A SRAM-Based Architecture for Trie-Based IP Lookup Using FPGA

Total Page:16

File Type:pdf, Size:1020Kb

A SRAM-Based Architecture for Trie-Based IP Lookup Using FPGA 16th International Symposium on Field-Programmable Custom Computing Machines A SRAM-based Architecture for Trie-based IP Lookup Using FPGA Hoang Le, Weirong Jiang, Viktor K. Prasanna Ming Hsieh Department of Electrical Engineering University of Southern California Los Angeles, CA 90089, USA {hoangle, weirongj, prasanna}@usc.edu Abstract Most hardware-based solutions for high speed packet forwarding in routers fall into two main catego- Internet Protocol (IP) lookup in routers can be ries: ternary content addressable memory (TCAM)- implemented by some form of tree traversal. Pipelining based and dynamic/static random access memory can dramatically improve the search throughput. How- (DRAM/SRAM)-based solutions. Although TCAM- ever, it results in unbalanced memory allocation over based engines can retrieve results in just one clock the pipeline stages. This has been identified as a major cycle, their throughput is limited by the relatively low challenge for pipelined solutions. In this paper, an IP speed of TCAMs. They are expensive and offer little lookup rate of 325 MLPS (millions lookups per second) flexibility to adapt to new addressing and routing pro- is achieved using a novel SRAM-based bidirectional tocols [3]. As shown in Table 1, SRAMs outperform optimized linear pipeline architecture on Field Pro- TCAMs with respect to speed, density, and power con- grammable Gate Array, named BiOLP, for tree-based sumption. search engines in IP routers. BiOLP can also achieve a Table 1: Comparison of TCAM and SRAM technologies perfectly balanced memory distribution over the pipe- line stages. Moreover, by employing caching to exploit TCAM SRAM the Internet traffic locality, BiOLP can achieve a high (18Mb chip) (18Mb chip) throughput of up to 1.3 GLPS (billion lookups per Maximum clock rate (MHz) 266 [4] 400 [5], [6] second). It also maintains packet input order, and sup- # of transistors per bit [7] 16 6 ports route updates without blocking subsequent in- Power consumption (Watts) 12 ∼ 15 [8] ≈ 0.1 [9] coming packets. Since SRAM-based solutions utilize some kind of tree traversal, they require multiple cycles to perform a Keywords: IP Address Lookup, Longest Prefix single lookup. Several researchers have explored pipe- Matching, Reconfigurable Hardware, Field Programm- lining to improve the throughput. A simple pipelining able Gate Array (FPGA). approach is to map each tree level onto a pipeline stage with its own memory and processing logic. One packet 1. Introduction can be processed every clock cycle. However, this ap- proach results in unbalanced tree node distribution over With the rapid growth of the Internet, design of the pipeline stages. This has been identified as a domi- high speed IP routers has been a major area of research. nant issue for pipelined architectures [10]. In an unba- Advances in optical networking technology are push- lanced pipeline, the “fattest” stage, which stores the ing link rates in high speed IP routers beyond OC-768 largest number of tree nodes, becomes a bottleneck. It (40 Gbps). Such high rates demand that packet for- adversely affects the overall performance of the pipe- warding in IP routers must be performed in hardware. line in the following aspects. First, more time is needed For instance, 40 Gbps links require a throughput of 8 to access the larger local memory. This leads to a re- ns per packet, i.e. 125 million packets per second duction in the global clock rate. Second, a fat stage (MPPS), for a minimum size (40 bytes) packet. Such results in many updates, due to the proportional rela- throughput is impossible using existing software-based tionship between the number of updates and the num- solutions [1], [2]. ber of tree nodes stored in that stage. Particularly dur- _________________________________________ ing the update process caused by intensive route/rule Supported by the United States National Science insertion, the fattest stage may also result in memory Foundation under grant No.CCR-0702784. overflow. Furthermore, since it is unclear at hardware 978-0-7695-3307-0/08 $25.00 © 2008 IEEE 33 DOI 10.1109/FCCM.2008.9 design time which stage will be the fattest, we need to to the uni-bit trie in Figure 1(b). For example, the pre- allocate memory with the maximum size for every fix “010*” corresponds to the path starting at the root stage. This over-provision results in memory wastage and ending in node P3: first a left-turn (0), then a right- [11]. turn (1), and finally a turn to the left (0). Each trie node To balance the memory distribution across stages, contains two fields: the represented prefix and the several novel pipeline architectures have been pro- pointer to the child nodes. By using the optimization posed [11-13]. However, none of them can achieve a called leaf-pushing [15], each node needs only one perfectly balanced memory distribution over stages. field: either the pointer to the next-hop address or the Moreover, some of them use non-linear structures and pointer to the child nodes. Figure 1(c) shows the leaf- result in throughput degradation. pushed uni-bit trie derived from Figure 1(b). For sim- The key issues for any new architecture on IP loo- plicity, we consider only the leaf-pushed uni-bit trie in kup engine are: high throughput, maximal size of sup- this paper, though our ideas also apply to other forms ported routing table, incremental update, in-order of tries [16]. packet output, and power consumption. To address Given a leaf-pushed uni-bit trie, IP lookup is per- these challenges, we propose and implement a SRAM- formed by traversing the trie according to the bits in based bidirectional optimized linear pipeline architec- the IP address. When a leaf is reached, the prefix asso- ture, named BiOLP, for tree-based IP Lookup engine ciated with the leaf is the longest matched prefix for routers on FPGA. This paper makes the following con- that IP address. tributions: • To the best of our knowledge, this architecture is 0* P1 root the first trie-based design that uses the on-chip 000* P2 0 1 FPGA resources only to support a fairly large 010* P3 P1 1 routing table, Mae-West (rrc08, 20040901) [14]. 01001* P4 0 1 • This is also the first architecture that employs IP 01011* P5 00101 caching on FPGA without using TCAM to effec- P2 P3 P6 P7 P8 011* P6 0 1 tively exploit the Internet traffic locality. A high 110* P7 throughput of more than 1 packet per clock cycle 1 1 111* P8 P4 P5 is obtained. (b) Uni-bit trie • The implementation results show the throughput of (a) Prefix set root 325 MLPS for non-cache-based design. To the Level0 best of our knowledge, this is the fastest IP Loo- 0 1 kup engine on FPGA; and 1.3 GLPS for cache- Level1 010 1 based design. This is a promising solution for the null Level2 next generation IP routers. 00101 1 The rest of the paper is organized as follows: Sec- P2P1 P6 P7 P8 Level3 0 1 tion 2 covers the background and related work; Section Level4 3 introduces the BiOLP architecture; Section 4 de- 001 1 scribes BiOLP implementation; Section 5 presents im- P3 P4P3 P5 Level5 plementation results; and Section 6 concludes the pa- (c) Leaf-pushed uni-bit trie per. Figure 1: Prefix set; Uni-bit trie; Leaf-pushed uni-bit trie 2. Background and Related Work 2.2. Related Work 2.1. Trie-based IP Lookup Since this work is based entirely on FPGA, we only cover some related works that are in the same domain. The nature of IP lookup is longest prefix matching As mentioned above, there are two types of architec- (LPM). The most common data structure in algorithmic ture on FPGA: TCAM-based and SRAM-based. Each solutions for performing LPM is some form of trie [1]. of them has its own advantages and disadvantages. Trie is a binary tree, where a prefix is represented by a node. The value of the prefix corresponds to the path 2.2.1. TCAM-based Architectures from the root of the tree to the node representing the prefix. The branching decisions are made based on the TCAM is used in some architectures to simplify the consecutive bits in the prefix. A trie is called a uni-bit complexity of the designs. However, it also reduces the trie if only one bit is used for making branching deci- clock speed, and increases the power consumption of sion at a time. The prefix set in Figure 1(a) corresponds the entire system. Song et al. [17] introduce an archi- 34 tecture called BV-TCAM, which combines the TCAM another architecture with the lookup speed of 66 and the Bit Vector (BV) algorithm to effectively com- MLPS. In this design, a commodity Random Access press the data representations and boost throughput. Memory (RAM) is needed in their design; and the This design can only handle lookup rate of about 30 achieved lookup rate is reasonably low. MLPS. As mentioned above, pipelining can dramatically Kasnavi et al. [18] propose a similar idea of cache- improve the throughput of tree traversal. A straight based IP address lookup architecture, which is com- forward way to pipeline a tree is to assign each tree prised of a non-blocking Multizone Pipelined Cache level to a different stage, so that a packet can be (MPC) and of a hardware-supported IP routing lookup processed every clock cycle. However, this simple method. They use two-stage pipeline for a half- pipeline scheme results in unbalanced memory distri- prefix/half-full address IP cache that results in lower bution, leading to low throughput and inefficient mem- activity than conventional caches.
Recommended publications
  • Programmer's Guide
    Programmer’s Guide Release 2.2.0 January 16, 2016 CONTENTS 1 Introduction 1 1.1 Documentation Roadmap...............................1 1.2 Related Publications..................................2 2 Overview 3 2.1 Development Environment..............................3 2.2 Environment Abstraction Layer............................4 2.3 Core Components...................................4 2.4 Ethernet* Poll Mode Driver Architecture.......................6 2.5 Packet Forwarding Algorithm Support........................6 2.6 librte_net........................................6 3 Environment Abstraction Layer7 3.1 EAL in a Linux-userland Execution Environment..................7 3.2 Memory Segments and Memory Zones (memzone)................ 11 3.3 Multiple pthread.................................... 12 3.4 Malloc.......................................... 14 4 Ring Library 19 4.1 References for Ring Implementation in FreeBSD*................. 20 4.2 Lockless Ring Buffer in Linux*............................ 20 4.3 Additional Features.................................. 20 4.4 Use Cases....................................... 21 4.5 Anatomy of a Ring Buffer............................... 21 4.6 References....................................... 28 5 Mempool Library 31 5.1 Cookies......................................... 31 5.2 Stats.......................................... 31 5.3 Memory Alignment Constraints............................ 31 5.4 Local Cache...................................... 32 5.5 Use Cases....................................... 33 6
    [Show full text]
  • Linux Kernel and Driver Development Training Slides
    Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb.
    [Show full text]
  • Tricore Architecture Manual for a Detailed Discussion of Instruction Set Encoding and Semantics
    User’s Manual, v2.3, Feb. 2007 TriCore 32-bit Unified Processor Core Embedded Applications Binary Interface (EABI) Microcontrollers Edition 2007-02 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non- infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. User’s Manual, v2.3, Feb.
    [Show full text]
  • FSS) in Oracle Cloud Infrastructure
    Everyone Loves File: File Storage Service (FSS) in Oracle Cloud Infrastructure Bradley C. Kuszmaul Matteo Frigo Justin Mazzola Paluska Alexander (Sasha) Sandler Oracle Corporation Abstract 100 MB=s of bandwidth and 3000 operations per sec- ond for every terabyte stored. Customers can mount a File Storage Service (FSS) is an elastic filesystem pro- filesystem on an arbitrary number of NFS clients. The vided as a managed NFS service in Oracle Cloud In- size of a file or filesystem is essentially unbounded, lim- frastructure. Using a pipelined Paxos implementation, ited only by the practical concerns that the NFS pro- we implemented a scalable block store that provides lin- tocol cannot cope with files bigger than 16 EiB and earizable multipage limited-size transactions. On top of that we would need to deploy close to a million hosts the block store, we built a scalable B-tree that provides to store multiple exabytes. FSS provides the ability linearizable multikey limited-size transactions. By us- to take a snapshot of a filesystem using copy-on-write ing self-validating B-tree nodes and performing all B- techniques. Creating a filesystem or snapshot is cheap, tree housekeeping operations as separate transactions, so that customers can create thousands of filesystems, each key in a B-tree transaction requires only one page each with thousands of snapshots. The system is robust in the underlying block transaction. The B-tree holds against failures since it synchronously replicates data the filesystem metadata. The filesystem provides snap- and metadata 5-ways using Paxos [44]. shots by using versioned key-value pairs.
    [Show full text]
  • Circ-Tree: a B+-Tree Variant with Circular Design for Persistent Memory
    IEEE TRANASCTIONS ON XXXXXX 1 Circ-Tree: A B+-Tree Variant with Circular Design for Persistent Memory Chundong Wang, Gunavaran Brihadiswarn, Xingbin Jiang, and Sudipta Chattopadhyay Abstract—Several B+-tree variants have been developed to exploit the performance potential of byte-addressable non-volatile memory (NVM). In this paper, we attentively investigate the properties of B+-tree and find that, a conventional B+-tree node is a linear structure in which key-value (KV) pairs are maintained from the zero offset of the node. These pairs are shifted in a unidirectional fashion for insertions and deletions. Inserting and deleting one KV pair may inflict a large amount of write amplifications due to shifting KV pairs. This badly impairs the performance of in-NVM B+-tree. In this paper, we propose a novel circular design for B+-tree. With regard to NVM’s byte-addressability, our Circ-tree design embraces tree nodes in a circular structure without a fixed base address, and bidirectionally shifts KV pairs in a node for insertions and deletions to minimize write amplifications. We have implemented a prototype for Circ-Tree and conducted extensive experiments. Experimental results show that Circ-Tree significantly outperforms two state-of-the-art in-NVM B+-tree variants, i.e., NV-tree and FAST+FAIR, by up to 1.6× and 8.6×, respectively, in terms of write performance. The end-to-end comparison by running YCSB to KV store systems built on NV-tree, FAST+FAIR, and Circ-Tree reveals that Circ-Tree yields up to 29.3% and 47.4% higher write performance, respectively, than NV-tree and FAST+FAIR.
    [Show full text]
  • 15-213 Lectures 22 and 23: Synchronization
    15-213 Lectures 22 and 23: Synchronization Carnegie Mellon Carnegie Mellon Introduction Last Time: Threads Introduction to Computer Systems Concepts 15-213/18-243, fall 2009 Synchronization with Semaphores 23 rd Lecture, Nov 19 Today: Synchronization in Greater Depth Producer Consumer Buffer Pools and Condition Variables Instructors: Message Queues Roger B. Dannenberg and Greg Ganger Message Passing 2 Carnegie Mellon Carnegie Mellon Notifying With Semaphores Producer-Consumer on a Buffer That Holds One Item producer shared consumer /* buf1.c - producer-consumer int main() { thread buffer thread on 1-element buffer */ pthread_t tid_producer; #include “csapp.h” pthread_t tid_consumer; #define NITERS 5 /* initialize the semaphores */ Common synchronization pattern: Sem_init(&shared.empty, 0, 1); Producer waits for slot, inserts item in buffer, and notifies consumer void *producer(void *arg); Sem_init(&shared.full, 0, 0); Consumer waits for item, removes it from buffer, and notifies producer void *consumer(void *arg); /* create threads and wait */ struct { Pthread_create(&tid_producer, NULL, int buf; /* shared var */ producer, NULL); Examples sem_t full; /* sems */ Pthread_create(&tid_consumer, NULL, Multimedia processing: sem_t empty; consumer, NULL); } shared; Pthread_join(tid_producer, NULL); Producer creates MPEG video frames, consumer renders them Pthread_join(tid_consumer, NULL); Event-driven graphical user interfaces Producer detects mouse clicks, mouse movements, and keyboard hits exit(0); and inserts corresponding
    [Show full text]
  • Eodbox Documentation Release 1.0
    EODBox Documentation Release 1.0 Bailey Winter, Jason Gallant May 26, 2016 Contents 1 How Does It Work?? 3 1.1 Utilizing Programmable Real-Time Units (PRUs)............................3 1.2 Device Details and Specifications....................................4 1.3 Run Modes and Data Storage......................................8 2 How Do I Make My Own?? 11 2.1 Getting Started.............................................. 11 2.2 Modifying the BeagleBone for Communication............................. 12 2.3 External Storage............................................. 12 2.4 Modifying the PRU Memory....................................... 14 2.5 Enable the Real-Time Clock....................................... 15 3 Indices and tables 17 i ii EODBox Documentation, Release 1.0 Weakly electric fish are capable of both emitting and detecting electric signals called electric organ discharges (EODs). Current methods of recording EODs use multiple pieces of equipment that are fragile, expensive and inconvenient to transport, and rely on commercial software to record and analyze data. The goal of this project was to create a low cost and portable alternative to current research equipment. We created a device that we beleive circumvents these limitations, based the BeagleBone Black Rev C (BBB). The BBB uses a Texas Instruments AM335x 1GHz ARM© Cortex-A8, a reduced instruction set computing microprocessor that is capable of running two billion instructions per second. This is powerful processor for its size and is capable of running a full operating system. Our goal was to create a device with a user interface that allows for an adjustable, high- speed sampling rate, a designated run time, adjustable gain, flexible storage, and two ‘run modes’: a raw data recording a mode where EODs are automatically extracted.
    [Show full text]
  • Chapter 7: Queues and Deques
    Chapter 7: Queues and Deques After the stack, the next simplest data abstraction is the queue. As with the stack, the queue can be visualized with many examples you are already familiar with from everyday life. A simple illustration is a line of people waiting to enter a theater. The fundamental property of the queue is that items are inserted at one end (the rear of the line) and removed from the other (the door to the theater). This means that the order that items are removed matches the order that they are inserted. Just as a stack was described as a LIFO (last-in, first-out) container, this means a queue can be described as FIFO (first in, first out). A variation is termed the deque, pronounced “deck”, which stands for double-ended queue. In a deque values can be inserted at either the front or the back, and similarly the deck allows values to be removed from either the front or the back. A collection of peas in a straw is a useful mental image. (Or, to update the visual image, a series of tapioca buds in a bubble-tea straw). Queues and deques are used in a number of ways in computer applications. A printer, for example, can only print one job at a time. During the time it is printing there may be many different requests for other output to be printed. To handle these the printer will maintain a queue of pending print tasks. Since you want the results to be produced in the order that they are received, a queue is the appropriate data structure.
    [Show full text]
  • Algorithms and Data Structures for the Modelling of Dynamical Systems by Means of Stochastic Finite Automata
    R . Logozar Algoritmi i podatkovne strukture za modeliranje dinamičkih sustava s pomoću stohastičkih konačnih automata ISSN 1330-3651 UDC/UDK 519.713:004.383 ALGORITHMS AND DATA STRUCTURES FOR THE MODELLING OF DYNAMICAL SYSTEMS BY MEANS OF STOCHASTIC FINITE AUTOMATA Robert Logozar Original scientific paper We elaborate on the design and time-space complexity of data structures and several original algorithms that resulted from the DSA program – a tool that simulates dynamical systems and produces their stochastic finite automata models according to the theory of -machines. An efficient batch iteration algorithm generates the system points and their binary symbols, and stores them in circular buffers realized asclass member arrays. The words extracted from the time series are fed into a dynamically created binary tree of selected height. The tree is then searched for morphologically and stochastically unique subtrees or morphs, by aid of an algorithm that compares (sub)trees by their topology and the descendant nodes' conditional probabilities. The theoretical analysis of algorithms is corroborated by their execution time measurements. The paper exemplifies how an implementation of a scientific modelling tool like the DSA, generates a range of specific algorithmic solutions that can possibly find their broader use. Keywords: algorithms, data structures, time-space complexity, dynamical systems, stochastic finite automata Algoritmi i podatkovne strukture za modeliranje dinamičkih sustava s pomoću stohastičkih konačnih automata Izvorni znanstveni članak Razmatramo dizajn i vremensko-prostornu kompleksnost podatkovnih struktura i originalnih algoritama proisteklih iz DSA programa – alata za modeliranje dinamičkih sustava s pomoću stohastičkih konačnih automata prema teoriji -strojeva . Učinkovita grupna iteracija generira točke sust ava i njihove binarne simbole, te ih pohranjuje ukružne spremnike realizirane s pomoću klasnih članskih poredaka .
    [Show full text]
  • Load-Balancing Succinct B Trees
    Load-Balancing Succinct B Trees Tomohiro I Dominik K¨oppl Abstract We propose a B tree representation storing n keys, each of k bits, in either (a) nk + O(nk= lg n) bits or (b) nk + O(nk lg lg n= lg n) bits of space supporting all B tree operations in either (a) O(lg n) time or (b) O(lg n= lg lg n) time, respectively. We can augment each node with an aggregate value such as the minimum value within its subtree, and maintain these aggregate values within the same space and time complexities. Finally, we give the sparse suffix tree as an application, and present a linear-time algorithm computing the sparse longest common prefix array from the suffix AVL tree of Irving et al. [JDA'2003]. 1 Introduction A B tree [2] is the most ubiquitous data structure found for relational databases and is, like the balanced binary search tree in the pointer machine model, the most basic search data structure in the external memory model. A lot of research has already been dedicated for solving various problems with B trees, and various variants of the B tree have already been proposed (cf. [16] for a survey). Here, we study a space-efficient variant of the B tree in the word RAM model under the context of a dynamic predecessor data structure, which provides the following methods: predecessor(K) returns the predecessor of a given key K (or K itself if it is already stored); insert(K) inserts the key K; and delete(K) deletes the key K.
    [Show full text]
  • Circ-Tree: a B+-Tree Variant with Circular Design for Persistent Memory
    IEEE TRANSACTIONS ON COMPUTERS 1 Circ-Tree: A B+-Tree Variant with Circular Design for Persistent Memory Chundong Wang, Gunavaran Brihadiswarn, Xingbin Jiang, and Sudipta Chattopadhyay Abstract—Several B+-tree variants have been developed to exploit the byte-addressable non-volatile memory (NVM). We attentively investigate the properties of B+-tree and find that, a conventional B+-tree node is a linear structure in which key-value (KV) pairs are maintained from the zero offset of a node. These KV pairs are shifted in a unidirectional fashion for insertions and deletions. Inserting and deleting one KV pair may inflict a large amount of write amplifications due to shifting existing KV pairs. This badly impairs the performance of in-NVM B+-tree. In this paper, we propose a novel circular design for B+-tree. With regard to NVM’s byte-addressability, our Circ-Tree embraces tree nodes in a circular structure without a fixed base address, and bidirectionally shifts KV pairs for insertions and deletions to minimize write amplifications. We have implemented a prototype for Circ-Tree and conducted extensive experiments. Experimental results show that Circ-Tree significantly outperforms two state-of-the-art in-NVM B+-tree variants, i.e., NV-tree and FAST+FAIR, by up to 1.6× and 8.6×, respectively, in terms of write performance. The end-to-end comparison by running YCSB to KV stores built on NV-tree, FAST+FAIR, and Circ-Tree reveals that Circ-Tree yields up to 29.3% and 47.4% higher write performance, respectively, than NV-tree and FAST+FAIR.
    [Show full text]
  • Visualdsp++ 4.0 C/C++ Compiler and Library Manual for SHARC Processors CONTENTS
    W4.0 C/C++ Compiler and Library Manual for SHARC® Processors Revision 5.0, January 2005 Part Number 82-001963-01 Analog Devices, Inc. One Technology Way Norwood, Mass. 02062-9106 a Copyright Information ©2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express written consent from Analog Devices, Inc. Printed in the USA. Disclaimer Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by impli- cation or otherwise under the patent rights of Analog Devices, Inc. Trademark and Service Mark Notice The Analog Devices logo, the CROSSCORE logo, VisualDSP++, SHARC, and EZ-KIT Lite are registered trademarks of Analog Devices, Inc. All other brand and product names are trademarks or service marks of their respective owners. CONTENTS PREFACE Purpose of This Manual ............................................................... xxxi Intended Audience ....................................................................... xxxi Manual Contents ........................................................................ xxxii What’s New in This Manual ....................................................... xxxiii Technical or Customer Support .................................................. xxxiii
    [Show full text]