Bibliography Journal Papers S. G. Korzennik and A. Eff-Darwich

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography Journal Papers S. G. Korzennik and A. Eff-Darwich Bibliography Journal Papers S. G. Korzennik and A. Eff-Darwich. Mode Frequencies from 17, 15 and 2 Years of GONG, MDI, and HMI Data. In Eclipse on the Coral Sea: Cycle 24 Ascending, Journal of Physics Conference Series, 2013. S. G. Korzennik, M. C. Rabello-Soares, J. Schou, and T. P. Larson. Accurate characterization of high-degree modes using MDI data. In Eclipse on the Coral Sea: Cycle 24 Ascending, Journal of Physics Conference Series, 2013. S. G. Korzennik, M. C. Rabello-Soares, J. Schou, and T. Larson. Accurate characterization of high-degree modes using MDI data. Journal of Physics Conference Series, 440(1):012016, June 2013. S. G. Korzennik, M. C. Rabello-Soares, J. Schou, and T. P. Larson. Accurate Characterization of High-degree Modes Using MDI Observations. ApJ, 772:87, August 2013. A. Eff-Darwich and S. G. Korzennik. The Dynamics of the Solar Radiative Zone. Sol. Phys., 287:43{56, October 2013. D. F. Phillips, A. G. Glenday, C.-H. Li, C. Cramer, G. Furesz, G. Chang, A. J. Benedick, L.-J. Chen, F. X. K¨artner, S. G. Korzennik, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth. Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb. Optics Express, 20:13711{13726, June 2012. A. Eff-Darwich and S. G. Korzennik. Accurate Mapping of the Torsional Oscillations: a Trade-Off Study between Time Resolution and Mode Characterization Precision. Journal of Physics Conference Series, 271(1):012078, January 2011. S. G. Korzennik and A. Eff-Darwich. The rotation rate and its evolution derived from improved mode fitting and inversion methodology. Journal of Physics Conference Series, 271(1):012067, January 2011. A. Eff-Darwich and S. G. Korzennik. The solar core as never seen before. Journal of Physics Conference Series, 271(1):012043, January 2011. A. Eff-Darwich, S. G. Korzennik, and R. A. Garc´ıa. Advances in solar rotation rate inferences: Unstructured grid inversions and improved rotational splittings. Astronomische Nachrichten, 331:890, December 2010. C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. K¨artner, S. G. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth. In-situ determination of astro-comb calibrator lines to better than 10 cm s−1. Optics Express, 181:13239, June 2010. B. E. McArthur, G. F. Benedict, R. Barnes, E. Martioli, S. G. Korzennik, E. Nelan, and R. P. Butler. New Observational Constraints on the υ Andromedae System with Data from the Hubble Space Telescope and Hobby-Eberly Telescope. ApJ, 715:1203{1220, June 2010. W. J. Chaplin, T. Appourchaux, Y. Elsworth, R. A. Garc´ıa,G. Houdek, C. Karoff, T. S. Metcalfe, J. Molenda-Zakowicz,_ M. J. P. F. G. Monteiro, M. J. Thompson, T. M. Brown, J. Christensen- Dalsgaard, R. L. Gilliland, H. Kjeldsen, W. J. Borucki, D. Koch, J. M. Jenkins, J. Ballot, S. Basu, M. Bazot, T. R. Bedding, O. Benomar, A. Bonanno, I. M. Brand~ao,H. Bruntt, T. L. Campante, O. L. Creevey, M. P. Di Mauro, G. Do˘gan,S. Dreizler, P. Eggenberger, L. Esch, S. T. Fletcher, S.G. Korzennik: Publication List as of Nov 2016 Page 2 S. Frandsen, N. Gai, P. Gaulme, R. Handberg, S. Hekker, R. Howe, D. Huber, S. G. Korzennik, J. C. Lebrun, S. Leccia, M. Martic, S. Mathur, B. Mosser, R. New, P.-O. Quirion, C. R´egulo,I. W. Roxburgh, D. Salabert, J. Schou, S. G. Sousa, D. Stello, G. A. Verner, T. Arentoft, C. Barban, K. Belkacem, S. Benatti, K. Biazzo, P. Boumier, P. A. Bradley, A.-M. Broomhall, D. L. Buzasi, R. U. Claudi, M. S. Cunha, F. D'Antona, S. Deheuvels, A. Derekas, A. Garc´ıaHern´andez,M. S. Giampapa, M. J. Goupil, M. Gruberbauer, J. A. Guzik, S. J. Hale, M. J. Ireland, L. L. Kiss, I. N. Kitiashvili, K. Kolenberg, H. Korhonen, A. G. Kosovichev, F. Kupka, Y. Lebreton, B. Leroy, H.-G. Ludwig, S. Mathis, E. Michel, A. Miglio, J. Montalb´an,A. Moya, A. Noels, R. W. Noyes, P. L. Pall´e, L. Piau, H. L. Preston, T. Roca Cort´es,M. Roth, K. H. Sato, J. Schmitt, A. M. Serenelli, V. Silva Aguirre, I. R. Stevens, J. C. Su´arez,M. D. Suran, R. Trampedach, S. Turck-Chi`eze,K. Uytterhoeven, R. Ventura, and P. A. Wilson. The Asteroseismic Potential of Kepler: First Results for Solar-Type Stars. ApJ, 713:L169{L175, April 2010. D. F. Phillips, A. Glenday, C.-H. Li, C. Cramer, S. G. Korzennik, G. Noah Chang, L.-J. Chen, A. Benedick, F. X. Kaertner, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth. Calibration of an Astrophysical Spectrograph with an Astro-comb. APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, March 2010. C.-H. Li, A. Glenday, D. F. Phillips, S. G. Korzennik, G. Noah Chang, A. Benedick, L.-J. Chen, F. X. Kaertner, D. Sasselov, A. Szentgyorgyi, and R. Walsworth. Laboratory Demonstration of a Green Astro-comb. APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, March 2010. A. Sozzetti, D. W. Latham, G. Torres, A. P. Boss, B. W. Carney, S. G. Korzennik, J. B. Laird, and R. P. Stefanik. The Keck metal-poor planet search . On the frequency of gas giant planets in the metal-poor regime. Memorie della Societa Astronomica Italiana Supplementi, 14:173, 2010. A. Sozzetti, G. Torres, D. W. Latham, R. P. Stefanik, S. G. Korzennik, A. P. Boss, B. W. Carney, and J. B. Laird. A Keck HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. II. On the Frequency of Giant Planets in the Metal-Poor Regime. ApJ, 697:544{556, May 2009. A. Sozzetti, G. Torres, D. Charbonneau, J. N. Winn, S. G. Korzennik, M. J. Holman, D. W. Latham, J. B. Laird, J. Fernandez, F. T. O'Donovan, G. Mandushev, E. Dunham, M. E. Everett, G. A. Esquerdo, M. Rabus, J. A. Belmonte, H. J. Deeg, T. N. Brown, M. G. Hidas, and N. Baliber. A New Spectroscopic and Photometric Analysis of the Transiting Planet Systems TrES-3 and TrES-4. ApJ, 691:1145{1158, February 2009. M. C. Rabello-Soares, S. G. Korzennik, and J. Schou. Analysis of MDI High-Degree Mode Frequencies and their Rotational Splittings. Sol. Phys., 251:197{224, September 2008. R. A. Garc´ıa,S. Mathur, J. Ballot, A. Eff-Darwich, S. J. Jim´enez-Reyes, and S. G. Korzennik. Influence of Low-Degree High-Order p-Mode Splittings on the Solar Rotation Profile. Sol. Phys., 251:119{133, September 2008. A. Eff-Darwich, S. G. Korzennik, S. J. Jim´enez-Reyes, and R. A. Garc´ıa. Analysis of the Sensitivity of Solar Rotation to Helioseismic Data from GONG, GOLF, and MDI Observations. ApJ, 679:1636{1643, June 2008. A. Eff-Darwich, C. R´egulo, S. G. Korzennik, F. P´erezHern´andez,and T. Roca Cort´es. Detection and temporal coherence of p-modes below 1.4 mHz. Astronomische Nachrichten, 329:470, 2008. S. G. Korzennik. YAOPBM - yet another peak bagging method. Astronomische Nachrichten, 329:453, 2008. S.G. Korzennik: Publication List as of Nov 2016 Page 3 A. Sozzetti, G. Torres, D. W. Latham, B. W. Carney, R. P. Stefanik, A. P. Boss, J. B. Laird, and S. G. Korzennik. A Keck HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. I. Testing Giant Planet Formation and Migration Scenarios. ApJ, 649:428{435, September 2006. S. G. Korzennik. A Mode-Fitting Methodology Optimized for Very Long Helioseismic Time Series. ApJ, 626:585{615, June 2005. S. J. Jim´enez-Reyes, R. A. Garc´ıa,W. J. Chaplin, and S. G. Korzennik. On the Spatial Dependence of Low-Degree Solar p-Mode Frequency Shifts from Full-Disk and Resolved-Sun Observations. ApJ, 610:L65{L68, July 2004. R. A. Garc´ıa, T. Corbard, W. J. Chaplin, S. Couvidat, A. Eff-Darwich, S. J. Jim´enez-Reyes, S. G. Korzennik, J. Ballot, P. Boumier, E. Fossat, C. J. Henney, R. Howe, M. Lazrek, J. Lochard, P. L. Pall´e,and S. Turck-Chi`eze. About the rotation of the solar radiative interior. Sol. Phys., 220:269{285, April 2004. M. Marti´c,J.-C. Lebrun, T. Appourchaux, and S. G. Korzennik. p-mode frequencies in solar-like stars. I. Procyon A. A&A, 418:295{303, April 2004. S. G. Korzennik, M. C. Rabello-Soares, and J. Schou. On the Determination of Michelson Doppler Imager High-Degree Mode Frequencies. ApJ, 602:481{516, February 2004. D. Naef, M. Mayor, S. G. Korzennik, D. Queloz, S. Udry, P. Nisenson, R. W. Noyes, T. M. Brown, J. L. Beuzit, C. Perrier, and J. P. Sivan. The ELODIE survey for northern extra-solar planets. II. A Jovian planet on a long-period orbit around GJ 777 A. A&A, 410:1051{1054, November 2003. D. Naef, M. Mayor, S. G. Korzennik, D. Queloz, S. Udry, P. Nisenson, R. W. Noyes, T. M. Brown, J. L. Beuzit, C. Perrier, and J. P. Sivan. ELODIE survey for northern extra-solar planets. II. (Naef+, 2003). VizieR Online Data Catalog, 341:1051, September 2003. A. Eff-Darwich, S. G. Korzennik, S. J. Jim´enez-Reyes, and F. P´erezHern´andez. An Upper Limit on the Temporal Variations of the Solar Interior Stratification. ApJ, 580:574{578, November 2002. A. Eff-Darwich, S. G. Korzennik, and S. J. Jim´enez-Reyes. Inversion of the Internal Solar Rotation Rate. ApJ, 573:857{863, July 2002. M. F. Woodard, S. G. Korzennik, M. C. Rabello-Soares, P. Kumar, T. D. Tarbell, and S. Acton. Energy Distribution of Solar Oscillation Modes Inferred from Space-based Measurements.
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Fundamental Stellar Parameters of Benchmark Stars from CHARA Interferometry I
    Astronomy & Astrophysics manuscript no. paper2_metalpoor c ESO 2020 June 11, 2020 Fundamental stellar parameters of benchmark stars from CHARA interferometry I. Metal-poor stars I. Karovicova1; 2, T. R. White3; 4, T. Nordlander5; 6, L. Casagrande5; 6, M. Ireland5, D. Huber7, and P. Jofré8 1 Zentrum für Astronomie der Universität Heidelberg,Landessternwarte, Königstuhl 12, 69117 Heidelberg, Germany e-mail: [email protected] 2 Institut für Theoretische Astrophysik, Philosophenweg 12, 69120 Heidelberg, Germany 3 Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia 4 Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 5 Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 6 Center of Excellence for Astrophysics in Three Dimensions (ASTRO-3D), Australia 7 Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 8 Universidad Diego Portales, Núcleo de Astronomía, Av. Ejército Libertador 441, Santiago, Chile Received January 28, 2020; accepted May 8, 2020 ABSTRACT Context. Benchmark stars are crucial as validating standards for current as well as future large stellar surveys of the Milky Way. However, the number of suitable metal-poor benchmark stars is currently limited, owing to the difficulty in determining reliable effective temperatures (Teff ) in this regime. Aims. We aim to construct a new set of metal-poor benchmark stars, based on reliable interferometric effective temperature determi- nations and a homogeneous analysis. The aim is to reach a precision of 1% in Teff , as is crucial for sufficiently accurate determinations of the full set of fundamental parameters and abundances for the survey sources.
    [Show full text]
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • RED DE ASTRONOMÍA DE COLOMBIA, RAC [email protected]
    ___________________________________________________________ RED DE ASTRONOMÍA DE COLOMBIA, RAC www.eafit.edu.co/astrocol [email protected] CIRCULAR 572 de julio 16 de 2010. ___________________________________________________________ Dirección: Antonio Bernal González: [email protected] Edición: Gonzalo Duque-Escobar http://www.galeon.com/gonzaloduquee __________________________________________________________ Las opiniones emitidas en esta circular, son responsabilidad de sus autores. ________________________________________________________ Apreciados amigos de la astronomía Si bien el significado del Bicentenario de nuestra independencia, como un hecho fundamental para el cual se confunden las visiones de Bolívar y Santander en torno a la patria que heredamos, apunta a la celebración del fin del Colonialismo y al surgimiento de la República, lo más importante es el proceso de construcción de nuestra sociedad, y por lo tanto de la consolidación de la identidad de un pueblo, a través de una cultura aún por desarrollar. Ahora, al intentar comprender mejor esto que llamamos Colombia, a pesar de la esa visión simplista del pasado asociada al enfoque histórico excluyente que se consolida desde el Centenario, dado que ofrece una visión de los hechos que reconoce el rol libertador de la mujer pero no desde su condición femenina, y donde no actúan negros, indígenas ni mulatos; ahora, desde la Constitución de 1991 por lo menos se reconoce el territorio como un espacio geográfico multicultural y pluriétnico, a pesar de ciertos
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • Planetquest Outreach Toolkit Manual and Resources Cd
    Outreach ToolKit Manual DISTRIBUTED FOR MEMBERS OF THE NASA NIGHT SKY NETWORK THE NIGHT SKY NETWORK IS SPONSORED AND SUPPORTED BY JPL'S PLANETQUEST PUBLIC ENGAGEMENT PROGRAM. PLANETQUEST IS A PART OF JPL’S NAVIGATOR PROGRAM, WHICH ENCOMPASSES SEVERAL OF NASA'S EXTRA-SOLAR PLANET- FINDING MISSIONS, INCLUDING THE KECK INTERFEROMETER, THE SPACE INTERFEROMETRY MISSION (SIM), THE TERRESTRIAL PLANET FINDER (TPF), THE LARGE BINOCULAR TELESCOPE INTERFEROMETER (LBTI), AND THE MICHELSON SCIENCE CENTER. NASA NIGHT SKY NETWORK: http://nightsky.jpl.nasa.gov/ PLANETQUEST: http://planetquest.jpl.nasa.gov/ Contacts The non-profit Astronomical Society of the Pacific (ASP), one of the nation’s leading organizations devoted to astronomy and space science education, is managing the Night Sky Network in cooperation with JPL. Learn more about the ASP at http://www.astrosociety.org. For support contact: Astronomical Society of the Pacific (ASP) 390 Ashton Avenue San Francisco, CA 94112 415-337-1100 ext. 116 [email protected] Copyright © 2004 NASA/JPL and Astronomical Society of the Pacific. Copies of this manual and documents may be made for educational and public outreach purposes only and are to be supplied at no charge to participants. Any other use is not permitted. CREDITS: All photos and images in the ToolKit Manual unless otherwise noted are provided courtesy of Marni Berendsen and Rich Berendsen. Your Club’s Membership in the NASA Night Sky Network Welcome to the NASA Night Sky Network! Your membership in the Night Sky Network will provide many opportunities for your club to expand its public education and outreach. Your club has at least two members who are the Night Sky Network Club Coordinators.
    [Show full text]
  • Physics 20 Lab Manual Table of Contents Lab 1: Velocity Gedanken Lab
    Physics 20 Lab Manual Table of Contents Lab 1: Velocity Gedanken Lab...................................................................................................................3 Lab 2: Equilibrium of Forces Lab..............................................................................................................5 Lab 3: Horizontal Projectile Motion Lab...................................................................................................7 Lab 4: Buoyancy of a Wooden Block........................................................................................................8 Lab 5: Coefficient of Friction....................................................................................................................9 Lab 6: Elevator Lab..................................................................................................................................10 Lab 8: Exoplanet Gedanken.....................................................................................................................11 Lab 9: Hooke's Law.................................................................................................................................13 Lab 10: Measuring Gravity with a Pendulum..........................................................................................14 Lab 11: Speed of Sound...........................................................................................................................15 Appendix A: Laboratory Report Format..................................................................................................16
    [Show full text]
  • Physics 20 & 30
    Physics 20 & 30 Lab Manual Table of Contents Introduction................................................................................................................................................3 Physics 20 Labs..........................................................................................................................................4 Lab 1: Velocity Gedanken Lab...................................................................................................................5 Lab 2: Acceleration Gedanken...................................................................................................................6 Lab 3: Equilibrium of Forces Lab..............................................................................................................7 Lab 4: Horizontal Projectile Motion Lab...................................................................................................8 Lab 5: Buoyancy of a Wooden Block........................................................................................................9 Lab 6: Coefficient of Friction..................................................................................................................10 Lab 7: Elevator Lab..................................................................................................................................11 Lab 8: Exoplanet Gedanken.....................................................................................................................12 Lab 9: Hooke's Law.................................................................................................................................14
    [Show full text]
  • Ian J. M. Crossfield Appointments & Experience Education
    Ian J. M. Crossfield http://www.mit.edu/∼iancross/ Massachusetts Institute of Technology, Physics Department [email protected] MIT Kavli Institute +1 949 923-0578 (USA) 77 Massachusetts Avenue, Cambridge, MA 02139 Appointments & Experience MIT Department of Physics Assistant Professor 07/2017- present • Discovery of new planets using TESS, studying planets' atmospheres using HST and ground-based tele- scopes, new isotopic measurements of cool dwarfs. University of California, Santa Cruz Adjunct Professor 12/2017- present Associate Researcher 06/2017- 07/2017 Sagan Fellow 08/2016- 05/2016 • Continued the discovery of new planets using K2 and characterizing their atmospheres with ground- and space-based telescopes. U. Arizona, Lunar and Planetary Lab Sagan Fellow 07/2014 - 08/2016 • Work to understand hazy atmospheres of extrasolar objects: cloud properties and molecular abundances in known `super-Earth' planets; discovering new transiting planets with the K2 mission. Max Planck Institut f¨urAstronomie Postdoctoral Fellow 07/2012 - 06/2014 • Extrasolar planet atmosphere characterization via transits and secondary eclipses from ground- and space-based observatories. High-resolution spectroscopy of nearby brown dwarfs. University of California, Los Angeles Graduate Studies 09/2007 - 06/2012 • Characterization of exoplanet atmospheres via phase curves, secondary eclipses, and transits. Refined parameters of known transiting planets via optical transit photometry. NASA/Jet Propulsion Laboratory Systems Engineer 07/2004 - 06/2007 • High-contrast instrument performance simulations for the Gemini Planet Imager and TMT Planet For- mation Instrument. Optical testbed work for the Space Interferometry Mission. Exoplanet science. Education University of California, Los Angeles, Los Angeles, California USA • Ph.D., Astrophysics (Dissertation Year Fellow), 06/2012 Advisor: Prof.
    [Show full text]
  • How Astronomical Objects Are Named
    How Astronomical Objects Are Named Jeanne E. Bishop Westlake Schools Planetarium 24525 Hilliard Road Westlake, Ohio 44145 U.S.A. bishop{at}@wlake.org Sept 2004 Introduction “What, I wonder, would the science of astrono- use of the sky by the societies of At the 1988 meeting in Rich- my be like, if we could not properly discrimi- the people that developed them. However, these different systems mond, Virginia, the Inter- nate among the stars themselves. Without the national Planetarium Society are beyond the scope of this arti- (IPS) released a statement ex- use of unique names, all observatories, both cle; the discussion will be limited plaining and opposing the sell- ancient and modern, would be useful to to the system of constellations ing of star names by private nobody, and the books describing these things used currently by astronomers in business groups. In this state- all countries. As we shall see, the ment I reviewed the official would seem to us to be more like enigmas history of the official constella- methods by which stars are rather than descriptions and explanations.” tions includes contributions and named. Later, at the IPS Exec- – Johannes Hevelius, 1611-1687 innovations of people from utive Council Meeting in 2000, many cultures and countries. there was a positive response to The IAU recognizes 88 constel- the suggestion that as continuing Chair of with the name registered in an ‘important’ lations, all originating in ancient times or the Committee for Astronomical Accuracy, I book “… is a scam. Astronomers don’t recog- during the European age of exploration and prepare a reference article that describes not nize those names.
    [Show full text]