Protease Activated Receptors: Theme and Variations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PRSS1 Gene Serine Protease 1
PRSS1 gene serine protease 1 Normal Function The PRSS1 gene provides instructions for making an enzyme called cationic trypsinogen. This enzyme is a serine peptidase, which is a type of enzyme that cuts ( cleaves) other proteins into smaller pieces. Cationic trypsinogen is produced in the pancreas and helps with the digestion of food. Cationic trypsinogen is secreted by the pancreas and transported to the small intestine, where it is cleaved to form trypsinogen. When the enzyme is needed, trypsinogen is cleaved again into its working (active) form called trypsin. Trypsin aids in digestion by cutting protein chains at the protein building blocks (amino acids) arginine or lysine, which breaks down the protein. Trypsin also turns on (activates) other digestive enzymes that are produced in the pancreas to further facilitate digestion. A particular region of trypsin is attached (bound) to a calcium molecule. As long as trypsin is bound to calcium, the enzyme is protected from being broken down. When digestion is complete and trypsin is no longer needed, the calcium molecule is removed from the enzyme, which allows trypsin to be broken down. Health Conditions Related to Genetic Changes Hereditary pancreatitis More than 40 mutations in the PRSS1 gene have been found to cause hereditary pancreatitis, a condition characterized by recurrent episodes of inflammation of the pancreas (pancreatitis), which can lead to a loss of pancreatic function. Most of these mutations change single protein building blocks (amino acids) in cationic trypsinogen. Some PRSS1 gene mutations result in the production of a cationic trypsinogen enzyme that is prematurely converted to trypsin while it is still in the pancreas. -
Host-Parasite Interaction of Atlantic Salmon (Salmo Salar) and the Ectoparasite Neoparamoeba Perurans in Amoebic Gill Disease
ORIGINAL RESEARCH published: 31 May 2021 doi: 10.3389/fimmu.2021.672700 Host-Parasite Interaction of Atlantic salmon (Salmo salar) and the Ectoparasite Neoparamoeba perurans in Amoebic Gill Disease † Natasha A. Botwright 1*, Amin R. Mohamed 1 , Joel Slinger 2, Paula C. Lima 1 and James W. Wynne 3 1 Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia, 2 Livestock and Aquaculture, CSIRO Agriculture and Food, Woorim, QLD, Australia, 3 Livestock and Aquaculture, CSIRO Agriculture and Food, Hobart, TAS, Australia Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease Edited by: (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production Samuel A. M. Martin, University of Aberdeen, cycle. The parasite elicits a highly localized response within the gill epithelium resulting in United Kingdom multifocal mucoid patches at the site of parasite attachment. This host-parasite response Reviewed by: drives a complex immune reaction, which remains poorly understood. To generate a model Diego Robledo, for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and University of Edinburgh, United Kingdom systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was Maria K. Dahle, explored. A dual RNA-seq approach together with differential gene expression and system- Norwegian Veterinary Institute (NVI), Norway wide statistical analyses of gene and transcription factor networks was employed. A multi- *Correspondence: tissue transcriptomic data set was generated from the gill (including both lesioned and non- Natasha A. Botwright lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon [email protected] sourced from an in vivo AGD challenge trial. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Reelin Signaling Promotes Radial Glia Maturation and Neurogenesis
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Reelin Signaling Promotes Radial Glia Maturation and Neurogenesis Serene Keilani University of Central Florida Part of the Microbiology Commons, and the Molecular Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Keilani, Serene, "Reelin Signaling Promotes Radial Glia Maturation and Neurogenesis" (2009). Electronic Theses and Dissertations, 2004-2019. 6143. https://stars.library.ucf.edu/etd/6143 REELIN SIGNALING PROMOTES RADIAL GLIA MATURATION AND NEUROGENESIS by SERENE KEILANI B.S. University of Jordan, 2004 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Spring Term 2009 Major Professor: Kiminobu Sugaya © 2009 Serene Keilani ii ABSTRACT The end of neurogenesis in the human brain is marked by the transformation of the neural progenitors, the radial glial cells, into astrocytes. This event coincides with the reduction of Reelin expression, a glycoprotein that regulates neuronal migration in the cerebral cortex and cerebellum. A recent study showed that the dentate gyrus of the adult reeler mice, with homozygous mutation in the RELIN gene, have reduced neurogenesis relative to the wild type. -
Lysosomal Membrane Permeabilization and Cathepsin
Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes Christoph Borner, Carolin Oberle, Thomas Reinheckel, Marlene Tacke, Jan Buellesbach, Paul G Ekert, Jisen Huai, Mark Rassner To cite this version: Christoph Borner, Carolin Oberle, Thomas Reinheckel, Marlene Tacke, Jan Buellesbach, et al.. Lyso- somal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death and Differentiation, Nature Publishing Group, 2010, n/a (n/a), pp.n/a-n/a. 10.1038/cdd.2009.214. hal-00504935 HAL Id: hal-00504935 https://hal.archives-ouvertes.fr/hal-00504935 Submitted on 22 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes Carolin Oberle1,6, Jisen Huai1, Thomas Reinheckel1, Marlene Tacke1, Mark Rassner1,4, Paul G. Ekert2, Jan Buellesbach3,4, and Christoph 1,3,5§ Borner 1Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research, Albert Ludwigs University Freiburg, Stefan Meier Str. 17, D-79104 Freiburg, Germany 2Children’ Cancer Centre, Murdoch Children’s Research Institute, Royal Children’s Hospital, Flemington Rd., Parkville, Victoria, 3052 Australia 3Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Albertstr. -
Functional Prediction and Comparative Population Analysis of Variants in Genes for Proteases and Innate Immunity Related to SARS
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093690; this version posted May 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection Kristel Klaassen1¶, Biljana Stankovic1¶, Branka Zukic1, Nikola Kotur1, Vladimir Gasic1, Sonja Pavlovic1, Maja Stojiljkovic1* 1Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia * Corresponding author E-mail: [email protected] (MS) ¶These authors contributed equally to this work. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093690; this version posted May 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract New coronavirus SARS-CoV-2 is capable to infect humans and cause a novel disease COVID-19. Aiming to understand a host genetic component of COVID-19, we focused on variants in genes encoding proteases and genes involved in innate immunity that could be important for susceptibility and resistance to SARS-CoV-2 infection. Analysis of sequence data of coding regions of FURIN, PLG, PRSS1, TMPRSS11a, MBL2 and OAS1 genes in 143 unrelated individuals from Serbian population identified 22 variants with potential functional effect. -
Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular -
Page 1 of 76 Diabetes Diabetes Publish Ahead of Print, Published Online September 14, 2020
Page 1 of 76 Diabetes Peters, Annette; Helmholtz Center Munich German Research Center for Environmental Health, Epidemiology Institute Waldenberger, Melanie; Helmholtz Center Munich German Research Center for Environmental Health, Molecular Epidemiology Diabetes Publish Ahead of Print, published online September 14, 2020 Diabetes Page 2 of 76 Deciphering the Plasma Proteome of Type 2 Diabetes Mohamed A. Elhadad1,2,3 MSc., Christian Jonasson4,5 PhD, Cornelia Huth2,6 PhD, Rory Wilson1,2 MSc, Christian Gieger1,2,6 PhD, Pamela Matias1,2,3 MSc, Harald Grallert1,2,6 PhD, Johannes Graumann7,8 PhD, Valerie Gailus-Durner9 PhD, Wolfgang Rathmann6,10 MD, Christine von Toerne11 PhD, Stefanie M. Hauck11 PhD, Wolfgang Koenig3,12,13 MD, FRCP, FESC, FACC, FAHA, Moritz F. Sinner3,14 MD, MPH, Tudor I Oprea15,16,17 MD, PhD, Karsten Suhre18 PhD, Barbara Thorand2,6 PhD, Kristian Hveem4,5 PhD, Annette Peters2,3,6,19 PhD, Melanie Waldenberger1,2,3 PhD 1. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. 2. Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany 3. German Research Center for Cardiovascular Disease (DZHK), Partner site Munich Heart Alliance, Germany 4. K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU - Norwegian University of Science and Technology, Trondheim, Norway 5. HUNT Research Center, Department of Public Health, NTNU - Norwegian University of Science and Technology, Levanger, Norway 6. German Center for Diabetes Research (DZD), München-Neuherberg, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany 7. Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany 8. -
The Destruction of Glucagon, Adrenocorticotropin and Somatotropin by Human Blood Plasma
THE DESTRUCTION OF GLUCAGON, ADRENOCORTICOTROPIN AND SOMATOTROPIN BY HUMAN BLOOD PLASMA I. Arthur Mirsky, … , Gladys Perisutti, Neil C. Davis J Clin Invest. 1959;38(1):14-20. https://doi.org/10.1172/JCI103783. Research Article Find the latest version: https://jci.me/103783/pdf THE DESTRUCTION OF GLUCAGON, ADRENOCORTICOTROPIN AND SOMATOTROPIN BY HUMAN BLOOD PLASMA* By I. ARTHUR MIRSKY, GLADYS PERISUTTI, AND NEIL C. DAVIS (From the Department of Clinical Science, University of Pittsburgh, School of Medicine, Pittsburgh, Pa.) (Submitted for publication July 9, 1958; accepted August 13, 1958) Human blood contains an inactive proteolytic plasma on ACTH, somatotropin, glucagon and enzyme, plasminogen, which may be converted insulin before and after the conversion of plas- in vitro to its active form, plasmin, either spon- minogen to plasmin by streptokinase. taneously or by the addition of various agents (1). A similar activation is believed to occur METHODS in vivo after exposure to a variety of noxious Human blood plasma prepared from freshly drawn circumstances (2-6). Since plasmin catalyzes heparinized venous blood, plasminogen prepared from fresh plasma by Milstone's procedure (8), and two differ- the hydrolysis of corticotropin A (7), it is pos- ent preparations of plasmin (9, 10) were employed in sible that circumstances which induce the acti- this study. A preparation of streptokinase (SK) which vation of plasmin will result also in an increase contained approximately 4,000 units per mg. was used in the rate of destruction of adrenocorticotropic to activate the conversion of plasminogen to plasmin. (ACTH) and other polypeptide hormones. Crystalline glucagon (molecular weight [M. -
Data-Mining Approaches Reveal Hidden Families of Proteases in The
Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Data-Mining Approaches Reveal Hidden Families of Proteases in the Genome of Malaria Parasite Yimin Wu,1,4 Xiangyun Wang,2 Xia Liu,1 and Yufeng Wang3,5 1Department of Protistology, American Type Culture Collection, Manassas, Virginia 20110, USA; 2EST Informatics, Astrazeneca Pharmaceuticals, Wilmington, Delaware 19810, USA; 3Department of Bioinformatics, American Type Culture Collection, Manassas, Virginia 20110, USA The search for novel antimalarial drug targets is urgent due to the growing resistance of Plasmodium falciparum parasites to available drugs. Proteases are attractive antimalarial targets because of their indispensable roles in parasite infection and development,especially in the processes of host e rythrocyte rupture/invasion and hemoglobin degradation. However,to date,only a small number of protease s have been identified and characterized in Plasmodium species. Using an extensive sequence similarity search,we have identifi ed 92 putative proteases in the P. falciparum genome. A set of putative proteases including calpain,metacaspase,and s ignal peptidase I have been implicated to be central mediators for essential parasitic activity and distantly related to the vertebrate host. Moreover,of the 92,at least 88 have been demonstrate d to code for gene products at the transcriptional levels,based upon the microarray and RT-PCR results,an d the publicly available microarray and proteomics data. The present study represents an initial effort to identify a set of expressed,active,and essential proteases as targets for inhibitor-based drug design. [Supplemental material is available online at www.genome.org.] Malaria remains one of the most dangerous infectious diseases metalloprotease (falcilysin; Eggleson et al. -
Aspartyl F3-Hydroxylase: in Vitro Hydroxylation of a Synthetic
Proc. Nadl. Acad. Sci. USA Vol. 86, pp. 3609-3613, May 1989 Biochemistry Aspartyl f3-hydroxylase: In vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor IX (epidermal growth factor-like domain/f3-hydroxyaspartic acid) ROBERT S. GRONKE*, WILLIAM J. VANDUSEN*, VICTOR M. GARSKYt, JOHN W. JACOBSt, MOHINDER K. SARDANAt, ANDREW M. STERN*, AND PAUL A. FRIEDMAN*§ Departments of *Pharmacology, tMedicinal Chemistry, and tBiological Chemistry, Merck Sharp & Dohme Research Laboratories, West Point, PA 19486 Communicated by Edward M. Scolnick, February 17, 1989 ABSTRACT .3-Hydroxylation of aspartic acid is a post- (16) either with heavy metal chelators such as 2,2'-dipyridyl translational modification that occurs in several vitamin K- (dipy) or with 2,4-pyridine dicarboxylate, an analogue of dependent coagulation proteins. By use of a synthetic substrate 2-ketoglutarate (KG) known to block proline hydroxylase comprised of the first epidermal growth factor-like domain in (17), our initial experiments with EGF-IX1H used experimen- human factor IX and either mouse L-cell extracts or rat liver tal conditions favorable for KG dioxygenases such as prolyl microsomes as the source of enzyme, in vitro aspartyl 13- or lysyl hydroxylase (18). We report here in vitro demon- hydroxylation was accomplished. Aspartyl f3-hydroxylase ap- stration of .8-hydroxylation of Asp residues and show that pears to require the same cofactors as known a-ketoglutarate- this enzymatic activity requires both Fe2' and KG. dependent dioxygenases. The hydroxylation reaction proceeds with the same stereospecificity and occurs only at the aspartate corresponding to the position seen in vivo. -
Tumor-Associated and Microbial Proteases Compromise Host Igg Effector Functions by a Single Cleavage Proximal to the Hinge
Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge Randall J. Brezski1, Omid Vafa, Diane Petrone, Susan H. Tam, Gordon Powers, Mary H. Ryan, Jennifer L. Luongo, Allison Oberholtzer, David M. Knight, and Robert E. Jordan1 Biologics Research, Centocor R&D Inc., Radnor, PA 19087 Edited by Barry S. Coller, The Rockefeller University, New York, NY, and approved August 31, 2009 (received for review April 15, 2009) The successful elimination of pathogenic cells and microorganisms responsible for binding the MHC-class I related receptor, the by the humoral immune system relies on effective interactions neonatal Fc receptor (FcRn) that mediates the serum half-life of between host immunoglobulins and Fc␥ receptors on effector cells, circulating IgGs (14–16), are located in the area between the CH2 in addition to the complement system. Essential Ig motifs that and CH3 regions of the Fc (17–19). direct those interactions reside within the conserved IgG lower Several groups previously documented that certain proteases hinge/CH2 interface. We noted that a group of tumor-related and associated with inflammation, tumor invasion, metastasis, and microbial proteases cleaved human IgG1s in that region, and the bacterial infections have the ability to cleave IgGs (20, 21). Several ‘‘nick’’ of just one of the heavy chains profoundly inhibited IgG1 proteases preferentially cleave IgGs in the lower hinge, including effector functions. We focused on IgG1 monoclonal antibodies the matrix metalloproteinases (MMPs) stromelysin-1 (MMP-3), (mAbs) since IgG1 is the most abundant human subclass and metalloelastase (MMP-12) (both cleave between P232 and E233), demonstrates robust Fc-mediated effector functions.