How Do the Lithosphere and Asthenosphere Deform?

Total Page:16

File Type:pdf, Size:1020Kb

How Do the Lithosphere and Asthenosphere Deform? Mineralogy – Petrophysics: Deformation processes & compositional evolution in the lithosphere and asthenosphere This class & the next one’s program: How do the lithosphere and asthenosphere deform? Long-term viscoplastic (ductile) deformation mechanisms: Dislocation creep, diffusion creep, grain boundary sliding How do these crystal-scale processes translate in terms of macroscopic mechanical behavior : flow laws + on Friday Deformation – crystallographic orientations – anisotropy of physical properties in the mantle Andréa Tommasi [email protected] elastic Rheological behaviors & macroscopic deformation elasto- visco- plastic Rupture (brittle deformation) viscous plastic the 3 processes may coexist f(T/Tm,σ…) Ductile (solid state) magmatic flow flow ductile deformation crystal plasticity dislocation creep diffusion creep recrystallization grain boundary dislocation glide sliding / migration visco-plastic viscous behavior behavior σ = σ + f (ε) σ ∝ε y linear – non-linear? Crystal plasticity = major process in ductile deformation ü ductile deformation (change in shape ± crystals orientation) without loss of physical continuity (≠ brittle behavior) ü viscoplastic behavior : ifσ ≥ σ y ⇒ σ ∝ε Ice Ih hexagonal Which processes ? Ice deformation at HT (-5°C) Deformation = change in shape and orientation (color) of the crystals Dislocation glide & polycrystalline ice Dynamic recrystallization in-situ deformation: pure shear C. Wilson - Univ. Melbourne, Australia 0% Dislocation creep in the "lab" @ 800°C & 10-6s-1 Heavitree quartzite: "coarse grained" 200µm Initial material undeformed (diagenetic growth only) 42% shortening Microstructure = signature of the crystal-scale mechanisms Dell'Angelo & Tullis activated to accommodate the imposed macroscopic strain JStructGeol 1986 Solid-state flow: Ductile deformation (creep) dislocation glide Function of: linear: dislocations - mineral structure - T dislocation - σ ,ε creep Motion of defaults in the - f(H2O, O2)… crystals’ structure point: vacancies twinning diffusion grain boundary sliding needs an additional mechanism! Deformation of metals : shear along well-defined crystallographic planes Frenkel's early model high energy cost : rupture and reconstruction of a large number of atomic bonds Ø crystal strength much higher than observed experimentally Solution? Solution? Defaults in the crystalline structure Localized shearing Instantaneous strain strain = f(time) dislocation Same final result, but lower energy consumption! the principle… Displacement by a crystal lattice unit = Burgers vector b Deformation = motion of dislocations = dislocation glide Dislocations in 3D = dislocation loops • The dislocation line separates the sheared volume of the crystal from the non-sheared one • The Burgers vector is the dislocation motion (shear) direction How do we observe dislocations? § decoration (olivine) Kamchatka xenolith, Soustelle et al. J. Petrol. 2010 § transmission electron microscopy (TEM) Dislocations imaging by TEM Deformation of the crystal lattice in the vicinity of a dislocation transmitted electrons diffracted electrons L: dislocation line θ: deviation relatively to Bragg angle Dislocations : TEM Using an aperture, one may select • the transmitted electrons Dislocations in glide configuration in a Zr alloy Foto H. Leroux, LSPES- USTLille Dislocations : TEM Using an aperture, one may select • the diffracted electrons Dislocations in olivine © H. Couvy, USTLille Dislocation glide Burgers vector strain rate ε˙ ∝ ρmbv glide velocity (depends on σ) density of free dislocations 2 ⎛ σ ⎞ ρm ∝⎜ ⎟ ⎝ µb⎠ shear modulus 3 ε! ∝σ Dislocation glide : activation energy Dislocation glide: reorganisation of atomic bonds Ø f(σ, T) Ø f (crystal structure): some planes & directions are favored because bonds are weaker olivine crystal seen along the [100] direction (Mg,Fe) () = planes [] = directions Si02 tetraedra Covalent bonds = strong! [100] 4.98A Cations: Mg, Fe Ionic bonds [010] = weak [001] 10.21 A (010) 5.99 A (001) (011) (Mg,Fe) Dislocation glide : crystals orientation evolution! within a grain (crystal):! (001) (010) (011) strain = motion of dislocations on well-defined crystal 1! planes & directions n ⎛ s ⎞ 2! s τ r γ˙ = ⎜ s ⎟ ⎝ τ 0 ⎠ But in a real rock there are neighbors! Dislocation glide : crystals orientation evolution! motion of dislocations on well-defined crystal planes & directions = crystal deformation has a limited degree 1! of freedom strain compatibility è rotation of the crystal! 2! Ø development of a crystal preferred orientation! = all crystals tend to a common orientation! 3! Z Z X X Y lherzolite, xenolith Tahiti obstacle = grain boundary, another dislocation, impurity… accumulation of dislocations = tangling = forests increase of the crystal internal energy ➣ hardening http://zig.onera.fr/~devincre/DisGallery/index.html ➣ To continue to deform, one needs to continuosly increase the stress … Consequences? ➣ System stops deforming ➣ or… Change in deformation mechanism in a small-scale Sinistral strike-slip shear zone in a tonalite, SE-Brazil Experimental data: change in mechanical behavior as a function of strain rate & temperature hardening clinopyroxenite temperature strain rate At low strain rates and HT = steady state Hardening avoided by a process that is "slow" and T dependent! Solid-state flow: Ductile deformation (creep) dislocation glide Function of: linear: dislocations - mineral structure - T dislocation - σ ,ε creep Motion of defects in the - f(H2O, O2)… crystals structure point: vacancies twinning diffusion grain boundary sliding needs an additional mechanism! Point defects in a crystal interstitial vacancy difusion = mass transport motion of atoms & vacancies Vacancies & atoms move in opposite directions, but it is the vacancies that move along large distances difusion = mass transport motion of atoms & vacancies F(mineral, T, …) Fick law (1-D) – flux is a function ∂c of the diffusivity D & J = −D. of the concentration gradient ∂x from high stress (compressive) to low stress (extensive) regions Changes the shape, but not the orientation of the crystals Diffusion mechanisms grain boundary - Nabarro-Herring creep : intracrystalline diffusion - Coble creep: diffusion along grain boundaries - not an empty space! Ø rocks are cohesive Vacancies & atoms move in opposite directions - region of discontinuity (arrows indicate atoms flow, but it is the vacancies in the crystalline arrangement = more that really move along large distances!) defects An easily observable mass diffusion process: Grain boundary migration Static grain growth: octachloropropane Park, Ree & Means, J. Virtual Explorer 2000 Jessel & Bons – Simulation using ELLE – J. Virtual Explorer 2000 virtualexplorer.com.au/.../lectures/lec2.html Grain boundary migration in olivine : HT deformation or static recrystallization (HT, but no deformation) Diffusion is a well-understood physical process… Einstein law (the drunk guy walking…) Γ: frequency of steps a : amplitude of the step 2 t : observation time d = Γa t d : walked distance In a crystal: ⎛ ΔG ⎞ Γ = ν.exp⎜ − m ⎟ ⎝ RT ⎠ Γ= probability of successful atomic jumps ν= vibration frequency of the atoms (≈1013Hz) ΔG = enthalpy reduction (migration energy) m 1 2 cm2s-1 D = Γ.Nv.a D= atomic diffusion coefficient 2 Nv = vacancy concentration (# empty sites/ total # sites) T ì = Γ ì = D ì a = interatomic distances Strain rate = transport velocity Forces (Fext): F - Applied (external) stresses ext - Internal stresses due to dU/dx, < v >= D where U is the elastic energy kT associated with dislocations (depends on the dislocation density and hence on stress) v ∝ F T ì = v ì E 1,E+00 D ∝ exp(− RT ) 1,E-02 exp − E 1,E-04 ( RT ) 1,E-06 v ∝ T 1,E-08 1,E-10 E ∼ 100 − 300kJ / mol 1/T 1,E-12 R = 8.31J / mol / K exp(-E/RT)/T 1,E-14 800 900 1000 1100 1200 1300 1400 1500 dislocation = distortion of the crystal lattice ➣ elastic energy « ideal » interatomic distances not respected Coble vs. Nabarro-Herring creep ε˙ = v /l → l ∝ d ε˙ ∝ F → F ∝σ ˙ exp 1 ε ∝ (− T) σV δD ε˙ = A ⋅ B B RT d 3 Dv = intracrystalline diffusion coeff. D grain boundary diffusion coeff σV D b = ε˙ = A ⋅ V Db >> Dv V 2 A= adimensional constant RT d V = molar volume R = ideal gaz constant d = grain size δ = grain boundary thickness Usually the 2 processes are associated … General diffusion creep flow: σV εσ˙ = A 2 Deff ε! = A p exp(kTd−E / RT ) d Dv = intracrystalline diffusion coeff. Db = grain boundary diffusion coeff D Db >> Dv 1 < p < 3;πEδ ∼b100A=− adimensional300k constantJ / mol D = D (1+ ) V = molar volume eff v R = ideal gas constant dDv NA = Avogadro constant k = Boltzmann constant d = grain size R = kb NA δ = grain boundary thickness Effective diffusion creep needs small grain sizes & high temperature Diffusion creep compression extension Does it exist in nature? Under which conditions? - experimental evidence = linear relation between stress & strain rate - absence of crystal preferred orientations??? May crystal preferred orientations develop during diffusion creep? Current ‘paradigm’: Diffusion creep does not produce crystal preferred orientations, since it does not create strain incompatibility. But some (recent) experimental observations & models challenge this « assumption »: • Wheeler, J. (2009). The preservation of seismic anisotropy in the Earth's mantle during diffusion creep. Geophysical Journal International, 178(3), 1723-1732. • Miyazaki, T., Sueyoshi, K., & Hiraga, T. (2013). Olivine crystals align during diffusion creep of Earth/'s upper mantle. Nature,
Recommended publications
  • The Dislocation Behaviour and GND Development in Nickel Based Superalloy During Creep
    The Dislocation Behaviour and GND Development in Nickel Based Superalloy during Creep Soran Birosca1, Gang Liu1, Rengen Ding2, Cathie Rae3, Jun Jiang4,5, Ben Britton5, Chris Deen6, Mark Whittaker1 1 Institute of Structural Materials, College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK. 2 School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK. 3 Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK. 4 Department of Mechanical Engineering, Faculty of Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK 5 Department of Materials, South Kensington Campus, Imperial College London, London SW7 2AZ, UK 6 Rolls-Royce plc, PO Box 31, Derby, DE24 8BJ, UK. Abstract In the current study, dislocation activity and storage during creep deformation in a nickel based superalloy (Waspaloy) was investigated, focussing on the storage of geometrically necessary (GND) and statistically stored (SSD) dislocations. Two methods of GND density calculations were used, namely; EBSD Hough Transformation and HR-EBSD Cross Correlation based methods. The storage of dislocations, including SSDs, was investigated by means of TEM imaging. Here, the concept of GND accumulation in soft and hard grains and the effect of neighbouring grain orientation on total dislocation density was examined. Furthermore, the influence of applied stress (below and above Waspaloy yield stress) during creep on deformation micro-mechanism and dislocation density was studied. It was demonstrated that soft grains provided pure shear conditions at least on two octahedral (111) slips for easy dislocation movement reaching the grain boundary without significant geometrically necessary accumulation in the centre of the grain.
    [Show full text]
  • Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems
    Project No. 09-776 Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems Reactor Concepts Dr. Vi jay K. Vasudevan University of Cincinnati In collaboration with: Idaho National Laboratory Oak Ridge National Laboratory Sue Lesica, Federal ROC Laura Carroll, Technical ROC Final Report Project Title: Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems Covering Period: October 1, 2009 - March 31, 2014 Date of Report: April 3, 2015 Recipient: Name: University of Cincinnati Street: 2600 Clifton Ave. City: Cincinnati State: Ohio Zip: 45221 Contract Number: 88635 Project Number: 09-776 Principal Investigator: Vijay K. Vasudevan - (513) 556-3103 - vijay. [email protected] Xingshuo Wen (PhD student); Behrang Poorganji (Postdoctoral Fellow) Collaborators: Laura J. Carroll, T.L. Sham Project Objective: This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design. TPOCs: [email protected] Federal reviewers: [email protected] 1 T a b l e o f C o n t e n t s Section Page
    [Show full text]
  • Indentation-Based Characterization of Creep and Hardness Behavior of Magnesium Carbon Nanotube Nanocomposites at Room Temperature
    This is a repository copy of Indentation-based characterization of creep and hardness behavior of magnesium carbon nanotube nanocomposites at room temperature. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/149671/ Version: Supplemental Material Article: Thornby, J, Verma, D, Cochrane, R et al. (4 more authors) (2019) Indentation-based characterization of creep and hardness behavior of magnesium carbon nanotube nanocomposites at room temperature. SN Applied Sciences, 1 (7). ARTN: 695. ISSN 2523-3963 https://doi.org/10.1007/s42452-019-0696-9 © Springer Nature Switzerland AG 2019. This is a post-peer-review, pre-copyedit version of an article published in SN Applied Sciences. The final authenticated version is available online at: https://doi.org/10.1007/s42452-019-0696-9 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Indentation-Based Characterization of Creep and Hardness Behavior of Magnesium Carbon Nanotube Nanocomposites at Room Temperature J.
    [Show full text]
  • The Viscosities of Partially Molten Materials Undergoing Diffusion Creep
    The viscosities of partially molten materials undergoing diffusion creep John F. Rudge Bullard Laboratories, Department of Earth Sciences, University of Cambridge December 10, 2018 Abstract Partially molten materials resist shearing and compaction. This resistance is described by a fourth-rank effective viscosity tensor. When the tensor is isotropic, two scalars determine the resistance: an effective shear and an effective bulk viscosity. Here, calculations are presented of the effective viscosity tensor during diffusion creep for a 2D tiling of hexagonal unit cells and a 3D tessellation of tetrakaidecahedrons (truncated octahedrons). The geometry of the melt is determined by assuming textural equilibrium. The viscosity tensor for the 2D tiling is isotropic, but that for the 3D tessellation is anisotropic. Two parameters control the effect of melt on the viscosity tensor: the porosity and the dihedral angle. Calculations for both Nabarro-Herring (volume diffusion) and Coble (surface diffusion) creep are presented. For Nabarro-Herring creep the bulk viscosity becomes singular as the porosity vanishes. This singularity is logarithmic, a weaker singularity than typically assumed in geodynamic models. The presence of a small amount of melt (0.1% porosity) causes the effective shear viscosity to approximately halve. For Coble creep, previous modelling work has argued that a very small amount of melt may lead to a substantial, factor of 5, drop in the shear viscosity. Here, a much smaller, factor of 1.4, drop is obtained for tetrakaidecahedrons. Owing to a Cauchy relation symmetry, the Coble creep bulk viscosity is a constant multiple of the shear viscosity when melt is present. 1 Introduction Dynamical models are often highly dependent on assumptions about the rheology of the material being deformed.
    [Show full text]
  • Dislocation Creep: Climb and Glide in the Lattice Continuum
    Article Dislocation Creep: Climb and Glide in the Lattice Continuum Sinisa Dj. Mesarovic School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; [email protected] Received: 9 June 2017; Accepted: 31 July 2017; Published: 4 August 2017 Abstract: A continuum theory for high temperature creep of polycrystalline solids is developed. It includes the relevant deformation mechanisms for diffusional and dislocation creep: elasticity with eigenstrains resulting from vacancy diffusion, dislocation climb and glide, and the lattice growth/loss at the boundaries enabled by diffusion. All the deformation mechanisms are described with respect to the crystalline lattice, so that the continuum formulation with lattice motion as the basis is necessary. However, dislocation climb serves as the source sink of lattice sites, so that the resulting continuum has a sink/source of its fundamental component, which is reflected in the continuity equation. Climb as a sink/source also affects the diffusion part of the problem, but the most interesting discovery is the climb-glide interaction. The loss/creation of lattice planes through climb affects the geometric definition of crystallographic slip and necessitates the definition of two slip fields: the true slip and the effective slip. The former is the variable on which the dissipative power is expanded during dislocation glide and is thus, the one that must enter the glide constitutive equations. The latter describes the geometry of the slip affected by climb, and is necessary for kinematic analysis. Keywords: dislocation climb; lattice sink; vacancy sink; continuum with a material sink; climb-glide interaction 1. Introduction At high temperatures, polycrystalline solids exhibit creep—a slow, phenomenologically viscous flow.
    [Show full text]
  • Short-Term Creep Behavior of an Additive Manufactured Non-Weldable Nickel-Base Superalloy Evaluated by Slow Strain Rate Testing
    Acta Materialia 179 (2019) 142e157 Contents lists available at ScienceDirect Acta Materialia journal homepage: www.elsevier.com/locate/actamat Full length article Short-term creep behavior of an additive manufactured non-weldable Nickel-base superalloy evaluated by slow strain rate testing * Jinghao Xu a, Hans Gruber b, Dunyong Deng a, Ru Lin Peng a, Johan J. Moverare a, a Division of Engineering Materials, Department of Management and Engineering, Linkoping€ University, Linkoping,€ SE-58183, Sweden b Division of Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, SE-41296, Sweden article info abstract Article history: Additive manufacturing (AM) of high g0 strengthened Nickel-base superalloys, such as IN738LC, is of high Received 1 July 2019 interest for applications in hot section components for gas turbines. The creep property acts as the Received in revised form critical indicator of component performance under load at elevated temperature. However, it has been 18 August 2019 widely suggested that the suitable service condition of AM processed IN738LC is not yet fully clear. In Accepted 19 August 2019 order to evaluate the short-term creep behavior, slow strain rate tensile (SSRT) tests were performed. Available online 20 August 2019 IN738LC bars were built by laser powder-bed-fusion (L-PBF) and then subjected to hot isostatic pressing (HIP) followed by the standard two-step heat treatment. The samples were subjected to SSRT testing at Keywords: À5 À6 À7 Nickel-base superalloy 850 C under strain rates of 1 Â 10 /s, 1 Â 10 /s, and 1 Â 10 /s. In this research, the underlying creep Laser processing deformation mechanism of AM processed IN738LC is investigated using the serial sectioning technique, Creep electron backscatter diffraction (EBSD), transmission electron microscopy (TEM).
    [Show full text]
  • The Role of Pressure Solution Creep in the Ductility of the Earth's
    The role of pressure solution creep in the ductility of the earth’s upper crust Jean-Pierre Gratier, Dag Dysthe, Francois Renard To cite this version: Jean-Pierre Gratier, Dag Dysthe, Francois Renard. The role of pressure solution creep in the ductility of the earth’s upper crust. Advances in Geophysics, Elsevier, 2013, 54, pp.47-179. 10.1016/B978-0- 12-380940-7.00002-0. insu-00799131 HAL Id: insu-00799131 https://hal-insu.archives-ouvertes.fr/insu-00799131 Submitted on 11 Mar 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 The role of pressure solution creep in the ductility of the Earth’s upper crust Jean-Pierre Gratier1, Dag K. Dysthe2,3, and François Renard1,2 1Institut des Sciences de la Terre, Observatoire, CNRS, Université Joseph Fourier-Grenoble I, BP 53, 38041 Grenoble, France 2Physics of Geological Processes, University of Oslo, Norway 3Laboratoire Interdisciplinaire de Physique, BP 87, 38041 Grenoble, France The aim of this review is to characterize the role of pressure solution creep in the ductility of the Earth’s upper crust and to describe how this creep mechanism competes and interacts with other deformation mechanisms.
    [Show full text]
  • Mechanical Failure – Creep
    High temperature applications What happen to the strength at elevated temperature -Steel power plants -Oil refineries -Chemical plants Strength becomes……… High operating temperatures very dependent to strain rate and time of Engine jet ----1400 oC exposure Steam turbine power plants: pipes carry steam (~566 oC, pressure ~ 3500 psi) Called Creep surface reentry temperature ~ 2800 oC (Apollo) …Temperatures generated within the hottest area during ballistic reentry may exceed 11,100°C MECHANICAL FAILURE – CREEP ISSUES TO ADDRESS... MECHANICAL FAILURE - • Creep curve CREEP • Revisit dislocations • Revisit diffusion • Creep testing • Creep failure • Larson-Miller parameter WHAT IS CREEP? • Many engineering components are exposed to high temperature for a long period of time. • Changes within the component due to this (at constant Time – dependent permanent plastic deformation, which generally occurs at high temperatures (T > 0.4T ), under a constant load or stress. stress) is called Creep. m • e.g. Turbine blade within a jet engine, steam generator. • It can also happened at room temperature for soft metals such as Lead. • It is a slow process, where deformation changes with time. Creep is important in applications such as: turbine blades (jet engines), gas turbines, power plants (boilers and steam lines) which must operate 800-1000 OC at high stresses and high temperatures without any changes in dimensions. THEORY OF CREEP Creep behaviour of a metal is determined by measuring the strain World trade center, WTC collapsed, due to creep (ε) deformation as function of time under constant stress 21 CREEP • Creep occurs even with high strength materials with high heat resistant. strain, ε • At high temperature atomic bonding starts to fail, causing movement of atoms and atomic planes.
    [Show full text]
  • Grain-Sizereductionmechanisms and Rheologicalconsequences in High
    Grain-sizereductionmechanisms and rheologicalconsequences in high-temperaturegabbromylonites of Hidaka, Japan Hugues Raimbourg, Tsuyoshi Toyoshima, Yuta Harima, Gaku Kimura To cite this version: Hugues Raimbourg, Tsuyoshi Toyoshima, Yuta Harima, Gaku Kimura. Grain- sizereductionmechanisms and rheologicalconsequences in high-temperaturegabbromylonites of Hidaka, Japan. Earth and Planetary Science Letters, Elsevier, 2008, 267 (3-4), pp.637-653. 10.1016/j.epsl.2007.12.012. insu-00756068 HAL Id: insu-00756068 https://hal-insu.archives-ouvertes.fr/insu-00756068 Submitted on 22 Nov 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Grain size reduction mechanisms and rheological consequences in high-temperature gabbro mylonites of Hidaka, Japan Hugues Raimbourga, Tsuyoshi Toyoshimab, Yuta Harimab, Gaku Kimuraa (a) Department of Earth and Planetary Science, Faculty of Science, University of Tokyo, Japan (b) Department of Geology, Faculty of Science, University of Niigata, Japan Corresponding Author: Hugues Raimbourg, Dpt. Earth Planet. Science, Faculty
    [Show full text]
  • Dynamic Recrystallization by Subgrain Rotation in Olivine Revealed By
    Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction Marco Lopez-Sanchez, Andrea Tommasi, Walid Ben Ismail, Fabrice Barou To cite this version: Marco Lopez-Sanchez, Andrea Tommasi, Walid Ben Ismail, Fabrice Barou. Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction. Tectonophysics, Elsevier, 2021, pp.228916. 10.1016/j.tecto.2021.228916. hal-03312394 HAL Id: hal-03312394 https://hal.archives-ouvertes.fr/hal-03312394 Submitted on 2 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author copy of the article accepted for publication in Tectonophysics. Please cite as: Lopez-Sanchez M.A., Tommasi, A., Ben Ismail, W., Barou. F. Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction. Tectonophysics, doi: 10.1016/j.tecto.2021.228916 Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction Marco A. Lopez-Sanchez a,*, Andrea Tommasi a, Walid Ben Ismail b,c,
    [Show full text]
  • High Temperature Creep Behaviour of Cast Nickel-Based Superalloys INC 713 LC, B1914 and MAR-M247
    metals Article High Temperature Creep Behaviour of Cast Nickel-Based Superalloys INC 713 LC, B1914 and MAR-M247 Marie Kvapilova *, Petr Kral , Jiri Dvorak and Vaclav Sklenicka Institute of Physics of Materials CAS, Žižkova 22, 61662 Brno, Czech Republic; [email protected] (P.K.); [email protected] (J.D.); [email protected] (V.S.) * Correspondence: [email protected]; Tel.: +420-532-290-374 Abstract: Cast nickel-based superalloys INC713 LC, B1914 and MAR-M247 are widely used for high temperature components in the aerospace, automotive and power industries due to their good castability, high level of strength properties at high temperature and hot corrosion resistance. The present study is focused on the mutual comparison of the creep properties of the above-mentioned superalloys, their creep and fracture behaviour and the identification of creep deformation mecha- nism(s). Standard constant load uniaxial creep tests were carried out up to the rupture at applied stress ranging from 150 to 700 MPa and temperatures of 800–1000 ◦C. The experimentally determined values of the stress exponent of the minimum creep rate, n, were rationalized by considering the existence of the threshold stress, σ0. The corrected values of the stress exponent correspond to the power-law creep regime and suggest dislocation climb and glide as dominating creep deformation mechanisms. Fractographic observations clearly indicate that the creep fracture is a brittle mostly mixed transgranular and intergranular mode, resulting in relatively low values of fracture strain. Determined main creep parameters show that the superalloy MAR-M247 exhibits the best creep prop- erties, followed by B1914 and then the superalloy INC713 LC.
    [Show full text]
  • Dislocation and Diffusion Creep of Synthetic Anorthite Aggregates
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. Bll, PAGES 26,017-26,036, NOVEMBER 10, 2000 Dislocation and diffusion creep of synthetic anorthite aggregates E. Rybacki and G. Dresen GeoForschungsZentrumPotsdam, Potsdam, Germany Abstract. Syntheticfine-grained anorthite aggregates were deformedat 300 MPa confining pressurein a Paterson-typegas deformation apparatus. Creep tests were performedat temperatures rangingfrom 1140 to 1480K, stressesfrom 30 to 600 MPa, and strain rates between 2x 10 '6 and lx10-3 s 'l. Weprepared samples with water total contents of 0.004 wt % (dry)and 0.07 wt % (wet), respectively.The wet (dry) materialcontained <0.7 (0.2) vol % glass,associated with fluid inclusionsor containedat triplejunctions. The arithmeticmean grain size of the specimensvaried between2.7 _+0.1 lamfor the dry materialand 3.4 _+0.2 lamfor wet samples.Two differentcreep regimeswere identified for dry andwet anorthiteaggregates. The datacould be fitted to a power law. At stresses> 120 MPa we founda stressexponent of n = 3 irrespectiveof the water content, indicatingdislocation creep. However, the activation energy of wetsamples is356 _+ 9 kJmol 'l, substantiallylower than for dry specimens with 648 + 20kJ mo1-1. The preexponential factor is log A = 2.6(12.7) MPa -n s -• forwet (dry) samples. Microstructural observations suggest that grain boundarymigration recrystallization is importantin accommodatingdislocation creep. In the low- stressregime we observeda stressexponent of n = 1, suggestingdiffusion creep. The activation energiesfor dry and wet samples are 467 + 16and 170 + 6 kJmol '•, respectively.Log A is 12.1 MPa-n pm m s -1 for the dry material and 1.7 MPa -" pm m s '1 for wet anorthite.
    [Show full text]