Inversion of the Indefinite Double Covering Map F. Adjei†, M. K. Dabkowski∗, S. Khan∗& V. Ramakrishna∗ : Department of Mathematics † Prairie View A&M University Prairie View, TX 77446, USA E-mail address:
[email protected] : Department of Mathematical Sciences ∗ The University of Texas at Dallas Richardson TX, 75080, USA arXiv:2003.09484v1 [math-ph] 20 Mar 2020 E-mail addresses: mdab,Samreen.Sher,
[email protected] Abstract Algorithmic methods for the explicit inversion of the indefinite double covering maps are proposed. These are based on either the Givens decomposition or the polar decomposition of the given matrix in the proper, indefinite orthogonal group SO+(p, q). As a by-product we establish that the preimage in the covering group, of a positive matrix in SO+(p, q), can always be chosen to be itself positive definite. Inversion amounts to solving a poynomial system. These methods solve this system by either inspection, Groebner bases or by inverting the associated Lie algebra isomorphism and computing certain exponentials explicitly. The techniques are illustrated for (p, q) (2, 1), (2, 2), (3, 2), (4, 1) . ∈{ } Keywords: Bivectors, Givens decomposition, polar decomposition, indefinite orthogonal groups, spin groups 1 Introduction The double covers of the definite and indefinite orthogonal groups, SO+(p, q) by the spin groups are venerable objects. They arise in a variety of applications. The covering of SO(3) by SU(2) is central to robotics. The group SO+(2, 1) arises in polarization optics, [4]. The group SO+(3, 2) arises as the dynamical symmetry group of the 2D hydrogen atom and also in the analysis of the DeSitter space time [7, 11].