(12) Patent Application Publication (10) Pub. No.: US 2015/0038576A1 Timokhina Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2015/0038576A1 Timokhina Et Al US 20150.038576A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0038576A1 Timokhina et al. (43) Pub. Date: Feb. 5, 2015 (54) COMPOSITIONS AND THEIR USE FOR A24F 47/00 (2006.01) SMOKING CESSATION AND OTHER A63L/2 (2006.01) TREATMENTS A63L/II (2006.01) (71) Applicant: SENTIENS, LLC, Charlotte, NC (US) A6M I5/00 (2006.01) A63L/25 (2006.01) (72) Inventors: Inna S. Timokhina, Potomac, MD (US); A63L/343 (2006.01) Reid von Borstel, Potomac, MD (US); (52) U.S. Cl DennisMSG Tan, Weddington,NEW, NC 'S(US): CPCAV e. we............... A24B 15/16 (2013.01); A61 K3I/125 s s (2013.01); A61 K3I/05 (2013.01); A61 K (73) Assignee: SENTIENS, LLC, Charlotte, NC (US) 3 1/343 (2013.01); A61 K31/12 (2013.01); A6 IK3I/II (2013.01); A61M 15/009 (21) Appl. No.: 14/449,533 (2013.01); A24F 47/008 (2013.01) USPC ........... 514/470; 13 1/270; 13 1/273: 514/692; (22) Filed: Aug. 1, 2014 514/731: 514/678; 514/701: 128/200.14; 128/202.21 Related U.S. Application Data (60) Provisional application No. 61/861,865, filed on Aug. 2, 2013. (57) ABSTRACT Publication Classification A composition includes a liquid. The liquid aerosolizes for (51) Int. Cl. delivery to a user by an airway. The liquid includes an agent A24B 15/16 (2006.01) that activates a TRPV3 channel. The agent includes a terpe A6 IK3I/05 (2006.01) noid compound. Patent Application Publication Feb. 5, 2015 US 2015/0038576 A1 covC s US 2015/0038576 A1 Feb. 5, 2015 COMPOSITIONS AND THEIR USE FOR channels, expressed in sensory neurons of the respiratory SMOKING CESSATION AND OTHER tract. In some embodiments, an apparatus takes the form of a TREATMENTS cigarette Substitute device for alleviating cigarette craving or Supporting Smoking cessation. The cigarette Substitute device CROSS-REFERENCE TO RELATED may include Such devices as electronic cigarettes, non-elec APPLICATIONS tronic cigarette Substitute devices with or without heating 0001. This application claims priority to U.S. Provisional elements, inhalers, vaporizers, and any other device that may App. Ser. No. 61/861,865, filed Aug. 2, 2013, which is hereby deliver the composition to the airway. incorporated by reference in its entirety. 0010. In the following discussion, cigarette smoking is used as a generic and illustrative term to include cigarette, BACKGROUND cigar or pipe Smoking without loss of generality to Smoking in general. 0002 Chronic exposure to cigarette Smoke can lead to 0011 Embodiments of the disclosure provide composi inflammatory airway conditions, such as COPD, and tobacco tions of bioactive plant derived compounds, which may be Smoking can cause cancer and respiratory and cardiovascular nicotine and tobacco free. Embodiments of the disclosure disease. These negative health effects can be attributed to the further provide methods and devices for delivering the com carcinogenic, oxidant and other toxic constituents of cigarette positions to the respiratory tracts of smokers, former Smokers smoke. It has been estimated that up to 50% of heavy smokers or other subjects, using vaporizing devices. The constituents develop chronic obstructive pulmonary disease (COPD), of the compositions may possess anti-inflammatory, anti while prevalence of COPD in general population is estimated oxidant and/or anti-anxiety activities. The compositions, as 10%. Chronic obstructive pulmonary disease (COPD) is methods and devices provide improved mimicry of Smoking now recognized as a leading cause of morbidity and mortality and Suppress Smoking abstinence symptoms. worldwide and is associated with significant individual and 0012 Mechanisms of neurogenic and tissue inflammation socioeconomic burden. Furthermore, COPD patients can in the respiratory tract induced by cigarette Smoke will now have high levels of anxiety and depression, which are related be discussed. Chemical irritants are detected by chemosensi to progressive worsening of the disease. Exposure to tobacco tive C-fibers—e.g. sensory neurons that extend numerous Smoke is a significant etiologic agent of this disease, which is terminals Superficially into the airway epithelium, placing characterized by progressive airflow limitation with an abnor them in an ideal position to react to inhaled irritants. These mal inflammatory response in the Small airways and alveoli, neurons express chemosensory TRP receptors, including Small airway remodeling, chronic bronchitis, pulmonary TRPA1, TRPV1, TRPV3 and TRPM8. The TRPA1 receptor hypertension and emphysema. The inflammation induced by is abroad spectrum sensor for irritants due to its structure, and cigarette Smoke can lead to an increase in protease produc it plays an important role in sensing noxious tobacco Smoke tion, a major contributor to lung destruction, seen in emphy constituents. Furthermore, TRPA1 mediates neurogenic sema. Other factors contributing to the development of COPD inflammation of sensory nerves induced by unsaturated alde include exposure to dusts, fumes and air pollution particles. hyde components of cigarette Smoke Such as acrolein and crotonaldehyde. TRPA1 is also a sensor for multiple oxidants BRIEF SUMMARY contained in cigarette Smoke. 0003. In an embodiment, a composition includes a liquid. 0013 Transient sensitization of airway neurons by ciga The liquid aerosolizes for deliver to a user by an airway. The rette Smoke or chemical irritants contributes to airway pro liquid includes an agent that activates a TRPV3 channel. The tection, eliminating these irritants from the respiratory tract agent includes a terpenoid compound. and promoting tissue healing and recovery. In contrast, per 0004. In another embodiment, a device includes a liquid sistent neuronal sensitization by cigarette Smoke in habitual and a housing. The liquid aerosolizes for deliver to a user by Smokers may lead to respiratory irritation and neurogenic an airway. The liquid includes an agent that activates a inflammation in a TRPA1 dependent manner. Inflamed nerves TRPV3 channel. The agent includes a terpenoid compound. secrete pro-inflammatory neuropeptides induced by toxic and The housing delivers the liquid aerosolized to the user. oxidant components of cigarette Smoke thereby further pro moting tissue inflammation and damage. Thus, neuronal BRIEF DESCRIPTION OF THE DRAWINGS inflammation occurring in parallel with airway tissue inflam 0005 FIG. 1 is a perspective view of an exemplary device mation can lead to development of inflammatory airway con for delivering constituents of the present disclosure. ditions, such as COPD and asthma. 0014 Mechanisms of chronic conditions of itch and cough 0006 FIG. 2 is a perspective view of an exemplary inhaler induced by cigarette smoke will now be discussed. Multiple device for delivering constituents of the present disclosure. TRPA1 activators, particularly cigarette Smoke, evoke cough 0007 FIG. 3 is an exploded schematic side view of an in animals and humans. TRPA1 may act as a mediator of exemplary device for delivering constituents of the present histamine independentitch. Oxidants cause itch and resulting disclosure. scratching behavior in a TRPA1 dependent manner. Oxida tive stress is indicative of most acute and chronic inflamma DETAILED DESCRIPTION tory airway conditions. Reactive oxygen species (ROS) are 0008 Embodiments described herein relate generally to a generated by infiltrating macrophages and neutrophils during composition, methods and devices for delivering the compo inflammation. Thus, itch and cough may be induced both by sition, that exhibit properties of the present disclosure. toxic and oxidant constituents of cigarette Smoke and by 0009. The present disclosure is generally directed to com endogenous inflammatory mediators released by inflamed positions, apparatuses and methods for delivering composi tissues in the respiratory tract of heavy Smokers. Continuous tions that act on transient receptor potential V3 (TRPV3) exposure of airway tissues to this “inflammatory Soup' may US 2015/0038576 A1 Feb. 5, 2015 provide a basis for progressive worsening of the disease, cant functional impairment and pose risk factors for numer which may be observed in COPD and asthma, as well as ous additional diseases. Thus, Suppressing anxiety associated reactive respiratory tract syndrome (RADS). These inflam with withdrawal from Smoking addiction may be an impor matory airway conditions may be considered diseases of tant factor for increasing Smoke cessation rates and reducing chemical sensing. negative side effects of withdrawal. 00.15 Despite well-known adverse health consequences 0021 Nicotine replacement therapy medications can of smoking, approximately 20% of U.S. adults smoke increase quit rates an average 1.4 times compared to placebo. tobacco cigarettes. This number is higher in other countries. However, even with the use of medications, the success rate of Quitting smoking is difficult because of the aversive with quitting remains low. The percentage of Smokers who relapse drawal symptoms that accompany tobacco abstinence. Symp within six months with the use of nicotine replacement thera toms of tobacco abstinence include physical complaints such pies is reported to be 93%. Although many nicotine replace as headache and hunger, negative mood and high irritability, ment therapies products have been available in the US during decrease in attention and cognitive function, and increased the past decade, the overall quit rate has changed very little, cigarette craving and Smoking urges. from 48.7% in 1998 to 51.1% in 2008. Furthermore, many 0016. Inflammatory “throatitch'
Recommended publications
  • Immunolocalization of Cannabinoid Receptor Type 1 and CB2 Cannabinoid Receptors, and Transient Receptor Potential Vanilloid Channels in Pterygium
    MOLECULAR MEDICINE REPORTS 16: 5285-5293, 2017 Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium MARTHA ASSIMAKOPOULOU1, DIONYSIOS PAGOULATOS1, PINELOPI NTERMA1 and NIKOLAOS PHARMAKAKIS2 Departments of 1Anatomy, Histology and Embryology, and 2Ophthalmology, School of Medicine, University of Patras, GR-26504 Rio, Greece Received July 27, 2016; Accepted January 19, 2017 DOI: 10.3892/mmr.2017.7246 Abstract. Cannabinoids, as multi-target mediators, acti- CB2 (P>0.05). Additionally, CB1 and CB2 were significantly vate cannabinoid receptors and transient receptor potential highly expressed in primary pterygia (P=0.01), compared with vanilloid (TRPV) channels. There is evidence to support a recurrent pterygia. Furthermore, CB1 expression levels were functional interaction of cannabinoid receptors and TRPV significantly correlated with CB2 expression levels in primary channels when they are coexpressed. Human conjunctiva pterygia (P=0.005), but not in recurrent pterygia (P>0.05). demonstrates widespread cannabinoid receptor type 1 (CB1), No significant difference was detected for all TRPV channel CB2 and TRPV channel localization. The aim of the present expression levels between pterygium (primary or recurrent) study was to investigate the expression profile for cannabinoid and conjunctival tissues (P>0.05). A significant correlation receptors (CB1 and CB2) and TRPV channels in pterygium, between the TRPV1 and TRPV3 expression levels (P<0.001) an ocular surface lesion originating from the conjunctiva. was detected independently of pterygium recurrence. Finally, Semi‑serial paraffin‑embedded sections from primary and TRPV channel expression was identified to be significantly recurrent pterygium samples were immunohistochemically higher than the expression level of cannabinoid receptors in the examined with the use of specific antibodies.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • PCHHAX Comparative Phytochemical and Pharmacological Study Of
    Available online a t www.derpharma chemica.com ISSN 0975-413X Der Pharma Chemica, 2016, 8(1):67-83 CODEN (USA): PCHHAX (http://derpharmachemica.com/archive.html) Comparative phytochemical and pharmacological study of antitussive and antimicrobial effects of boswellia and thyme essential oils Kamilia F. Taha 1, Mona H. Hetta 2, Walid I. Bakeer 3, Nemat A. Z. Yassin 4, Bassant M. M. Ibrahim 4 and Marwa E. S. Hassan 1 1Phytochemistry Department, Applied Research Center of Medicinal Plants, National Organization for Drug Control and Research (NODCAR), Egypt 2Pharmacognosy Department, Fayoum University, Fayoum, Egypt 3Microbiology Department, Beni -Suef University, Egypt 4Pharmacology Department, National Research Centre, Dokki, Giza, Egypt _____________________________________________________________________________________________ ABSTRACT Essential oils are commonly used in herbal cough mixtures as antitussive and antimicrobial preparations, for instance Thyme oil is used in many cough preparations in the Egyptian market and also Boswellia oil is traditionally used as an antitussive. The aim of this study is to compare the antitussive and antimicrobial activity of essential oils of Boswellia carterii and Thymus vulgaris referring to their chemical components which were studied by using different methods of analysis (UV, HPTLC, HPLC, GC and GC/MS). HPLC technique was used for the first time for analysis of Boswellia oil. Results showed that the principal component of Boswellia oil was octyl acetate (35.1%), while the major constituent of Thyme oil was thymol (51%). Both oils were effective as antitussives but Thyme oil was more efficient (89.3%) than Boswellia oil (59%) and also as antimicrobial. It could be concluded that Thyme and Boswellia oils are effective as antitussives but less with Boswellia oil which could serve as an adjuvant in herbal cough mixture but cannot replace Thyme oil.
    [Show full text]
  • Transient Receptor Potential Channels and Metabolism
    Molecules and Cells Minireview Transient Receptor Potential Channels and Metabolism Subash Dhakal and Youngseok Lee* Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707, Korea *Correspondence: [email protected] https://doi.org/10.14348/molcells.2019.0007 www.molcells.org Transient receptor potential (TRP) channels are nonselective Montell, 2007). These cationic channels were first charac- cationic channels, conserved among flies to humans. Most terized in the vinegar fly, Drosophila melanogaster. While TRP channels have well known functions in chemosensation, a visual mechanism using forward genetic screening was thermosensation, and mechanosensation. In addition to being studied, a mutant fly showed a transient response to being sensing environmental changes, many TRP channels constant light instead of the continuous electroretinogram are also internal sensors that help maintain homeostasis. response recorded in the wild type (Cosens and Manning, Recent improvements to analytical methods for genomics 1969). Therefore, the mutant was named as transient recep- and metabolomics allow us to investigate these channels tor potential (trp). In the beginning, researchers had spent in both mutant animals and humans. In this review, we two decades discovering the trp locus with the germ-line discuss three aspects of TRP channels, which are their role transformation of the genomic region (Montell and Rubin, in metabolism, their functional characteristics, and their 1989). Using a detailed structural permeation property anal- role in metabolic syndrome. First, we introduce each TRP ysis in light-induced current, the TRP channel was confirmed channel superfamily and their particular roles in metabolism. as a six transmembrane domain protein, bearing a structural Second, we provide evidence for which metabolites TRP resemblance to a calcium-permeable cation channel (Mon- channels affect, such as lipids or glucose.
    [Show full text]
  • Full-Text (PDF)
    Review ARticle دوره هفتم، شماره سوم، تابستان 1398 دوره هفتم، شماره سوم، تابستان 1398 Review on the Third International Neuroinflammation Congress and Student Fes tival of Neuroscience in Mashhad University of Medical Sciences 1 2 1, 3* Sayed Mos tafa Modarres Mousavi , Sajad Sahab Negah , Ali Gorji 1Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran 2Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran 3 Epilepsy Research Center, Department of Neurology and Neurosurgery, Wes tfälische Wilhelms-Universität Müns ter, Müns ter, Germany Article Info: Received: 11 June 2019 Revised: 12 June 2019 Accepted: 13 June 2019 ABSTRACT Introduction: Neuroinflammation congress was the third in a series of annual events aimed to facilitate the inves tigative and analytical discussions on a range of neuroinflammatory diseases. The neuroinflammation congress focused on various neuroinflammatory disorders, including multiple sclerosis, brain tumors, epilepsy, and neurodegenerative diseases. The conference was held in June 11-13, 2019 and organized by Mashhad University of Medical Sciences and Muns ter University, which aimed to shed light on the causes of neuroinflammatory diseases and uncover new treatment pathways. Conclusion: Through a comprehensive scientific program with a broad basic and clinical aspects, we discussed the basic aspects of neuroinflammation and neurodegeneration up to the s tate-of-the-art treatments. In this congress, 334 scientific topics were presented and discussed. Key words:
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Terpene Screening Library Item No. 9003370 • Batch No. 0611615 Panels are routinely re-evaluated to include new catalog introductions as the research evolves. Page 1 of 4 Plate Well Contents Item Number 1 A1 Unused 1 A2 Ursolic Acid 10072 1 A3 Forskolin 11018 1 A4 Betulin 11041 1 A5 Lupeol 11215 1 A6 Paxilline 11345 1 A7 β-acetyl-Boswellic Acid 11674 1 A8 Andrographolide 11679 1 A9 Bakuchiol 11684 1 A10 Betulinic Acid 11686 1 A11 β-Elemonic Acid 11712 1 A12 Unused 1 B1 Unused 1 B2 Oleanolic Acid 11726 1 B3 Neoandrographolide 11742 1 B4 Asiatic Acid 11818 1 B5 Madecassic Acid 11854 1 B6 Cafestol 13999 1 B7 Ingenol 14031 1 B8 Bilobalide 14272 1 B9 (−)-Huperzine A 14620 1 B10 Ginkgolide B 14636 1 B11 Cucurbitacin B 14820 1 B12 Unused 1 C1 Unused 1 C2 Cucurbitacin E 14821 1 C3 Polygodial 14979 1 C4 Zerumbone 15400 1 C5 Ingenol-3-angelate 16207 1 C6 Ferutinin 16554 1 C7 Limonin 16932 1 C8 Phytol 17401 1 C9 Dehydrocostus lactone 18485 1 C10 β-Elemene 19641 1 C11 Juvenile Hormone III 19646 1 C12 Unused WARNING CAYMAN CHEMICAL THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 1180 EAST ELLSWORTH RD SAFETY DATA ANN ARBOR, MI 48108 · USA This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.
    [Show full text]
  • Camphor Elicits Up-Regulation of Hepatic and Pulmonary Pro
    Pathophysiology 26 (2019) 305–313 Contents lists available at ScienceDirect Pathophysiology jo urnal homepage: www.elsevier.com/locate/pathophys Camphor elicits up-regulation of hepatic and pulmonary pro-inflammatory cytokines and chemokines via activation of NF-kB in rats a,∗ b a a Oluwatobi T. Somade , Babajide O. Ajayi , Nurudeen O. Tajudeen , Eniola M. Atunlute , a a Adewale S. James , Samuel A. Kehinde a Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria b Department of Biochemistry, Bowen University, Iwo, Nigeria a r t i c l e i n f o a b s t r a c t Article history: Consumption of camphor infusions is widely used as an aphrodisiac in preparation for sexual intercourse, Received 10 April 2019 to boost performance. There is dearth of information associating or relating its consumption to liver or Received in revised form 8 May 2019 lung inflammation. Therefore, we investigated the effect of various doses of camphor in an acute study, Accepted 28 July 2019 on hepatic and pulmonary levels of some pro-inflammatory cytokines and chemokines in male wistar rats. Following administration, 2000 and 4000 mg/kg body weight camphor significantly increase liver Keywords: and lung levels of tumor necrosis factor alpha (TNF-␣), interleukin 1 beta (IL-1␤) and interleukin 6 (IL-6) Camphor in a dose dependent manner compared with control, while interleukin 10 (IL-10) levels were significantly Chemokines Cytokines increased only by 1000 and 4000 mg/kg body weight camphor in liver and lung respectively, compared Hepatic with control. Also compared with control, camphor administration resulted in a significant increase in the Pro-inflammation expressions of hepatic and pulmonary nuclear factor kappa B (NFkB), cyclooxygenase 2 (COX-2), regulated Pulmonary upon activation normal T cell expressed and secreted (RANTES) or CCL5, and monocyte chemo-attractant protein 1 (MCP-1) in a dose dependent manner.
    [Show full text]
  • TRPV3 in Drug Development
    pharmaceuticals Review TRPV3 in Drug Development Lisa M. Broad 1,*, Adrian J. Mogg 1, Elizabeth Eberle 2, Marcia Tolley 2, Dominic L. Li 3 and Kelly L. Knopp 3 1 Lilly Research Centre, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK; [email protected] 2 Covance Greenfield Laboratories, Greenfield, Indianapolis, IN 46140, USA; [email protected] (E.E.); [email protected] (M.T.) 3 Lilly Research Laboratories, Eli Lilly and Company Inc., Indianapolis, IN 46285, USA; [email protected] (D.L.L.); [email protected] (K.L.K.) * Correspondance: [email protected]; Tel.: +44-1276-483-016 Academic Editors: Arpad Szallasi and Susan M. Huang Received: 1 July 2016; Accepted: 31 August 2016; Published: 9 September 2016 Abstract: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP (Transient Receptor Potential) super-family. It is a relatively underexplored member of the thermo-TRP sub-family (Figure1), however, genetic mutations and use of gene knock-outs and selective pharmacological tools are helping to provide insights into its role and therapeutic potential. TRPV3 is highly expressed in skin, where it is implicated in skin physiology and pathophysiology, thermo-sensing and nociception. Gain of function TRPV3 mutations in rodent and man have enabled the role of TRPV3 in skin health and disease to be particularly well defined. Pre-clinical studies provide some rationale to support development of TRPV3 antagonists for therapeutic application for the treatment of inflammatory skin conditions, itch and pain. However, to date, only one compound directed towards block of the TRPV3 receptor (GRC15300) has progressed into clinical trials.
    [Show full text]
  • Method Parameters' Impact on Mortality and Variability in Mouse Stroke Experiments: a Meta-Analysis
    www.nature.com/scientificreports OPEN Method parameters’ impact on mortality and variability in mouse stroke experiments: a meta- Received: 27 October 2015 Accepted: 13 January 2016 analysis Published: 15 February 2016 Edvin Ingberg1, Hua Dock1, Elvar Theodorsson1, Annette Theodorsson1,2 & Jakob O Ström1,3,4 Although hundreds of promising substances have been tested in clinical trials, thrombolysis currently remains the only specific pharmacological treatment for ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical studies has been suggested to play an important role in these failures. Therefore, it would be attractive to use animal models optimized to minimize unnecessary mortality and outcome variability, or at least to be able to power studies more exactly by predicting variability and mortality given a certain experimental setup. The possible combinations of methodological parameters are innumerous, and an experimental comparison of them all is therefore not feasible. As an alternative approach, we extracted data from 334 experimental mouse stroke articles and, using a hypothesis-driven meta-analysis, investigated the method parameters’ impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice as well as permanent occlusion of the middle cerebral artery rendered the lowest variability of the infarct size while the emboli methods increased variability. The use of Swiss mice increased mortality. Our study offers guidance for researchers striving to optimize mouse stroke models. Stroke is amongst the most common causes of death and disability worldwide1. Major advances have been made in the understanding of the pathophysiology of stroke and in vitro and animal experiments have suggested numerous substances as promising candidates for treatment of the disease2,3.
    [Show full text]
  • Neuropsychiatric Implications of Transient Receptor Potential Vanilloid (TRPV) Channels in the Reward System T
    Neurochemistry International 131 (2019) 104545 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/neuint Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system T ∗∗ ∗ Raghunath Singha, Yashika Bansala, Ishwar Parharb, Anurag Kuhada, , Tomoko Sogab, a Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India b Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, 47500, Malaysia ARTICLE INFO ABSTRACT Keywords: Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, TRPV channels encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the Addiction pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders Food reward remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor Opioids potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory Alcohol receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in Cannabinoids dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophy- siology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding mod- ulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.
    [Show full text]
  • Contribution of Essential Oils to the Fight Against Microbial Biofilms—A
    processes Review Contribution of Essential Oils to the Fight against Microbial Biofilms—A Review 1, 1 2 3 4 Diana Camelia Nut, ă *, Carmen Limban , Cornel Chirit, ă , Mariana Carmen Chifiriuc , Teodora Costea , 5 5 5 Petre Ionit, ă , Ioana Nicolau and Irina Zarafu 1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, TraianVuia no.6, 020956 Bucharest, Romania; [email protected] 2 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, TraianVuia no.6, 020956 Bucharest, Romania; [email protected] 3 Department of Microbiology, Faculty of Biology, Universtity of Bucharest, AleeaPortocalelor no.1-3, 060101 Bucharest, Romania; [email protected] 4 Department of Pharmacognosy, Phytochemistry, Phytotherapy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, TraianVuia no.6, 020956 Bucharest, Romania; [email protected] 5 Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Regina Elisabeta no.4-12, 030018 Bucharest, Romania; [email protected] (P.I.); [email protected] (I.N.); [email protected] (I.Z.) * Correspondence: [email protected] Abstract: The increasing clinical use of artificial medical devices raises the issue of microbial con- tamination, which is a risk factor for the occurrence of biofilm-associated infections. A huge amount of scientific data highlights the promising potential of essential oils (EOs) to be used for the de- velopment of novel antibiofilm strategies. We aimed to review the relevant literature indexed in Citation: Nut˘a,D.C.; Limban, C.; , PubMed and Embase and to identify the recent directions in the field of EOs, as a new modality to Chirit, ˘a,C.; Chifiriuc, M.C.; Costea, T.; eradicate microbial biofilms.
    [Show full text]
  • Boswellia Serrata, a Potential Antiinflammatory Agent: an Overview
    7/31/2015 Boswellia Serrata, A Potential Antiinflammatory Agent: An Overview Indian J Pharm Sci. 2011 May­Jun; 73(3): 255–261. PMCID: PMC3309643 doi: 10.4103/0250­474X.93507 Boswellia Serrata, A Potential Antiinflammatory Agent: An Overview M. Z. Siddiqui* Processing and Product Development Division, Indian Institute of Natural Resins and Gums, Namkum, Ranchi­834 010, India * Address for correspondence E­mail: [email protected] Received 2010 Aug 9; Revised 2011 May 30; Accepted 2011 Jun 5. Copyright : © Indian Journal of Pharmaceutical Sciences This is an open­access article distributed under the terms of the Creative Commons Attribution­Noncommercial­Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article has been cited by other articles in PMC. Abstract Go to: The resin of Boswellia species has been used as incense in religious and cultural ceremonies and in medicines since time immemorial. Boswellia serrata (Salai/Salai guggul), is a moderate to large sized branching tree of family Burseraceae (Genus Boswellia), grows in dry mountainous regions of India, Northern Africa and Middle East. Oleo gum­resin is tapped from the incision made on the trunk of the tree and is then stored in specially made bamboo basket for removal of oil content and getting the resin solidified. After processing, the gum­resin is then graded according to its flavour, colour, shape and size. In India, the States of Andhra Pradesh, Gujarat, Madhya Pradesh, Jharkhand and Chhattisgarh are the main source of Boswellia serrata. Regionally, it is also known by different names.
    [Show full text]