support accurate routine operation for or pulsed mode. Continuous mode operation offers the semiquantitative analyses. advantage of high sputter rates to remove contaminated surface layers quickly. Also, the widely applied set of Most elements are analyzed within the accuracy range calibration factors (Standard RSF = general Relative of ±30 %, considered to be typical for semiquantitative Sensitivity Factors) is based on continuous mode operation. GD-MS analyses. For improved accuracy, the use of a dedicated set of calibration factors is advisable.
    [Show full text]
  • The Use of Dc Glow Discharges As Undergraduate Educational Tools Stephanie A
    The use of dc glow discharges as undergraduate educational tools Stephanie A. Wissel, Andrew Zwicker, Jerry Ross, and Sophia Gershman Citation: American Journal of Physics 81, 663 (2013); doi: 10.1119/1.4811435 View online: http://dx.doi.org/10.1119/1.4811435 View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/81/9?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Motivating Students to Do Homework Phys. Teach. 52, 295 (2014); 10.1119/1.4872413 Measuring the Effectiveness of Simulations in Preparing Students for the Laboratory Phys. Teach. 51, 113 (2013); 10.1119/1.4775536 New insights into student understanding of complete circuits and the conservation of current Am. J. Phys. 81, 134 (2013); 10.1119/1.4773293 Conductance quantization: A laboratory experiment in a senior-level nanoscale science and technology course Am. J. Phys. 81, 14 (2013); 10.1119/1.4765331 A low-cost spatial light modulator for use in undergraduate and graduate optics labs Am. J. Phys. 80, 211 (2012); 10.1119/1.3666834 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 198.35.1.48 On: Fri, 20 Jun 2014 16:13:40 The use of dc glow discharges as undergraduate educational tools Stephanie A. Wissela) and Andrew Zwickerb) Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 Jerry Ross Shawnee State University, Portsmouth, Ohio 45662 Sophia Gershman Advanced Research Innovation in Science Education (ARISE), Scotch Plains, New Jersey 07076 (Received 12 October 2012; accepted 4 June 2013) Plasmas have a beguiling way of getting students interested in physics.
    [Show full text]
  • The Use of Glow Discharge Optical Emission Spectroscopy to Quantify Internal Carburization in Supercritical CO2
    The 6th International Supercritical CO2 Power Cycles Symposium March 27 - 29, 2018, Pittsburgh, Pennsylvania The Use of Glow Discharge Optical Emission Spectroscopy to Quantify Internal Carburization in Supercritical CO2 Michael J. Lance Donovan N. Leonard Bruce A. Pint Senior R&D Staff Member R&D Staff Member Group Leader Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge, TN 37831-6068 Oak Ridge, TN 37831-6064 Oak Ridge, TN 37831-6156 [email protected] [email protected] [email protected] Michael J. Lance is a Senior Research and Development Staff Member in Oak Ridge National Laboratory’s Materials Science and Technology Division. He received a B.S. in 1992 from Alfred University and an M.S. and PhD from Rutgers University in 1998 in Ceramic Science and Technology. He joined Oak Ridge National Laboratory as a staff member in 1998 and has been active in several research areas including emissions control technologies for diesel engines, high- temperature oxidation and heat exchanger fouling. Donovan N. Leonard is a Senior Technical Staff Member in the Materials Science & Technology Division at Oak Ridge National Laboratory. He received his Ph.D. in Materials Science & Engineering from North Carolina State University in 2002 and joined ORNL in 2007. Currently his research involves applying advanced microscopy and microanalysis methods to energy related materials at length scales from the atomic level to the macro scale. More specifically, aberration corrected STEM/EELS of quantum materials in addition to EPMA/WDS, EBSD and EDS analysis of materials for fossil, fusion and solar applications. Bruce A.
    [Show full text]
  • Modern Real Mass Spectrometry
    “Real” (Modern) Mass Spectrometry (Part I) Alex J. Roche 1 MS is fundamentally important • If you want to publish a new compound, 3 pieces of data are required: – relevant NMR (H, C, F, P, Pt, N, D, B, ...) – Mass Spectrometry (low resolution) – Elemental Analysis (CHN) or HRMS • Confirmation of a compound usually requires the 1st two • Industrially, GCMS / HPLCMS is the most common general Chemical Identification / Characterization tool • ACS accreditation guidelines state “instruments and equipment in a good undergraduate chemistry program include …gas chromatography mass spectrometry (GC-MS), and apparatus or instruments for Mass Spectrometry”. 2 Mass Spectrometry “What do you know about that ?” • Basic concept ? (what is it?) • What’s the point ? (what information does it provide?) • Underlying physics ? (why does it work?) • Underlying mechanics ? (how does it work?) 3 What we (I) teach Ions are generated, bent by magnetic field, and separated according to m/z ratio. → molecular weight information, and 4 structural information Agilent Quote (After significant bartering) $228,000 = Agilent Technologies Triple Quad HPLCMS with Multimode Source Instrument. MOST COMMON MODERN STANDARD MS INSTRUMENT 5 • Where is the triple quad ? • Where is the ESI or APCI? 6 • “...This type of ionization is compatible with triple quadrupole and ion-trap analyzers. Not so much with magnetic sector instruments (if you can still find one)...” 7 Photographic Mass Spec Trivia plate • 1803 Dalton “Mass consists of atoms...” • 1911 Thompson 1st mass spectrometer • 1940 Berry Electron Impact Ionization for organics • 1980 ESI, FAB, MALDI • Up to current day, MS fundamental characterization tool. • 2002 Nobel Prize MALDI / ESI (Tanaka / Fenn) •(4th MS area Nobel Prize) • Mass is measured in a.m.u.
    [Show full text]
  • Practical Comparisons Between RF-GD-OES and SIMS
    Glow Discharge Optical Emission Spectroscopy TECHNICAL NOTE 23 Practical Comparisons Between RF-GD-OES and SIMS Patrick Chapon, Jobin Yvon S.A.S., Horiba Group, Longjumeau, France Keywords: method comparison Secondary ion mass spectrometry (SIMS) has mine the appropriateness of the two methods. been a very valuable tool for the analysis of bulk These differences are described below. materials, particularly in the cases where very high sensitivity is required (e.g. precious metals, 1 Analysis time catalysts and semiconductor materials). SIMS relies on high energy (2-5 keV) bombardment Because of the need for extremely low pressures (sputtering) of the sample using an ion beam for SIMS analysis, extensive pump down times (gun) in high vacuum (<10-7 Torr) as its means are required. For many analyses, pump down of removing material from the solid surface and times of more than 1 hour are common. It is mass analysis of those species which are ejected important to realize that the presence of residual as charged species (ions). gases (N or O) on the sample surface greatly effect the performance of the SIMS experiment, Radio frequency glow discharge atomic emission both in terms of absolute sensitivity and in the spectrometry (RF-GD-OES) is similar to SIMS in relative sensitivity between the elements. For that sputtering is the means of removing materi- this reason, sample carousels containing many al from the sample surface. In contrast, though, samples are usually loaded in the source volume the glow discharge is a reduced-pressure (10 at a single time. On the other hand, even in the Torr) plasma that generates the sputtering ions in case of gaseous element analysis, the RF-GD- situ from a low flow of argon.
    [Show full text]
  • Glow Discharge Optical Spectroscopy and Mass Spectrometry
    QIT; Fourier transform ion cyclotron resonance, FTICR; Glow Discharge Optical and time-of-flight, TOF) instrumentation are well suited Spectroscopy and Mass for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient Spectrometry (500–1500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (mostly Ar) is introduced into the discharge region before Annemie Bogaerts power initiation. When a potential is applied, electrons are Research group PLASMANT, University of accelerated toward the anode. As these electrons accelerate, Antwerp, Wilrijk-Antwerp, Belgium they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in 1 Introduction 1 turn, accelerated toward the cathode. These ions impinge 2 The Glow Discharge 2 on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit 2.1 Fundamental Glow Discharge Processes 2 on the surface diffuse into the excitation/ionization regions 2.2 Radiofrequency-Powered Glow Discharge of the plasma where they can undergo excitation and/or Operation 6 ionization via a number of collisional processes, and the 2.3 Pulsed Operation of the Glow Discharge 6 photons or ions created in this way can be detected with 2.4 Applications 8 optical emission spectroscopy or mass spectrometry. 3 Spectrochemical Methods of Analysis 11 GD sources offer a number of distinct advantages that 3.1 Basic Requirements Necessary to Obtain make them well suited for specific types of analyses.
    [Show full text]
  • Methods of Ion Generation
    Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I.
    [Show full text]
  • Contact Glow Discharge Electrolysis: Effect of Electrolyte Conductivity on Discharge Voltage
    catalysts Article Contact Glow Discharge Electrolysis: Effect of Electrolyte Conductivity on Discharge Voltage Giovanni Battista Alteri 1, Matteo Bonomo 1,2,* , Franco Decker 1 and Danilo Dini 1,* 1 Department of Chemistry, University of Rome “La Sapienza”, 00185 Piazzale Aldo Moro 5, 00178 Rome, Italy; [email protected] (G.B.A.); [email protected] (F.D.) 2 Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy * Correspondence: [email protected] (M.B.); [email protected] (D.D.) Received: 29 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: Contact glow discharge electrolysis (CGDE) can be exploited in environmental chemistry for the degradation of pollutants in wastewater. This study focuses on the employment of cheap materials (e.g., steel and tungsten) as electrodes for experiments of CGDE conducted in electrochemical cells with variable electrolytic composition. A clear correlation between breakdown voltage (VB)/discharge (or midpoint) voltage (VD) and the conductivity of the electrolyte is shown. Regardless of the chemical nature of the ionogenic species (acid, base or salt), the higher the conductivity of the solution, the lower the applied potential required for the onset of the glow discharge. Concerning practical application, these salts could be added to poorly conductive wastewaters to increase their conductivity and thus reduce the ignition potential necessary for the development of the CGDE. Such an effect could render the process of chemical waste disposal from wastewaters more economical. Moreover, it is evidenced that both VB and VD are practically independent on the ratio anode area to cathode area if highly conductive solutions are employed.
    [Show full text]
  • Fundamental Studies and Applications of Ambient Plasma Ionization Sources for Mass Spectrometry Wade C
    Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2017-07-01 Fundamental Studies and Applications of Ambient Plasma Ionization Sources for Mass Spectrometry Wade C. Ellis Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Chemistry Commons BYU ScholarsArchive Citation Ellis, Wade C., "Fundamental Studies and Applications of Ambient Plasma Ionization Sources for Mass Spectrometry" (2017). All Theses and Dissertations. 6484. https://scholarsarchive.byu.edu/etd/6484 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Fundamental Studies and Applications of Ambient Plasma Ionization Sources for Mass Spectrometry Wade C. Ellis A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Paul Burton Farnsworth, Chair Daniel E. Austin David V. Dearden Jaron C. Hansen Eric T. Sevy Department of Chemistry and Biochemistry Brigham Young University Copyright © 2017 Wade C. Ellis All Rights Reserved ABSTRACT Fundamental Studies and Applications of Ambient Plasma Ionization Sources for Mass Spectrometry Wade C. Ellis Department of Chemistry and Biochemistry, BYU Doctor of Philosophy The field of ambient desorption/ionization mass spectrometry (ADI-MS) has existed for over a decade. ADI-MS is a technique that offers benefits including fast analysis time, simple ionization sources that are easily constructed, and little to no required sample preparation. The research presented here describes efforts to better understand plasma-based ADI-MS sources and to explore the use of hydrogen-doped plasma gases with these sources.
    [Show full text]
  • Ultrasensitive Detection of Waste Products in Water Using Fluorescence Emission Cavity-Enhanced Spectroscopy
    Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy Joel N. Bixlera, Michael T. Conea, Brett H. Hokra, John D. Masona, Eleonora Figueroaa, Edward S. Frya, Vladislav V. Yakovleva, and Marlan O. Scullya,b,c,1 aTexas A&M University, College Station, TX 77843; bPrinceton University, Princeton, NJ 08540; and cBaylor University, Waco, TX 76706 Contributed by Marlan O. Scully, March 5, 2014 (sent for review December 1, 2013; reviewed by Peter M. Rentzepis and Vadim Backman) Clean water is paramount to human health. In this article, we ecosystem can result in environmental crises, such as devastation present a technique for detection of trace amounts of human to the aquatic population, red-tide blooms, as well as beach or animal waste products in water using fluorescence emission closings. Molecular methods based on polymerase chain reac- cavity-enhanced spectroscopy. The detection of femtomolar con- tions are commonly used to monitor viral, bacterial, and pro- centrations of urobilin, a metabolic byproduct of heme metabo- tozoan pathogens in wastewater (9). Microbiological indicators lism that is excreted in both human and animal waste in water, such as fecal coliforms, Escherichia coli and Etherococci, are the was achieved through the use of an integrating cavity. This indicators most commonly used to analyze and evaluate the level technique could allow for real-time assessment of water quality of fecal contamination. However, the suitability of these indi- without the need for expensive laboratory equipment. cators has been questioned (10), and it takes a substantial time from the extraction of water sample for analysis to the moment water contamination | fluorescence spectroscopy | femtomolar detection when the results are ready.
    [Show full text]
  • Fourier Transformation of an Interferogram
    CHEM 411L Instrumental Analysis Laboratory Revision 1.0 Fourier Transformation of an IR Interferogram In this laboratory exercise we will use a Fourier Transform Infrared (FTIR) spectrometer to generate a time domain Interferogram for a simple organic liquid. We will then Fourier Transform this data to obtain a frequency domain Infrared Spectrum for the sample. Time domain spectrometers were initially developed during the 1950's for the acquisition of Infrared Spectra (IR) and are now in almost universal use as IR, NMR and mass spectrometers. This is because with modern electronic computers rapid Fourier Transformation (FT) of time domain signals into frequency domain spectra is now possible. The time domain signal from an FT spectrometer is sampled using an analog-to-digital converter, loaded in a digital computer's memory and then computationally transformed to the frequency domain. The advantages of FT spectroscopy are multiple: A greater throughput of radiant power to the instrument's detector resulting in a greater signa-to-noise ratio. A greater resolving power for the instrument. A rapid spectral acquisition time. These advantages are considerable and mean spectra with considerable detail and better detection limits are possible. In a typical frequency domain optical spectrometer, radiation from a source enters a monochrometer where a particular wavelength or frequency is selected, then allowed to pass through a sample of the analyte and the resulting signal is then detected. P a g e | 2 The radiant power at the detector P is then compared to the power of the radiation of the source Po to determine the sample's transmittance T at the given frequency : T = (Eq.
    [Show full text]