An Infrastructure for Adaptive Dynamic Optimization Derek Bruening, Timothy Garnett, and Saman Amarasinghe Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 fiye,timothyg,
[email protected] Abstract ing profile information improves the predictions but still falls short for programs whose behavior changes dynami- Dynamic optimization is emerging as a promising ap- cally. Additionally, many software vendors are hesitant to proach to overcome many of the obstacles of traditional ship binaries that are compiled with high levels of static op- static compilation. But while there are a number of com- timization because they are hard to debug. piler infrastructures for developing static optimizations, Shifting optimizations to runtime solves these problems. there are very few for developing dynamic optimizations. Dynamic optimization allows the user to improve the per- We present a framework for implementing dynamic analy- formance of binaries without relying on how they were ses and optimizations. We provide an interface for build- compiled. Furthermore, several types of optimizations are ing external modules, or clients, for the DynamoRIO dy- best suited to a dynamic optimization framework. These in- namic code modification system. This interface abstracts clude adaptive, architecture-specific, and inter-module opti- away many low-level details of the DynamoRIO runtime mizations. system while exposing a simple and powerful, yet efficient Adaptive optimizations require instant responses to and lightweight, API. This is achieved by restricting opti- changes in program behavior. When performed statically, a mization units to linear streams of code and using adaptive single profiling run is taken to be representative of the pro- levels of detail for representing instructions.