PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Grain-size sensitive rheology of orthopyroxene 10.1002/2014GL060607 Rolf H.C. Bruijn1 and Philip Skemer1 Key Points: 1Department of Earth and Planetary Sciences, Washington University in St. Louis, Saint Louis, Missouri, USA • Deformation mechanism map for orthopyroxene is constructed • Diffusion creep of orthopyroxene is important over a wide range Abstract The grain-size sensitive rheology of orthopyroxene is investigated using data from rheological of conditions and microstructural studies. A deformation mechanism map is constructed assuming that orthopyroxene deforms by two independent mechanisms: dislocation creep and diffusion creep. The field boundary between these mechanisms is defined using two approaches. First, experimental data from Lawlis (1998), Correspondence to: which show a deviation from non-linear power law behavior at low stresses, are used to prescribe the location R. H. C. Bruijn, of the field boundary. Second, a new orthopyroxene grain-size piezometer is used as a microstructural
[email protected] constraint to the field boundary. At constant temperature, both approaches yield sub-parallel field boundaries, separated in grain size by a factor of only 2–5. Extrapolating to lithospheric conditions, the Citation: deformation mechanism transition occurs at a grain size of ~150–500 μm, consistent with observations from Bruijn, R. H. C., and P. Skemer (2014), nature. As the transition from dislocation to diffusion creep may promote shear localization, grain-size Grain-size sensitive rheology of orthopyroxene, Geophys. Res. Lett., 41, reduction of orthopyroxene may play a prominent role in plate-boundary deformation. doi:10.1002/2014GL060607. Received 20 MAY 2014 Accepted 3 JUL 2014 1.