The Outer Limits

Total Page:16

File Type:pdf, Size:1020Kb

The Outer Limits Welcome to the outer limits Budapest, March 19, 2013 M.Sc. Ji ří Hlavá č HPC consultant + sales manager for CEE [email protected] ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 1 Jiri Hlavac (by Czech Ji ří Hlavá č) 51 years old, 4 children … • MSc. Computers (1986) • Development of PC OSs for Tesla Czech (1986-1989) • Own SW company (1986-1991) • Owner SGI Distributor @ Czechoslovakia (1991-1995) • Employee @ SGI Czech office (1995-now) • Technical Director, Academic Sales, Enterprise Sales • HPC Consultant (2001-2011) • Sales Manager for Central + East Europe (2005-now) ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 2 SGI = Experts @ HPC Structural Mechanics Structural Mechanics Computational Fluid Electro-Magnetics Implicit Explicit Dynamics Computational Chemistry Computational Chemistry Computational Biology Seismic Processing Quantum Mechanics Molecular Dynamics Reservoir Simulation Rendering / Ray Tracing Climate / Weather Data Analytics Ocean Simulation ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 3 SGI = Focus on every detail (here Power Consumption) ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure4 Agreement 4 SGI = Frontier @ Research SGI = Winner of last HPCwire Readers' Choice Award (Nov 2012) for "Top Supercomputing Achievement" for SGI contribution to the NASA Ames Pleiades supercomputer. SGI = Winner of last HPCwire Editor's Choice Award (Nov 2012) for "Best use of HPC in 'edge HPC‘ application" for Wikipedia historical mapping and exploration on UV 2000. SGI stock is growing 5 ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure5 Agreement 5 Advanced Energy Exploration and Production Total: World's Largest Commercial HPC System (2.3 PF) SGI ICE ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement Image courtesy NOAA6 Measuring Wind Velocity on a Mast Irish Centre for High-End Computing SGI ICE ©2012Image Silicon courtesy Graphics InternationalICHEC Corp. / Presented Only Under Non-Disclosure Agreement 7 Measuring Wind Velocity on a Mast Irish Centre for High-End Computing SGI ICE ©2012Image Silicon courtesy Graphics InternationalICHEC Corp. / Presented Only Under Non-Disclosure Agreement 8 UN Chief Calls for Urgent Action on Climate Change NASA Advanced Supercomputing Division SGI ICE Images taken by the Thematic Mapper sensor aboard Landsat 5 ©2012Source: Silicon USGS Graphics Landsat International Missions Corp. / Presen Gallery,ted Only U.S.Under DepartmNon-Disclosureent Agreement of the Interior / U.S. Geological Survey 9 Finding Life in the Universe NASA Advanced Supercomputing Division SGI ICE ©2012Image Silicon courtesy Graphics NASAInternational Corp. / Presented Only Under Non-Disclosure Agreement 10 Understanding the Interaction of Solar Wind With the Magnetosphere NASA Advanced Supercomputing Division SGI ICE ©2012Image Silicon courtesy Graphics NASAInternational Corp. / Presented Only Under Non-Disclosure Agreement 11 Modeling the World’s Climate Nat’l. Oceanic & Atmospheric Administration SGI ICE ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement Image courtesy NOAA12 Studying the Formation of Star Clusters University of Exeter SGI ICE ©2012Image Silicon courtesy Graphics MatthewInternational Corp. Bate, / Presen Universityted Only Under of Non-DisclosureExeter Agreement 13 COSMOS, Cambridge University - UV 1 & UV2 768 Cores @ UV1000 + 1856 cores @ UV2000 2 TB Shared Memory @ UV1 + 14TB @ UV2 63 Tflop/s Peak Performance 64TB IS4100 storage, CXFS Professor Stephen MOAB Grid suite Hawking inspecting the Water cooled final Altix UV installation Strategic projects, such as Planck satellite analysis codes Large simulation requirements of theoretical ideas and comparison with vast new observational data sets ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure14 Agreement 14 ZAMG – Austria Meteorological Institute Altix ICE-X [4 racks] + SGI Storage [2 racks] 4000 Processor Cores, 8 TB Memory, 1 PB storage 1,5x - 2x application performance advantage against all competitors ©2012 Silicon Graphics(based International Corp. on / Presen officialted Only Under RFPNon-Disclosure15 offers Agreement submitted for evaluation) 15 Škoda Auto ICE 8200+8400, ICEX, UV1000, UV2000, SMP nodes, Storage, … SGI UV (>1000 cores) SGI ICE (>5000 Cores, ~60 Tflop/s Peak Performance, ~10 TB Memory) SGI is Integrator of > 1 PByte storage infrastructure for HPC (Nexis 9000, ISS3500, CXFS, NAS servers) 20x pre+post processing SMP nodes (each 144GB mem.) ©2012Grid Silicon Graphicsengine International + Corp.Other / Presented HPC Only Under technologies Non-Disclosure16 Agreement 16 Agenda Examples of SGI customer’s research SGI HPC systems available in Hungary • SGI UV1000 – SMP system (Pecs) • SGI ICE 8400 – MPP/Cluster system (Debrecen) • Comparison of UV and ICE capabilities • HW accelerators available inside each system How to Succeed Together Invitation to next SGI training (Software tools, HPC Libraries, Application optimization, etc…) ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 17 Architecture of a typical Large HPC Centers in Europe SAN and Shared File System Large-node (SMP) systems Small-node, highly parallel e.g. SGI UV (MPP) systems e.g. SGI ICE InfiniBand Network 18 ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 18 SGI ® ICE TM ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 19 Altix ICE at NIIF / Debrecen 1 World’s2 Tall racksfastest (Water distributed Cooled) memory computer Base on SPECmpil. Up to dual IB channels per node. 2 Scalable2048 Xeon cores @ 3,33 GHz Supports(6-core up to 131,072 CPU nodes, Intel 1 MillionXeon + X-5680)Cores Open 3 Runs8 TB Standard memory Linux, use Intel Xeon (SundyBridge or Westmere)(4 GB/ or AMD core) Opteron 6200 CPUs 4 New Topologies Hypercube,Dual-rail enhanced QDR hypercube,InfiniBand all-to-all, fat-tree Differentiated(All-to-All (on topology) capabilities) 5 Dell M100e (single plane), Bullx (95w), Sun Blade 6048 (95w), Altix ICE 8400 Appro>500TB 5000 Series,Lustre HP c7000,filesystem IBM H Chassis (in Blades,another Cray XT6 2 Racks) 20 ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 20 Common InfiniBand Topologies Fat Tree Enhanced All-to-All (CLOS Hypercube Hypercube Networks) All Supported on SGI ICE X ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 21 SGI ICE Topology Study Geometric Mean Over All Applications 120% SHC 1r EHC 1r alltoall 1r fat tree 1r SHC 2r EHC 2r alltoall 2r 100% 80% 60% 40% Performance relative to 1r Performance relative SHC 20% 0% 16 32 64 128 Number of nodes ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 22 SGI ICE Topology Study: Geometric Mean for Global Interconnect Kernels (HPCC PTRANS, HPCC MPIFFT, HPCC RR BW, IMB Bisection BW, IMB All to All) 450% SHC 1r EHC 1r alltoall 1r fat tree 1r SHC 2r EHC 2r alltoall 2r 400% 350% 300% 250% 200% 150% Performance relative to relative SHC 1r Performance 100% 50% 0% 16 32 64 128 Number of nodes ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 23 ICE Differentiation: OS Noise Synchronization • OS system noise: CPU cycles stolen from a user application by the OS to do periodic or asynchronous work (monitoring, daemons, garbage collection, etc) . • Management interface will allow users to select what gets synchronized • Performance boost on larger scales systems Process on: Unsynchronized OS Noise → Wasted Cycles System Wasted Wasted Node 1 Overhead Cycles Cycles Node 2 Wasted System Wasted Compute Cycles Cycles Overhead Cycles Node 3 Wasted Wasted System Cycles Cycles Overhead Barrier Complete Process on : System Node 1 Overhead System Node 2 Overhead System Node 3 Overhead Synchronized OS Noise → Faster Results 24 ©2012Slide Silicon 24 Graphics International Corp. / Presented Only Under Non-DisclosureTime Agreement 24 Another key SGI Differentiation Premier Software Environment for Technical Computing • Complete, integrated Linux ® environment across all SGI systems • Highest level of scalability and performance while maintaining ISV compatibility • Best of Breed solutions delivered with industry leading partners ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 25 ANSYSAdvantages FLUENT of the SGI® -Ultimate MPI Scalability Library Throughala SGI Application SGI® Benchmarking PerfBoost Expertise World Record Scalabili ty! • Previously reported FLUENT scaling with HP-MPI did not exceed 512 cores • SGI ICE, powered by SGI MPI PerfBoost, scaled FLUENT to 3072 cores with a rating of 1333.3 jobs per day •Proved the ability to run FLUENT on all 4,092 cores in the ICE system ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 26 SGI ® UV TM ©2012 Silicon Graphics International Corp. / Presented Only Under Non-Disclosure Agreement 27 Altix UV 1000 at NIIF / Pecs 1 World’s3 Tall racksfastest with shared Water memory Cooling computer Base on SPECint and SPECfp 1152 Xeon cores @ 2,6 GHz 2 Scalable Single(6-core system image CPU up to Intel 2048 cores Xeon and X-5680)16TB memory 3 Open6 TB memory Runs (4Standard GB/ Linuxes core) + Windows (Intel
Recommended publications
  • Performance Evaluation of the Intel Sandy Bridge Based NASA
    Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades Using Scientific and Engineering Applications Subhash Saini, Johnny Chang, Haoqiang Jin NASA Advanced Supercomputing Division NASA Ames Research Center Moffett Field, California 94035-1000, USA {subhash.saini, johnny.chang, haoqiang.jin}@nasa.gov Abstract — We present a performance evaluation of Pleiades based based on the Many Integrated Core (code-named Knight’s on the Intel Xeon E5-2670 processor, a fourth-generation eight-core Corner) architecture and Yellowstone [1, 5, 6]. New and Sandy Bridge architecture, and compare it with the previous third extended features of Sandy Bridge architecture are: generation Nehalem architecture. Several architectural features have been incorporated in Sandy Bridge: (a) four memory channels as a) A ring to connect on-chip L3 cache with cores, system opposed to three in Nehalem; (b) memory speed increased from 1333 agent, memory controller, and QPI agent and I/O MHz to 1600 MHz; (c) ring to connect on-chip L3 cache with cores, controller to increase the scalability. L3 cache per core system agent, memory controller, and QPI agent and I/O controller to has been increased from 2 MB to 2.5 MB. increase the scalability; (d) new AVX unit with wider vector registers of 256 bit; (e) integration of PCI-Express 3.0 controllers into the I/O b) New micro-ops (L0) cache that caches instructions as subsystem on chip; (f) new Turbo Boost version 2.0 where base they are decoded. The cache is direct mapped and can frequency of processor increased from 2.6 to 3.2 GHz; and (g) QPI link store 1.5 K micro-ops.
    [Show full text]
  • President Lands at Moffett Field During Silicon Valley Visit by Huong Nguyen and Jessica Culler President Barack Obama’S Arrival Onboard Air Force One on Sunday, Sept
    Fall 2011 - A Quarterly Publication Thousands turn out to tour airborne observatory at Ames The Stratospheric Observatory for In- frared Astronomy (SOFIA) visited NASA Ames and provided a rare opportunity to tour the airborne observatory in October. News media and Ames employees were invited to tour on Friday, Oct. 14 and the public on Saturday, Oct. 15. On Friday, an estimated 2,500 people, including representatives from CNET, Fox News, KQED (PBS), New Scientist, Space. com, Mountain View Patch and the San Mateo Daily Journal attended the event. On Saturday, an estimated 5,500 people visited Ames to tour SOFIA. See page 6 for a feature about the SOFIA visit. NASA photo by Doiminic Hart President lands at Moffett Field during Silicon Valley visit BY HUONG NGUYEN AND JESSICA CULLER President Barack Obama’s arrival onboard Air Force One on Sunday, Sept. 25, 2011, at Moffett Federal Airfield marked his first land- ing at NASA Ames. Center Director Pete Worden met President Barack Obama upon his arrival. "I had the honor to meet President Obama when he arrived at Moffett Federal Airfield," said Worden, who along with San Jose Mayor Chuck Reed and Mountain View Mayor Jac Siegel, greeted the president. "It was fitting that the president came to Silicon Valley to talk about his job creation plan, given how critical Silicon Valley is to the future of the U.S. economy," Worden said. NASA Ames is an integral com- ponent of the world-renowned inno- vation economy and actively partici- pates in the valley’s technological Photo credit: Official White House Photo by Pete Souza and scientific evolution.
    [Show full text]
  • NASA Announces a New Approach to Earth Science Data Analysis 20 April 2010
    NASA Announces A New Approach To Earth Science Data Analysis 20 April 2010 (PhysOrg.com) -- The way we analyze planet Earth than ten hours. will never be the same, thanks to a new initiative at NASA that integrates supercomputers with global NEX uses a new approach for collaboration among satellite observations and sophisticated models of scientists and science teams working to model the the Earth system in an online collaborative Earth system and analyze large Earth observation environment. As part of its celebration of Earth datasets. Using on-line collaboration technologies, Week, NASA unveiled the NASA Earth Exchange NEX will bring together geographically dispersed (NEX) at a “Green Earth” public forum held at the multi-disciplinary groups of scientists focused on NASA Exploration Center, Moffett Field, Calif. global change research. Scientists will be able to build custom project environments containing the By making NEX available, NASA expects to better datasets and software components needed to solve enable scientists to collaboratively conduct complex Earth science problems. These project research and address the impacts of changes in environments, built using virtualization technology, climate and land use patterns on ecosystems. NEX will be highly portable and reusable and will will link NASA’s supercomputing resources with automatically capture the entire analysis process, massive Earth system data sets, and provide a including the data and processing steps required to collection of tools for analysis and visualization. replicate the results in an open and transparent way. For example, results from the processing of "Currently, it can require months for scientists to the global Landsat data would be available to gather and analyze global-scale data sets, due to scientists with the additional expertise required to computing limitations, data storage requirements analyze rates of urbanization, deforestation, or and network bandwidth constraints”, said biodiversity impacts.
    [Show full text]
  • Performance Evaluation of the Intel Sandy Bridge Based NASA
    NAS Technical Report: NAS-2015-05 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades Using Scientific and Engineering Applications Subhash Saini, Johnny Chang, Haoqiang Jin NASA Advanced Supercomputing Division NASA Ames Research Center Moffett Field, California 94035-1000, USA {subhash.saini, johnny.chang, haoqiang.jin}@nasa.gov Abstract — We present a performance evaluation of Pleiades based based on the Many Integrated Core (code-named Knight’s on the Intel Xeon E5-2670 processor, a fourth-generation eight-core Corner) architecture and Yellowstone [1, 5, 6]. New and Sandy Bridge architecture, and compare it with the previous third extended features of Sandy Bridge architecture are: generation Nehalem architecture. Several architectural features have been incorporated in Sandy Bridge: (a) four memory channels as a) A ring to connect on-chip L3 cache with cores, system opposed to three in Nehalem; (b) memory speed increased from 1333 agent, memory controller, and QPI agent and I/O MHz to 1600 MHz; (c) ring to connect on-chip L3 cache with cores, controller to increase the scalability. L3 cache per core system agent, memory controller, and QPI agent and I/O controller to has been increased from 2 MB to 2.5 MB. increase the scalability; (d) new AVX unit with wider vector registers of 256 bit; (e) integration of PCI-Express 3.0 controllers into the I/O b) New micro-ops (L0) cache that caches instructions as subsystem on chip; (f) new Turbo Boost version 2.0 where base they are decoded. The cache is direct mapped and can frequency of processor increased from 2.6 to 3.2 GHz; and (g) QPI link store 1.5 K micro-ops.
    [Show full text]
  • Project Status Report High End Computing Capability Strategic Capabilities Assets Program December 10, 2014
    Project Status Report High End Computing Capability Strategic Capabilities Assets Program December 10, 2014 Dr. Rupak Biswas – Project Manager NASA Ames Research Center, Moffett Field, CA [email protected] (650) 604-4411 www.nasa.gov Pleiades Achieves 3.38 Petaflops, Ranks 7th in U.S. and 11th Worldwide on TOP500 List • On the November 2014 TOP500 list of the world’s Mission Impact: Enhancing NASA’s most powerful most power supercomputers, Pleiades ranked 7th in supercomputer and running subsequent diagnostic the U.S. and 11th worldwide, with an impressive tests enables HECC to validate the entire system, improving stability for all jobs. efficiency of 84.6%. The new list was released on November 17 at the SC14 conference in New Orleans (see slide 11). • The HECC Systems team worked with SGI engineers to complete system-wide testing on Pleiades, including a LINPACK benchmark run, prior to the release of new Intel Haswell processors for general production on October 27. • During the LINPACK run, Pleiades delivered a sustained performance of 3.38 petaflops using 73% of its compute nodes, representing 89% of the theoretical peak of the overall system. The benchmark was run on 1,024 Haswell nodes, 5,365 Pleiades’ increased LINPACK benchmark performance since 2008, when Ivy Bridge nodes, and 1,792 Sandy Bridge nodes. the original system was installed at the NASA Advanced Supercomputing (NAS) facility. The initial configuration achieved a sustained performance • In addition to measuring performance, the of 0.487 petaflops and 80% efficiency in benchmark testing. With the latest LINPACK run helped the Systems team detect upgrade, Pleiades achieved 84.6% efficiency on the LINPACK benchmark.
    [Show full text]
  • Pleiades • the NASA Workload • System Build Strategy • Operational Strategy • Tools and Analysis Software • Issues Do We See • Whats Lustre Does • What We Want
    NASA SuperComputing A Ground Based Instrument for Exploration and Discovery LUG 2015 Bob Ciotti Chief Architect/Supercomputing Systems Lead LUG 2015 - Denver LUG - Denver Apr 2015 Discussion • What is Pleiades • The NASA Workload • System Build Strategy • Operational Strategy • Tools and Analysis Software • Issues Do We See • Whats Lustre Does • What We Want LUG - Denver Apr 2015 Supercomputing Support for NASA Missions Jet aircraft wake vortices Jet engine • Agency wide resource noise • Production Supercomputing emissions • Focus on availability • Machines mostly run large ensembles • Some very large calculations (50k) Orbiting, Spinning – Typically o500 jobs running Detailed CLV Black Holes Geometry • Example applications • ARMD – LaRC: Jet wake vortex simulations, to increase airport capacity and safety – GRC: Understanding jet noise simulations, to decrease airport noise • ESMD – ARC: Launch pad flame trench simulations for Ares vehicle safety analysis – MSFC: Correlating wind tunnel tests and simulations of Solar surface Ares I-X test vehicle – ARC/LaRC: High-fidelity CLV flight simulation with convection detailed protuberances • SMD – Michigan State: Ultra-high-resolution solar surface convection simulation – GSFC: Gravity waves from the merger of orbiting, spinning black holes • SOMD – JSC/ARC: Ultra-high-resolution Shuttle ascent analysis • NESC – KSC/ARC: Initial analysis of SRB burn risk in Vehicle 2-SRB Burn Assembly Building in VAB Shuttle Ascent Configuration 3 LUG - Denver Apr 2015 LUG - Denver Apr 2015 ECCO – Ocean Modeling
    [Show full text]
  • NASA Advanced Supercomputing Division
    Fold here Fold here CMYK logo 8.5 x 17 Trifold Modeling & Simulation NAS High-End Computing Environment Facts National Aeronautics and Space Administration NAS expertise in fundamental and applied Pleiades modeling and simulation is essential to creating • Primary production system for all NASA mission directorates large-scale simulations supporting critical • SGI ICE X cluster connected via InfiniBand in an 11D hypercube topology NASA engineering and design decisions. Our • 126,720 cores (Intel Xeon quad-, six-, and eight-core processors) fundamental research advances numerical • 1.75 petaflop/s peak; 1.24 petaflop/s sustained performance (June 2012) methods, algorithms, and code development • 233 terabytes total memory for aeronautics research, while applied • 64 nodes enhanced with Nvidia graphics processing units modeling enables large-scale numerical simulations in several important mission areas. hyperwall-2 • 128-screen, tiled LCD wall displays, processes, and shares data—can display a single image across In support of NASA’s project to design the all screens, or can display unique images in selected “cells” heavy-lift Space Launch System, NAS compu- • Custom Colfax International system connected to Pleiades via InfiniBand NASA ADVANCED SUPERCOMPUTING DIVISION tational fluid dynamics experts developed (over 100 gigabytes-per-second connectivity) specialized software and performed thousands • 128 nodes; 2 quad-core (AMD Opteron 2354) processors per node of simulations to analyze aerodynamic • 136 Nvidia Fermi GTX 480 processors
    [Show full text]
  • Interconnect Your Future Enabling the Best Datacenter Return on Investment
    Interconnect Your Future Enabling the Best Datacenter Return on Investment TOP500 Supercomputers, June 2017 InfiniBand Accelerates Majority of New Systems on TOP500 . InfiniBand connects 2.5 times more new systems versus OmniPath . EDR InfiniBand solutions grew 2.5X in six months . Mellanox accelerates the fastest supercomputer in the world . InfiniBand provides 1.7X Higher ROI for Petascale Platforms . Mellanox connects 39% of overall TOP500 systems (192 systems, InfiniBand and Ethernet) . InfiniBand connects 36% of the total TOP500 systems (179 systems) . InfiniBand connects 60% of the HPC TOP500 systems . InfiniBand accelerates 48% of the Petascale systems . Mellanox connects all of 40G Ethernet systems, connects the first 100G Ethernet system on the list InfiniBand is the Interconnect of Choice for HPC Infrastructures Enabling Machine Learning, High-Performance, Web 2.0, Cloud, Storage, Big Data Applications © 2017 Mellanox Technologies 2 Mellanox Connects the World’s Fastest Supercomputer National Supercomputing Center in Wuxi, China #1 on the TOP500 List . 93 Petaflop performance, 3X higher versus #2 on the TOP500 . 41K nodes, 10 million cores, 256 cores per CPU . Mellanox adapter and switch solutions * Source: “Report on the Sunway TaihuLight System”, Jack Dongarra (University of Tennessee) , June 20, 2016 (Tech Report UT-EECS-16-742) © 2017 Mellanox Technologies 3 InfiniBand Accelerates Artificial Intelligence (AI) and Deep Learning Facebook AI Supercomputer #31 on the TOP500 List NVIDIA AI Supercomputer #32 on the TOP500 List . EDR InfiniBand In-Network Computing technology key for scalable Deep Learning systems . RDMA accelerates Deep Learning performance by 2X, becomes de-facto solution for AI © 2017 Mellanox Technologies 4 Mellanox In the TOP500 .
    [Show full text]
  • NASA, Intel, SGI Plan to 'Soup Up' Supercomputer
    May 7, 2008 NASA, Intel, SGI Plan to 'Soup Up' Supercomputer MOFFETT FIELD, Calif.--(BUSINESS WIRE)-- NASA, Intel Corp., and SGI today announced the signing of an agreement establishing intentions to collaborate on significantly increasing the space agency's supercomputer performance and capacity. Under the terms of a Space Act Agreement, NASA will work closely with Intel and SGI to increase computational capabilities for modeling and simulation at the NASA Advanced Supercomputing (NAS) facility at NASA's Ames Research Center, Moffett Field, Calif. "Achieving such a monumental increase in performance will help fulfill NASA's increasing need for additional computing capacity and will enable us to provide the computational performance and capacity needed for future missions," said Ames Director S. Pete Worden. "This additional computational performance is necessary to help us achieve breakthrough scientific discoveries." NASA Ames, Intel and SGI will work together on a project called Pleiades to develop a computational system with a capacity of one Petaflops peak performance (1,000 trillion operations per second) by 2009 and a system with a peak performance of 10 Petaflops (10,000 trillion operations per second) by 2012. "Throughout its history, NASA has sought to explore the most compelling questions about mankind, Earth, and the worlds that await our discovery," said Robert "Bo" Ewald, chief executive officer of SGI. "SGI is proud to be part of this effort. These groundbreaking new systems powered by SGI and fueled by the latest multi-core Intel processors, offer a platform for new discoveries that will help us all achieve the most promising future for the human race.
    [Show full text]
  • An Automated Bolide Detection Pipeline for GOES GLM
    Highlights An Automated Bolide Detection Pipeline for GOES GLM Jeffrey C. Smith,Robert L. Morris,Clemens Rumpf,Randolph Longenbaugh,Nina McCurdy,Christopher Henze,Jessie Dotson • GOES Geostationary Lightning Mappers can be used to detect bolides. • A Random Forest detection algorithm has been deployed on the NASA Advanced Supercomputing facility Pleiades supercomputer. • Bolide light curves are promptly published on a NASA hosted publicly accessible website, https://neo-bolide.ndc.nasa.gov. arXiv:2106.09189v1 [astro-ph.EP] 17 Jun 2021 An Automated Bolide Detection Pipeline for GOES GLM a,b < a,b b,c d Jeffrey C. Smith , , Robert L. Morris , Clemens Rumpf , Randolph Longenbaugh , b b b Nina McCurdy , Christopher Henze and Jessie Dotson aThe SETI Institute, 189 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA bNASA Ames Research Center, Moffett Field, CA 94035, USA cSTC, NASA Research Park, Moffett Field, CA 94035, USA dSandia National Laboratories, Albuquerque, NM 87185, USA ARTICLEINFO ABSTRACT Keywords: The Geostationary Lightning Mapper (GLM) instrument onboard the GOES 16 and 17 satellites Bolide detection has been shown to be capable of detecting bolides (bright meteors) in Earth’s atmosphere. Due to GOES GLM its large, continuous field of view and immediate public data availability, GLM provides a unique Random forest classifier opportunity to detect a large variety of bolides, including those in the 0.1 to 3 m diameter range and complements current ground-based bolide detection systems, which are typically sensitive to smaller events. We present a machine learning-based bolide detection and light curve generation pipeline being developed at NASA Ames Research Center as part of NASA’s Asteroid Threat Assessment Project (ATAP).
    [Show full text]
  • 33Rd TOP500 List
    33rd TOP500 List ISC’ 09, Hamburg Agenda • Welcome and Introduction (H.W. Meuer) • TOP10 and Awards (H.D. Simon) • Hig hlig hts of the 30th TOP500 (E. ShiStrohmaier) • HPC Power Consumption (J. Shalf) • Multicore and Manycore and their Impact on HPC (J. J. Dongarra) • Discussion 33rd List: The TOP10 Rmax Power Rank Site Manufacturer Computer Country Cores [Tflops] [MW] Roadrunner 1 DOE/NNSA/LANL IBM USA 129,600 1,105.0 2.48 BladeCenter QS22/LS21 Oak Ridge National Jaguar 2 Cray Inc. USA 150,152 1,059.0 6.95 Laboratory Cray XT5 QC 2.3 GHz Forschungszentrum Jugene 3 IBM Germany 294,912 825.50 2.26 Juelich (FZJ) Blue Gene/P Solution NASA/Ames Pleiades 4 Research SGI USA 51,200 487.0 2.09 SGI Altix ICE 8200EX Center/NAS BlueGene/L 5 DOE/NNSA/LLNL IBM USA 212,992 478.2 2.32 eServer Blue Gene Solution University of Kraken 6 Cray USA 66,000 463.30 Tennessee Cray XT5 QC 2.3 GHz ANtilArgonne National ItIntrep id 7 IBM USA 163,840 458.61 1.26 Laboratory Blue Gene/P Solution Ranger 8 TACC/U. of Texas Sun USA 62,976 433.2 2.0 SunBlade x660420 Dawn 9 DOE/NNSA/LANL IBM USA 147,456 415.70 1.13 Blue Gene/P Solution Forschungszentrum JUROPA 10 Sun/Bull SA Germany 26,304 274.80 1.54 Juelich (FZJ) NovaScale /Sun Blade The TOP500 Project • Listing the 500 most powerful computers in the world • Yardstick: Rmax of Linpack – Solve Ax=b, dense problem, matrix is random • Update twice a year: – ISC’ xy in June in Germany • SCxy in November in the U.S.
    [Show full text]
  • NASA HEC BDTF V2-Tagged
    National Aeronautics and Space Administration NASA Supercomputing, Big Data, and a Vision for the Future Compute Services Presented at NASA Big Data Task Force Meeting January 16, 2016 Tsengdar Lee – [email protected], NASA Headquarters High Performance Computing Program Manager with HECC and NCCS teams www.nasa.gov Agenda • NASA Supercomputing Program • Changing Workload from Big Compute to Big Data • Big Compute + Big Data = New Compute Service 2 High-end Computing at NASA • The mission of NASA's High-End Computing (HEC) Program is to: • Plan and provision HEC systems and services to support NASA's mission needs. • Operate and manage these HEC resources for the benefit of agency users, customers, and stakeholders. •The HEC Program manages two projects, which serve all three NASA Mission Directorates: Aeronautics (ARMD), Human Exploration and Operations (HEOMD), Science (SMD), and Space Technology (STMD). HECC provides world-class NCCS offers an integrated set high-end computing, of supercomputing, storage, and associated visualization, and data services to enable scientists interaction technologies to and engineers supporting enhance NASA capabilities in NASA missions to broadly weather and climate and productively employ prediction and enable future large-scale modeling, scientific discoveries that will simulation, and analysis to benefit humankind. It serves achieve successful mission hundreds of users at NASA outcomes. It supports 1,200 centers, laboratories, and users from NASA and universities across the U.S. around the U.S. HECC is NCCS is run by the run by the NASA Advanced Computational and Supercomputing (NAS) Information Sciences and Division at Ames Research Technology Office (CISTO) at Center.
    [Show full text]